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High Thermal Gradients in AM Produce High Residual
3  Stresses
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4 Thermal Gradients Can Be Controlled (Somewhat)
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6 I Baseplate Preheat Study Approach

• Thin wall LENS build
• 195 mm laser size
• 400 W
• 7.5mm/s laser speed
• Serpentine path, 2 passes per layer

• Baseplate at room temperature and 450C
• EDM cut down centerline of wall for stress relaxation
• Digital Image Correlation (DIE) to measure distortion before and after cut

Modeling Steps 

1. Print

4
4

2. Remove Clamps
..,

16.
3. Clamp and EDM

•

4. Remove Clamps



7 I Thermal Modeling Methodology

Pre-meshed part is initialized with..•
-inactive" elements. Baseplate
eiements are active.

Laser heat source is scanned
according to input path

Elements are activated by a
thermal conductivity increase once
they reach melt temperature

Conduction, convection, and
radiation are considered.
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8 I Solid Mechanics Modeling Methodology

Pre-meshed part is initialized
with "inactive" elements.
Baseplate elements are active.

Thermal output file is read at
every time step to provide
temperatures

Elements are activated once
they reach melt temperature

Residual stress builds as
elements contract upon cooling
and build thermal strain
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9 I Bammann-Chiesa-Johnson (BCJ) Material Model

• Temperature and history-dependent viscoplastic internal state variable model

• Stress is dependent on damage 0 and evolves according to

6 = E   + E(1 — — )

• Flow rule includes yield stress and internal state variables for hardening and damage
(Ye

ic= f sinhn (1 (ti 1
Y

• Statistically stored dislocations are represented by isotropic hardening variable K

1 
k2

K = CEssdsb110)11Pssds Pssds =1—
Ls
+ —
L9 

— Rc1(9)PsscIslp

• Geometrically necessary dislocations are represented by a misorientationiyariable
. r

= 
11(0) de

e + hot(0) 
µ(e)

• The hardening variable K evolves in a hardening minus recovery form.

K 
= 
µ(e) de

e +WO) (1 + — Rd(9)K1

(Bammann eta/1993, Brown and Bammann 2012)



Room Temperature and 450C Builds Produce
01 Different Thermal Histories
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1 I Different Thermal Histories Produce Different StressStates1

Room Temperature Baseplate 450C Baseplate 
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1 I EDM Relieves Stress and Causes Distortion
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1 I Wall Shows Visible Displacement After Cut
4
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Room Temperature Build DIC Data Compares Well

5
1 With Simulation Results

•11111111111 mMEME

150

100

— 50
ir)

— 0 0

-50 j),-
o

-100
0

-150 E

•
X-Displacement DIE Results Dverlaid on X-Displacement Simulation Results

Model

% Error = 
lAxsim—Axexp

Y

X

X exp

Percent Error

150 •

100 •

— 50
a)

— 0 0
a

-50 .9"

-1 00 >‹

-150 iz

100
c

80 ;)

— 60

— 40

20

0

o



450C Build Shows Reduced Distortion Compared to

6
1 Room Temperature Baseplate
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Displacement Jump Across Cut Compares Well to
1  Experiments
7
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Residual Stress Along Wall Centerline is Significantly

8
1 Reduced by Preheating Baseplate

von Mises Stress Along Wall Centerline
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Microstructure Prediction in Stochastic Parallel
02  PARticle Kinetic Simulator (SPPARKS)

Molten zone
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• Temperature history is used as material state in SPPARKS
• Captures bulk heating effects on microstructure
• Rodgers et aL, "Simulation of metal additive manufacturing microstructures using

kinetic Monte Carlo," Computational Materials Science 2017
• Rodgers, Bishop, and Madison, "Direct numerical simulation of mechanical

response in synthetic additively manufactured microstructures," MSMSE 2018



2 
I Incorporating Material-Dependent Parameters

Nucleation site density, No, is the number of possible nucleation sites per m3 (typically 1012-1015 m-3).

Implemented by allowing a fraction of grain !Ds to survive the liquid->solid transition without changing grain

ID.

Nfrac = No0x3

Undercooling (AT = T1 — T)-dependent solidification front

velocity, V(OT).

V(AT) = a(AT)3+b(AT)2+c(AT) + d,

the coefficients are determined from dendrite-scale

solidification simulations or experiments.

Implemented by tracking solidification front distance per site,

D(x, t) = V=0 V(x,t) * dt,

where dt is a constant timestep.

When 1 or more solid neighbor sites are within D(t), the active

site solidifies and probabilistically joins a solid neighbor.

Velocity (m/s)
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2 I Video of Microstructure Build
2

Room Temperature Baseplate 450C Baseplate



2 I Summary and Conclusions
3

•Build and machining of a thin wall build was performed on room temperature and 450C
baseplates

*Distortion predictions compared well with measured DlC data, giving more confidence in
residual stress predictions

*Residual stress models showed large decrease in stress due to 450C baseplate preheat —
approximately 50%

*Microstructure model showed a noticeable change in grain morphology due to baseplate
preheat
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QUESTIONS?
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2 I DIC Setup
6

Cameras- 12MP Point Grey Grasshoppers.

Lenses-Schneider 17mm.

Cal Target Correlated Solutions 5mm(s/n7DDO4A003)


