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Synthetic Aperture Radar (SAR) overview
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Generating SAR Images with GANSs
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Example image from MSTAR dataset o Examples of SAR images on left

* SAR images have different statistics

from optical images
* Patches of bright and dark spots

called “speckle”

e Convolutional Neural Networks
(CNNs) that work for optical images
need adaptation to work for SAR

images
* Loss function of CNNs
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Research questions

 Style transfer: Can we make synthetic images look more like real images without human

intervention?

* Change elevation: Can we train a GAN on a set of 30 degree elevation images and generate

a 15 degree elevation image (for example)?

* Denied target: Can we generate SAR image for denied target by only training on group of

similar images and a few images of the target?

e Other parameters: Can we generate images that account for changes in other variables,

such as squint angle?



Algorithmic approach of your solution

Training set

Random
noise

Generative Adversarial Networks (GANSs) train two neural networks in a “game”
against each other

The generator is equivalent to a forger

The discriminator is equivalent to an expert trying to decide if the generators work
is real or fake

Nash equilibrium when 50/50 chance that generated images are labelled real by
discriminator
* Discussed in https://arxiv.org/abs/1710.08446
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GAN Architectures

Generator

Linear+BatchNorm+LeakyReLU ED ConvTranspose2D+BatchNorm+LeakyReLU I::> Conv+BatchNorm+LeakyRelLU
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32x1  4x4x128 8x8x64 16x16x32 32x32x16 64x64x8 64x64x8 64x64x4 64x64x1

Discriminator

Conv+LayerNorm+LeakyRelLU
https://github.com/vdumoulin/conv arithmetic

for some cool illustrations of convolutional filters

32x1 vector is noise input

Conditional GANs (cGANs) concatenate additional
tunable variables onto the end of noise vector

64x64x1 32x32x16 16x16x32 8x8x64 4x4x128 6



SAR Turing Test

Which one is real/fake?

Answers: 1. R/F 2. F/R 3. R/F 4. R/F 5.R/F
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Lessons Learned M.l
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Example of Lesson Learned:

Lessons Learned:

* The quality of images is sensitive to network
architecture and hyperparameter tuning.

e Off-the-shelf solutions don’t produce good
results without modifications

e Using a sliced Wasserstein loss function seems
superior to L2 loss function

* Fixed generated images (above) to  SME feedback on images critical for improving
make them more “blocky” by changing data

activation function on generator
network from sigmoid to RELU

* SAR SMEs say blocky images more
realistic

* Example of changes in network
architecture producing better images
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Additional Results and Future Directions
MDL

* Additional results from using Pix2Pix and CycleGAN on improving synthetic SAR

images
* Can show examples later if interested

* Dan Moser
* Examining several improvements on ‘vanilla” GANs
* Sliced Wasserstein GAN: Replace loss function with Sliced Wasserstein loss function

* Cost to transform one pile of dirt into a different pile of dirt
* Mathematical arguments support Wasserstein being a better loss function

* Derrek Yager
e Data Augmentation: Expand data set by translating pictures, adding noise, etc.

* Theo Stangebye
* Network Architecture: More layers? Pooling -> Capsule Network?

¢ Alex Schwing and Dan Moser
e Examine Automatic Target Recognition (ATR) properties of generated images

* Mary Moya
* Other staff members developing statistical tests for comparing SAR images

e Michelle Hummel



