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Synthetic Spectra are used to Determine White Dwarf Surface
2  Conditions

Fitting measured spectra with a model can be used to determine surface conditions, such as gravity and
temperature...
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3 I ...Assuming that we know all of the relevant physics

Structure of the atmosphere

. Temperature

. Density

And at every level in the atmosphere we need
necessary atomic data

o Atomic energy levels

o Atomic oscillator strengths

. Atomic populations

. The line broadening
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Line Broadening Models are used to Calculate Synthetic Spectra of
8 White Dwarfs
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Spectral Line
Shape at Different
Plasma Conditions

1
Then Integrated
over the different
plasma conditions
in the atmospheres
Give the emergent
Spectra

Probably the most direct application of line
broadening by astronomers is to determine log g
and Teff

The reason for this is that
0 line broadening is sensitive to the density

° Density is sensitive to gravity
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Line Broadening Models are used to Calculate Synthetic Spectra of
9 White Dwarfs
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10 Line-Broadening Requires Multi-Disciplinary knowledge

(I Wavefunctions

Plasma Dynamics/
Correlations/
Screening

Line Broadening

• AccurateDe scription of
Interactions

between Particle

Quantum Kinetics

(1111Density of States/
Statistical Mechanic



11 Line-Broadening Requires Multi-Disciplinary knowledge

411 Wavefunctions Line Broadening

Plasma Dynamic!
Correlations/
Screening

PHYSICAL REVIEW A 98, 012505 (2018)

Density-matrix correlations in the relaxation theory of electron broadening
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Spectral lines of radiating atoms are broadened by perturbations due to the surrounding plasma environment. In
line-broadening calculations, thc statistical average of the perturbation is wcightcd by the density matrix, which,
in thermal equilibrium, contains correlations between the radiator and plasma. These correlations, however,
have been neglected by all line-broadening theories except for the kinetic theory. The relaxation theory of line
broadening is a mathematically exact derivation containing only one physical approximation: neglect of density-
matrix correlations. We revisit this derivation and improve it by including the correlations. The line-broadening
operator derived with the updated relaxation theory differs from that derived from the kinetic theory, though both
derivations are considered to be exact. The kinetic theory derivation predicts that density-matrix correlations

result a strong static shift of spectral lines. Our derivation, on the other hand, predicts that the correlations are
a frequency-dependent effect that affects the line wings, and there is no shift of the line due to correlations.
In addition, we predict that changes in the line shape due to correlations are only noticeable at extremely high
densities. To distinguish thc more appropriate model, we compare the shifts calculated with the relaxation and
kinetic theory with data. The comparison shows support for the relaxation theory and casts into doubt the accuracy
of the derivation of the kinetic theory of line broadening.

Quantum Kinetics

Density of States/
Statistical Mechanics

DOI: 10.1103/PhysRevA.98.012505
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13 There are many Different Mechanisms that can Broaden Spectral Lines
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Electron Broadening II



1 5 There are many Different Mechanisms that can Broaden Spectral Lines



Broadening of Multi-Electron atoms is incomplete 1



17 I Multi-Electron Atoms

Any atom that has more than one bound electron is considered a multi-electron atom

The simplest are those with one valence electron: Li-like, Na-like, K-like, etc.

The next simplest are those with closed / shells and one electron in an open shell: B-like, Al-like

The most complex are with more than one electron in open shells
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19 I Calculations Cannot Match Line-Width Measurements for 3-Electron Atoms
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11 Estimated

experimental error

bars

There are measurements of 3-electron atoms
with independent plasma diagnostics

Current ab-initio calculations of line broadening
of simple 3-electron atoms currently cannot
match measured widths
° Factor of two in some cases

Current semi-empirical calculations fare better
° uncertain within 20-30% for these lines.

Discrepancy is worse with large energy
separation between states
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There are measurements of 3-electron atoms
with independent plasma diagnostics

Current ab-initio calculations of line broadening
of simple 3-electron atoms currently cannot
match measured widths

This is known as the isolated-line problem and
has led to a decades-long investigation

Eur. Phys. J. D 54, 51-64 (2009)
001, 10.1140/ mid/ e2009-00167-8
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Experimental Stark widths, of the ls - 'transitions is the Li-like ione Nv, 0 vr,
and Nevin are reported. The measurements were performed for a wt of plasma parameters so that
the density and temperature behavior of the Stark widthe could be observed and compared with
calculations. The experimental results did not show &scaling with where g is the spectroscopic
Marge number, which is expected from theoretical calculations in the detiron-impact approximation.
Furthermore, deviations from linear scaling appear for = 8.

PACS number(s): 52.10.1rs, 32.10.7.

I. INTRODUCTION IL THEORETICAL STARK WIDTH
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Electron-impact broadening of the 3s-3p lines
in low-Z Li-like ions
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Collision operator for isolated ion lines in the standard Stark-broadening theory with applications

to the Z scaling in the Li isoelectronic series 3P-3S transition
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In this work we review some aspects of the semiclassical dipole impact approximation for isolated ion
lines.. a view to the questions on gusting raised by two recent experimental studies. Some theoreti
cal and practical aspects of line-shape calculations are discussed. Detailed calculations are perforated in
the semiclassical (dipole) hripact approximation for the Li isoeletironic 3P-3S line. Particular emphasri
is given to inelasMity effects. In contrast to previous calculations, very good agreement ri obtained for
the lighter elements of Me isoelectronie series. Ion dynamical corrections are also considered and are
found to be negligible M the dipole approximation.

Investigations of Stark widths of highly charged non-
hydrogenic ions along imelectionic sequences are of great
interest since cross mctions for impact broadening scale

For the calculation of the Stark widths we cl
semiclassical impact theory of Ref. (If and a
senfiempirical approach as given in Ref. (6).

Yu.V. Ralehenko.*, H.R. Griemb, I. Bray.
`Faculty of Physic, Weirmatin Irwin. of Science_ Behaves MOB Israel
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21 I Things to Consider for Electron Broadening

Size of Atomic Basis set

Accuracy of Atomic Wavefunctions

Density of States/Populations

Description of Plasma Electrons

o Classical

o Quantum
. Exchange

Interaction between Atom and Plasma
Dipole Approximation

o Coulomb Interaction

Collision Treatment

o Coulomb-Born

O Distorted-Wave

o CCC
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25 Wavefunction Time Evolution
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26 I Direct Interactions are Straightforward

This type of interaction is where the atom and
electrons change states

But the atomic electron remains the atomic
electron and the free electron remains the free
electron

This interaction is usually well modeled because
of the simple interactions involved

1
1

1
•



27 Wavefunction Time Evolution With Interactions
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28 I Exchange Interactions

The atomic electron can exchange places with
the free electron and change states in this way

This adds some complexity to the calculation,
but is manageable



29 Wavefunction Time Evolution With Interactions
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30 I Exchange is Important Even for Hydrogen

One might be led to the conclusion that because
hydrogen spectra is accurately modeled by semi-
classical methods that exchange is unimportant

But this is not true in the slightest

Exchange can add substantial broadening for
hydrogen
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31 I Exchange is Important Even for Hydrogen

One might be led to the conclusion that because
hydrogen spectra is accurately modeled by semi-
classical methods that exchange is unimportant

But this is not true in the slightest

Exchange can add substantial broadening for
hydrogen

But because exchange can also occurs with
nuclear interactions, the effect of exchange is
largely cancelled for hydrogen
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32 Exchange Interactions for Multi-Electron Atoms

Seaton (1953) laid out the relevant exchange
processes in collisions

These include not only two-body exchange, but
three-body exchange as well (assuming atomic
wavefunctions are roughly orthogonal)
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36 I These Exchange Terms are Large

One exchange process—such as the nuclear
contribution—can contribute a factor of two in
the line shape

This shows that exchange processes are
important

Exchange has no classical analog and semi-
classical calculations cannot model these systems
from an ab-initio calculation
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3 7 Current Progress on Matching Experimental Data
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38 I Conclusions

This is a work in progress to accurately model—from an ab-initio method—multi-electron systems

This work will be valuable for determining masses of white dwarfs with carbon-rich atmospheres

o thought to be some of the most massive white dwarfs

This will also be important for calculating line broadening and line shifts of helium lines that will aid
in determining their masses as well (See Marc Scheauble's talk)


