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Synthetic Spectra are used to Determine White Dwarf Surface |
Conditions

Fitting measured spectra with a model can be used to determine surface conditions, such as gravity and
temperature. ..
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...Assuming that we know all of the relevant physics

Structure of the atmosphere

° Temperature

> Density

And at every level in the atmosphere we need
necessary atomic data

> Atomic energy levels
> Atomic oscillator strengths
° Atomic populations

° The line broadening
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Electron Density (e/cm?)

Line Broadening Models are used to Calculate Synthetic Spectra of
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Probably the most direct application of line
Spectral Line broadening by astronomers is to determine log g

Shape at Different  and T,;
Plasma Conditions

The reason for this 1s that

> line broadening is sensitive to the density

> Density is sensitive to gravity
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10 | Line-Broadening Requires Multi-Disciplinary knowledge

Line Broadening

Wavefunctions Quantum Kinetics

Plasma Dynamics/
Correlations/
Screening

Density of States/
Statistical Mechanics

Accurate
Description of
Interactions
between Particles
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Density of States/

Spectral lines of radiating atoms are broadened by perturbations due to the surrounding plasma environment. In
line-broadening calculations, the statistical average of the perturbation is weighted by the density matrix, which,
in thermal equilibrium, contains correlations between the radiator and plasma. These correlations, however,
have been neglected by all line-broadening theories except for the kinetic theory. The relaxation theory of line
broadening is a math ically exact derivation containing only one physical approximation: neglect of density-
matrix correlations. We revisit this derivation and improve it by including the correlations. The line-broadening
operator derived with the updated relaxation theory differs from that derived from the kinetic theory, though both
derivations are considered to be exact. The kinetic theory derivation predicts that density-matrix correlations
result a strong static shift of spectral lines. Our derivation, on the other hand, predicts that the correlations are
a frequency-dependent effect that affects the line wings, and there is no shift of the line due to correlations.
In addition, we predict that changes in the line shape due to correlations are only noticeable at extremely high
densities. To distinguish the more appropriate model, we compare the shifts calculated with the relaxation and
kinetic theory with data. The comparison shows support for the relaxation theory and casts into doubt the accuracy
of the derivation of the kinetic theory of line broadening.

1 DOI: 10.1103/PhvsRevA . 98.012505 1
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Line Broadening

lon Broadening Neutral Broadening

Electron Broadening Magnetic Fields

Influence of Photons
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Broadening of Multi-Electron atoms is incomplete
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Multi-Electron Atoms

Any atom that has more than one bound electron is considered a multi-electron atom
The simplest are those with one valence electron: Li-like, Na-like, K-like, etc.
The next simplest are those with closed /shells and one electron in an open shell: B-like, Al-like

The most complex are with more than one electron in open shells
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19 I Calculations Cannot Match Line-Width Measurements for 3-Electron Atoms
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Estimated
experimental error
bars

There are measurements of 3-electron atoms
with independent plasma diagnostics

Current ab-initio calculations of line broadening
of simple 3-electron atoms currently cannot
match measured widths

o Factor of two in some cases

Current semi-empirical calculations fare better

o uncertain within 20-30% for these lines.

Discrepancy is worse with large energy
separation between states
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There are measurements of 3-electron atoms
with independent plasma diagnostics

Estimated
experimental error Current ab-initio calculations of line broadening

bars of simple 3-electron atoms currently cannot
match measured widths

.’ This is known as the isolated-line problem and
me" - has led to a decades-long investigation
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Stark broadening of spectral lines along the isoelectronic sequence of Li

S. Glenzer, N. 1. Uzelac,® and H.-J. Kunze Journal isi i i is i Stark i i
Institut fiir Experimentalphysik V, Ruhr-Universitit, 4630 Bochum, Federal Republic of Germany Quantiy Collision operator for isolated lon lines in the staudard Stark theory with,
(Received 13 January 1992) Spectr to the Z scaling in the Li isoelectronic series 3P-3S transition
o " & Radiact
Experimental Stark widths of the 3s2S — 3p2P° transitions in the Li-like ions C1v, Nv, Ov1, ournal of Quantitative Spectroscopy Transler Spiros Alexiou
and Ne v are reported. The measurements were performed for a st of plasma parameters so that PERGAMON Radiative Transfer 81 (2003) 371384 Department of Nuclear Physics, Weizmann Institute of Science, Rehovot 76100, Isracl
www.clsevier.com/lo (Received 8 March 1993)

the density and temperature behavior of the Stark widths could be observed and compared with
calculations. The experimental results did not show a scaling with Z~2, where Z is the spectroscopic
charge number, which is expected from theoretical fons in the el i imati
Furthermore, deviations from linear scaling appear for Z = 8.

In this work we review some aspects of the semiclassical dipole impact approximation for isolated ion
lines with a view to the questions on Z scaling raised by two recent experimental studies. Some theoreti-
cal and practical aspects of line-shape calculations are discussed. Detailed calculations are performed in
the semiclassical (dipole) impact i for the Li i 3P-3S line. Particular emphasis

PACS number(s): 52.70.Kz, 32.70.Jz El ) b desi £ the 35-3p li
ectron-impact broadening of the 3s-3p lines is given to inelasticity effects. In contrast to previous calculations, very good agreement is obtained for
1 » -l i the lighter elements of the isoelectronic series. Ion dynamical corrections are also considered and are
L INTRODUCTION IL. THEORETICAL STARK WIDTH in low-Z Li-like ions found to be negligible in the dipole approximation.
Investigations of Stark widths of highly charged non- For the calculation of the Stark widths we cl Yu.V. Ralchenko™*, H.R. Griem®, 1. Bray* PACS number(s): 32.70.Jz, 32.30.J¢, 32.60.+i

hydrogenic ions along isoelectronic sequences are of great  semiclassical impact theory of Ref. (5] and a
interest since cross sections for impact broadening scale  semiempirical approach as given in Ref. [6]4 s o Bz T
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21 I Things to Consider for Electron Broadening

Size of Atomic Basis set
Accuracy of Atomic Wavefunctions
Density of States/Populations

Description of Plasma Electrons

o (Classical

° Quantum

> Exchange

Interaction between Atom and Plasma
> Dipole Approximation

o Coulomb Interaction

Collision Treatment
° Coulomb-Born

o Distorted-Wave

° CCC
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Direct Interactions are Straightforward

This type of interaction is where the atom and
electrons change states

But the atomic electron remains the atomic
electron and the free electron remains the free
electron

This interaction is usually well modeled because
of the simple interactions involved

B s s B



27 I Wavefunction Time Evolution With Interactions
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Exchange Interactions

The atomic electron can exchange places with
the free electron and change states in this way

This adds some complexity to the calculation,
but is manageable
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29 I Wavefunction Time Evolution With Interactions
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Exchange is Important Even for Hydrogen

One might be led to the conclusion that because
hydrogen spectra is accurately modeled by semi- —
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Exchange Interactions for Multi-Electron Atoms

Seaton (1953) laid out the relevant exchange
processes 1n collisions

These include not only two-body exchange, but
three-body exchange as well (assuming atomic
wavefunctions are roughly orthogonal)
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These Exchange Terms are Large

One exchange process—such as the nuclear
contribution—can contribute a factor of two in

the line shape

This shows that exchange processes are
important

Exchange has no classical analog and semi-
classical calculations cannot model these systems
from an ab-initio calculation

Normalized Intensity (arb. units)

Exchaﬂge With Valence Electron Oﬁly .
Incluing Nuclear Exchange e




37 | Current Progress on Matching Experimental Data
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38 I Conclusions

This 1s a work in progress to accurately model—from an ab-initio method—multi-electron systems

This work will be valuable for determining masses of white dwarfs with carbon-rich atmospheres

° thought to be some of the most massive white dwarfs
g

This will also be important for calculating line broadening and line shifts of helium lines that will aid
in determining their masses as well (See Marc Scheauble’s talk)



