

COST AND PERFORMANCE BASELINE FOR FOSSIL ENERGY PLANTS

SUPPLEMENT: SENSITIVITY TO CO₂ CAPTURE RATE IN COAL-FIRED POWER PLANTS

MARC TURNER, ARUN IYENGAR, MARK WOODS

December 23, 2020

DOE/NETL-2019

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed therein do not necessarily state or reflect those of the United States Government or any agency thereof.

All images in this report were created by NETL, unless otherwise noted.

Errata

This report is a re-issue of the 2019 study (published on October 10, 2019), revised as follows:

- 1) The material and direct labor costs associated with the CO₂ capture system for the supercritical pulverized coal partial capture cases are scaled on a combination of inlet gas volumetric flow rate (40 percent) and captured CO₂ mass flow rate (60 percent) with an exponent of 0.6 whereas the 2019 issue of this study erroneously held these costs constant.
- 2) The wet flue gas desulfurization (FGD) unit's water demand is satisfied first by internally recycling water discharged from the CO₂ capture process, with the remainder being satisfied by raw water withdrawal. Excess process water, if any, from the CO₂ capture system is discharged. The 2019 issue of this study satisfied the remaining wet FGD water demand by internally recycling water from the cooling tower blowdown.
- 3) The values reported for the levelized cost of electricity (LCOE) accuracy range for integrated gasification combined cycle (IGCC) cases in Exhibit A-4 were revised from -15%/+30% to -25%/+50%.
- 4) Exhibits portraying corrected data were updated, with accuracy ranges added to LCOE, breakeven CO₂ sales price, and breakeven CO₂ emissions penalty charts where appropriate.
- 5) Section 2.1 was revised to more clearly reflect the relationship between the steady-state, full-load CO₂ emission rates reflected in this study, and the higher CO₂ emission rates anticipated for a plant under typical operating conditions.

Authors

Marc Turner¹, Arun Iyengar,² Mark Woods,²

Reviewer

Robert James^{3*}

¹Leidos, MESA

²KeyLogic, Mission Execution and Strategic Analysis (MESA)

³National Energy Technology Laboratory (NETL)

*Corresponding contact: robert.james@netl.doe.gov, 304.285.4309

Suggested Citation:

M. Turner, A. Iyengar, M. Woods, "Cost and Performance Baseline for Fossil Energy Plants Supplement: Sensitivity to CO₂ Capture Rate in Coal-Fired Power Plants," National Energy Technology Laboratory, Pittsburgh, December 23, 2020.

This report was prepared by MESA for the U.S. DOE NETL. This work was completed under DOE NETL Contract Number DE-FE0025912. This work was performed under MESA Activity 201.001.

The authors wish to acknowledge the contributions of past contractor staff, particularly Vincent Chou and Vasant Shah.

SENSITIVITY TO CO₂ CAPTURE RATE IN COAL-FIRED POWER PLANTS

This page intentionally left blank.

TABLE OF CONTENTS

List of Exhibits	ii
Acronyms and Abbreviations	iii
Executive Summary	1
Special Considerations on Reported Costs.....	4
1 Introduction.....	6
2 Design Basis.....	8
2.1 Design Emission Targets.....	8
2.2 SC PC Partial Capture Design	9
2.3 IGCC Partial Capture Design	10
2.3.1 Water Gas Shift and COS Hydrolysis.....	11
2.3.2 CO ₂ Capture – Dual-Stage Selexol	12
2.4 Partial Capture Calculation.....	13
2.5 Capture Energy Penalty Calculation.....	13
3 Results and Discussion	14
4 Conclusion	22
5 References	23
Appendix: Key Performance and Cost Summary Tables	24

LIST OF EXHIBITS

Exhibit ES-1. Variation of LCOE (ex. T&S), HHV net plant efficiency, breakeven CO ₂ sales price, and CO ₂ capture rate with design emission levels for SC PC cases.....	2
Exhibit ES-2. Variation of LCOE (ex. T&S), HHV net plant efficiency, breakeven CO ₂ sales price, and CO ₂ capture rate with design emission levels for IGCC cases ^a	2
Exhibit ES-3. Summary of results.....	3
Exhibit 1-1. Simplified SC PC schematic – modifications for partial capture cases.....	6
Exhibit 1-2. Bituminous Baseline IGCC schematic – modifications for partial capture cases.....	7
Exhibit 2-1. Hypothetical example of design emission levels as a function of startup and shutdown frequencies and emissions	9
Exhibit 2-2. Block flow diagram of the modified B12B process for partial capture.....	10
Exhibit 2-3. Block flow diagram of the modified B5B process for partial capture.....	11
Exhibit 3-1. HHV net plant efficiency for an SC PC plant at various levels of CO ₂ capture	14
Exhibit 3-2. HHV net plant efficiency for a GEP radiant IGCC plant at various levels of CO ₂ capture.....	15
Exhibit 3-3. LCOE (ex. T&S) for an SC PC plant at various levels of CO ₂ capture	16
Exhibit 3-4. LCOE (ex. T&S) for a GEP radiant IGCC plant at various levels of CO ₂ capture	17
Exhibit 3-5. Breakeven CO ₂ sales price and emissions penalty for an SC PC plant at various levels of CO ₂ capture	18
Exhibit 3-6. Breakeven CO ₂ sales price and emissions penalty for a GEP radiant IGCC plant at various levels of CO ₂ capture	19
Exhibit 3-7. Capture energy penalty (kWh/lb-CO ₂) for an SC PC plant at various levels of CO ₂ capture.....	20
Exhibit 3-8. Capture energy penalty (kWh/lb-CO ₂) for a GEP radiant IGCC plant at various levels of CO ₂ capture	21
Exhibit A-1. Estimated performance results for SC PC cases.....	24
Exhibit A-2. PC Estimated cost results for SC PC cases	25
Exhibit A-3. Estimated performance results for IGCC cases.....	26
Exhibit A-4. Estimated cost results for IGCC cases	27

ACRONYMS AND ABBREVIATIONS

ASU	Air separation unit	MESA	Mission Execution and Strategic Analysis
Btu	British thermal unit	MMBtu	Million British thermal units
CO	Carbon monoxide	MW, MWe	Megawatt electric
CO ₂	Carbon dioxide	MWh	Megawatt-hour
COS	Carbonyl sulfide	N/A	Not available/applicable
DOE	Department of Energy	N ₂	Nitrogen
EPA	Environmental Protection Agency	NaOH	Sodium hydroxide
ESPA	Energy Sector Planning and Analysis	NETL	National Energy Technology Laboratory
FD	Forced draft	NOAK	n th -of-a-kind
FG	Flue gas	NOx	Nitrogen oxide
FGD	Flue gas desulfurization	PA	Primary air
GEP	General Electric Power	PC	Pulverized coal
gpm	Gallons per minute	PM	Particulate matter
h, hr	Hour	QGESS	Quality Guidelines for Energy System Studies
H ₂	Hydrogen	SC	Supercritical
H ₂ S	Hydrogen sulfide	SC PC	Supercritical pulverized coal
H ₂ SO ₄	Sulfuric acid	SCR	Selective catalytic reduction
HCl	Hydrochloric acid	SDE	Spray dryer evaporator
Hg	Mercury	SO ₂	Sulfur dioxide
HHV	Higher heating value	SOx	Oxides of sulfur
HP	High pressure	T&S	Transport and storage
HRSG	Heat recovery steam generator	TBtu	Trillion British thermal units
ID	Induced draft	tonne	Metric ton (1,000 kg)
IGCC	Integrated gasification combined cycle	TPC	Total plant cost
IP	Intermediate pressure	U.S.	United States
kg	Kilogram	WGS	Water gas shift
KO	Knockout	ZLD	Zero liquid discharge
kW, kWe	Kilowatt electric	°F	Degrees Fahrenheit
kWh	Kilowatt-hour	\$MM	Million dollars
kWt	Kilowatt thermal		
lb	Pound		
lb/MMBtu	Pounds per million British thermal units		
lb/MWh-gross	Pounds per gross megawatt hour		
lb/MWh-net	Pounds per net megawatt hour		
LCOE	Levelized cost of electricity		
LP	Low pressure		
LTHR	Low temperature heat recovery		

SENSITIVITY TO CO₂ CAPTURE RATE IN COAL-FIRED POWER PLANTS

This page intentionally left blank.

EXECUTIVE SUMMARY

The cost and performance of various plants designed to meet a range of carbon dioxide (CO₂) emission limits are evaluated in this report by varying the CO₂ capture rate. The base cases for these designs are the supercritical (SC) pulverized coal (PC) plant and the General Electric Power (GEP) integrated gasification combined cycle (IGCC) plant from the Department of Energy (DOE) National Energy Technology Laboratory (NETL) report “Cost and Performance Baseline for Fossil Energy Plants, Volume 1: Bituminous Coal and Natural Gas to Electricity, Revision 4” (“Bituminous Baseline”). [1]

The SC PC plants developed in this study were based on Bituminous Baseline Case B12B, differing only in the addition of a bypass flow path that allows for an appropriate portion of the flue gas stream exiting the desulfurization system to be directed toward the stack, which reduces the amount of CO₂ captured in the Cansolv process. The IGCC plants developed in this study were based on Case B5B, differing by bypassing the water gas shift reactors, either partially or entirely, and thereby reducing the concentration of CO₂ in the syngas and consequently reducing the amount of CO₂ captured in the Selexol process. The major components of the underlying CO₂ capture technologies in the plants were preserved with minimal modifications to the overall processes. All cases include cost and performance information from vendor quotes (2016 bases).

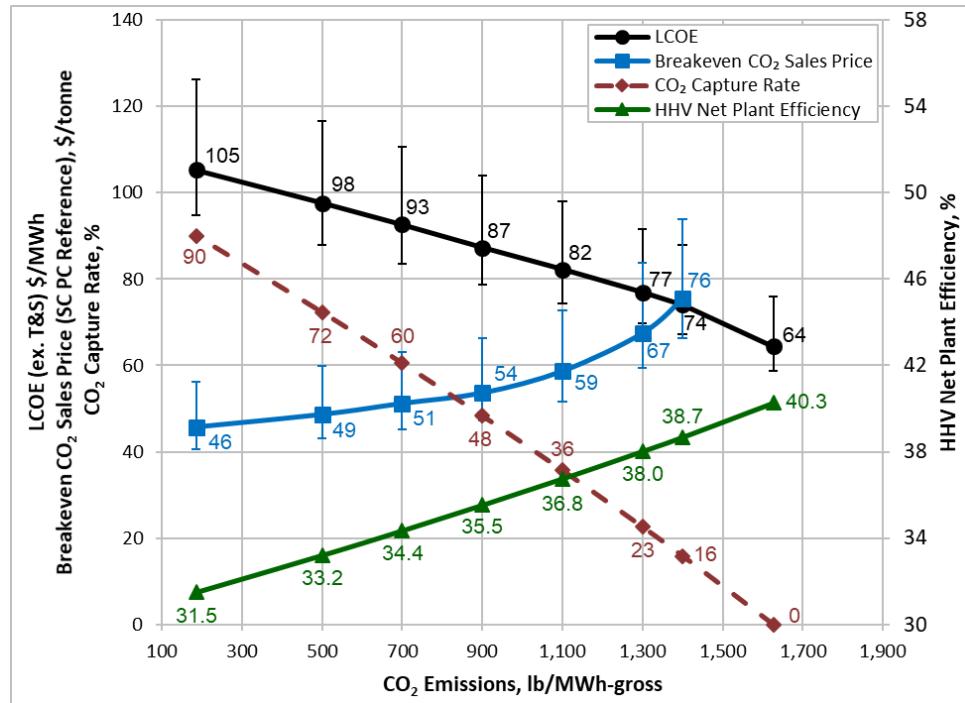
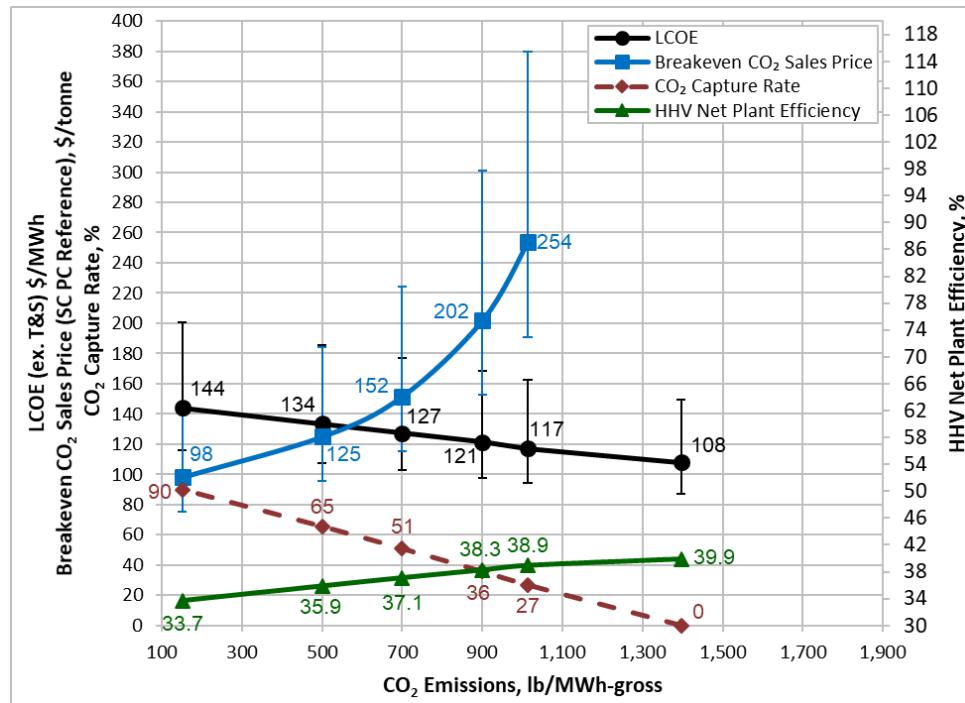

The results of the study are summarized in Exhibit ES-1 and Exhibit ES-2 for SC PC and IGCC cases, respectively. The exhibits depict the variations of the plant higher heating value (HHV) efficiencies, levelized costs of electricity (LCOEs) excluding transportation and storage (T&S), breakeven CO₂ sales prices (equivalent to the minimum CO₂ plant gate sales price that will incentivize CO₂ capture), and overall CO₂ capture rate with partial capture design CO₂ emission levels.

Exhibit ES-3 provides a tabular listing of salient results, including a comparison of the emissions on a net and gross output basis. The HHV efficiency of the plants expectedly increases with an increase in the allowable CO₂ emission levels, varying from 31.5 and 33.7 percent for the SC PC and IGCC plants with 90 percent CO₂ capture, respectively, to 40.3 and 39.9 percent for the SC PC and IGCC plants with the highest CO₂ emission (no CO₂ capture), respectively.


The plant LCOE (ex. T&S) decreases with an increase in allowable CO₂ emissions primarily due to the lower capital and operating costs for the reduced sizes of the capture systems and the reduced parasitic load of the CO₂ capture equipment. For the SC PC plants, the LCOE (ex. T&S) of the plant featuring 90 percent CO₂ capture is approximately 64 percent higher than the LCOE (ex. T&S) of the plant with no CO₂ capture. For the IGCC plants, the LCOE (ex. T&S) of the plant featuring 90 percent CO₂ capture is approximately 34 percent higher than the LCOE (ex. T&S) of the plant with no CO₂ capture. The capture impact on the IGCC plants is smaller than that of the SC PC plants because the CO₂ is at a higher concentration and pressure in the IGCC syngas than in the SC PC flue gas (a portion of the lower relative impact is due to the higher LCOE (ex. T&S) of the IGCC plant with no CO₂ capture, compared to that of the analogous SC PC plant).

SENSITIVITY TO CO₂ CAPTURE RATE IN COAL-FIRED POWER PLANTS

Exhibit ES-1. Variation of LCOE (ex. T&S), HHV net plant efficiency, breakeven CO₂ sales price, and CO₂ capture rate with design emission levels for SC PC cases^a

Exhibit ES-2. Variation of LCOE (ex. T&S), HHV net plant efficiency, breakeven CO₂ sales price, and CO₂ capture rate with design emission levels for IGCC cases^a

^a As the lowest cost coal case with no CO₂ capture, the SC PC Case B12A serves as the common reference plant for both the SC PC and the IGCC cases.

SENSITIVITY TO CO₂ CAPTURE RATE IN COAL-FIRED POWER PLANTS

Exhibit ES-3. Summary of results

Plant Type	CO ₂ Emission Level		CO ₂ Capture Rate	HHV Efficiency	LCOE (ex. T&S) ^A	Breakeven CO ₂ Sales Price ^B	Breakeven CO ₂ Emissions Penalty ^{B, C}
	lb/MWh-gross	lb/MWh-net					
SC PC	1,627	1,714	0	40.3	64.4	N/A	N/A
	1,400	1,502	16	38.7	74.1	75.5	113.8
	1,300	1,405	23	38.0	76.9	67.5	102.8
	1,100	1,208	36	36.8	82.2	58.7	90.9
	900	1,004	48	35.5	87.2	53.6	84.1
	700	794	60	34.4	92.6	51.2	80.8
	500	577	72	33.2	97.5	48.7	77.5
	185	219	90	31.5	105.3	45.7	73.5
IGCC	1,396	1,685	0	39.9	107.9	N/A	N/A
	1,014	1,252	27	38.9	117.1	253.8	261.5
	900	1,121	36	38.3	121.3	202.0	222.0
	700	885	51	37.1	127.3	151.7	178.4
	500	644	65	35.9	133.7	125.1	154.1
	151	201	90	33.7	144.2	98.2	128.1

^AFinancing structures are presented in NETL's "Quality Guidelines for Energy System Studies: Cost Estimation Methodology for NETL Assessment of Power Plant Performance" [2]

^BBoth the breakeven CO₂ sales price and emissions penalty were calculated based on the non-capture SC PC Case B12A for all coal cases

^CThe breakeven CO₂ emissions penalty represents the minimum cost of, or penalty on, CO₂ emissions that will incentivize the carbon capture cases.

Average annual CO₂ emissions from operating plants are likely to be higher than the baseload, steady-state design emissions rates shown in Exhibit ES-3 due to start-up, shutdown, part-load operation, and performance degradation through maintenance cycles. Lower design emissions rates to ensure adequate margins may be required for compliance with CO₂ emissions regulations; however, given that the slope of the variation of LCOE (ex. T&S) with CO₂ emission levels is not steep for either SC PC or IGCC plants, designing for this margin does not have major cost implications. See Section 2.1 for further discussion.

The breakeven CO₂ sales price is higher at lower capture rates primarily due to the associated economies of scale. Should such CO₂ revenues be available, then the higher capture rate designs would be a more cost-effective method of CO₂ abatement; however, the lower capture rate designs represent lower incremental costs than the plant with 90 percent capture. Deployment of lower capture rate plants enables demonstration, progressive scaling, and optimization of the CO₂ capture system with lower absolute costs, while facilitating the smooth

transition, from both economic and process perspectives, to subsequent plants with higher capture rates.

The observations in this document are made with the caveat that the differences in costs between cases of similar emission levels are less than the absolute accuracy of the capital cost estimates (IGCC: -25 percent/+50 percent, AACE Class 5; PC: -15 percent/+30 percent, AACE Class 4); however, all cases were evaluated using a common set of technical and economic assumptions, which allows for meaningful comparisons among the cases.

SPECIAL CONSIDERATIONS ON REPORTED COSTS

Capital costs:

The capital cost estimates documented in this report reflect varying uncertainty ranges by technology type (i.e., IGCC: -25 percent/+50 percent, AACE Class 5; PC: -15 percent/+30 percent, AACE Class 4) [2] [3] [4], based on the level of engineering design performed. In all cases, the report intends to represent the next commercial offering, and relies on vendor cost estimates for component technologies. It also applies process contingencies at the appropriate subsystem levels in an attempt to account for expected but undefined costs (a challenge for emerging technologies).

Costs of mature technologies and designs:

The cost estimates for plant designs that only contain fully mature technologies that have been widely deployed at commercial scale (e.g., PC power plants without CO₂ capture) reflect nth-of-a-kind (NOAK) on the technology commercialization maturity spectrum. The costs of such plants have dropped over time due to “learning by doing” and risk reduction benefits that result from serial deployments as well as from continuing research and development.

Costs of emerging technologies and designs:

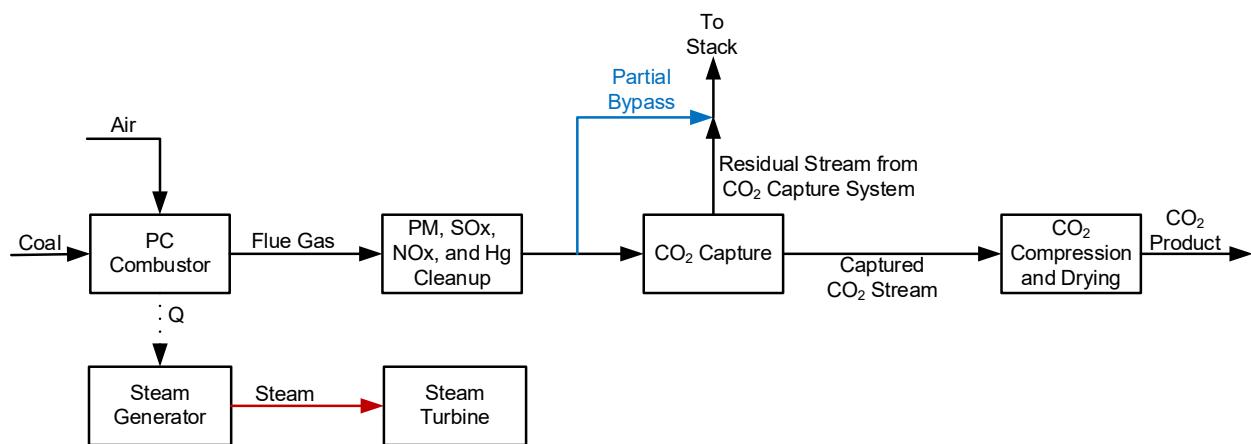
The cost estimates for plant designs that include technologies that are not yet fully mature (e.g., IGCC and any plant with CO₂ capture) use the same cost estimating methodology as for the mature plant designs, which does not fully account for the unique cost premiums associated with the initial, complex integrations of emerging technologies in a commercial application. Thus, it is anticipated that initial deployments of the IGCC and capture plants may incur costs higher than those reflected within this report.

Other factors:

Costs for all the real-world projects are expected to deviate from the cost estimates in this report due to project- and site-specific considerations (e.g., contracting strategy, local labor costs and availability, seismic conditions, water quality, financing parameters, local environmental concerns, weather delays) that may make construction more costly. Such variations are not captured by the reported cost uncertainty.

Future cost trends:

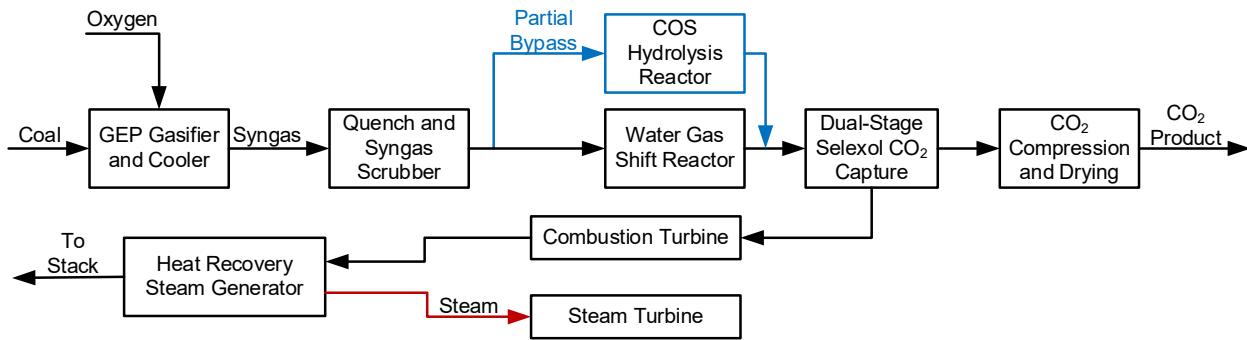
Continuing research, development, and demonstration is expected to result in designs that are more advanced than those assessed by this report, leading to costs that are lower than those estimated herein.


1 INTRODUCTION

The Department of Energy (DOE) National Energy Technology Laboratory (NETL) “Cost and Performance Baseline for Fossil Energy Plants, Volume 1: Bituminous Coal and Natural Gas to Electricity, Revision 4” study [1], hereafter referred to as the “Bituminous Baseline,” has evaluated the performance and cost of fossil fuel-fired plants that are designed without capture of the carbon contained in the inlet fuel, as well as plants with 90 percent CO₂ capture. The cost and performance of coal-based plants that are modified for lower levels of CO₂ capture (partial capture designs) presented in this report are of general interest to NETL insofar that the cost and performance penalties may be mitigated. Specifically, plant designs with lower capture rates have the potential to enable demonstration, progressive scaling, and optimization of the CO₂ capture system with lower absolute costs, while facilitating the smooth transition, from both economic and process perspectives, to subsequent plants with higher capture rates.

The objective of this report is to evaluate the cost and performance of a supercritical (SC) pulverized coal (PC) plant with CO₂ capture (Bituminous Baseline Case B12B) and an integrated gasification combined cycle (IGCC) plant with CO₂ capture (Bituminous Baseline Case B5B), both modified to achieve various levels of partial capture. [1] The partial capture cases presented in this report preserve the major components of the underlying CO₂ capture technology utilized in the corresponding reference plants with minimal modifications to the overall processes.

As shown in Exhibit 1-1, an appropriate portion of the flue gas stream exiting the desulfurization system of the SC PC cases is diverted to the stack, bypassing the CO₂ capture system, in order to evaluate systems with CO₂ emissions ranging from approximately 1,627 to 185 lb/MWh-gross (zero to 90 percent CO₂ capture). Consistent with the reference plant (Case B12B), the amine-based Shell Cansolv system—designed to capture 90 percent of the CO₂ in its inlet stream—is employed as the CO₂ capture system.


Exhibit 1-1. Simplified SC PC schematic – modifications for partial capture cases

In the IGCC cases, the reduction in the CO₂ capture requirement also reduces the need to convert much of the carbon monoxide (CO) in the gasifier exit gas into CO₂ via water gas shift (WGS) reactors for eventual capture in the dual-stage Selexol process. Instead, the CO can be

retained in the syngas and sent to the gas turbine for combustion and power generation. A simplified block flow diagram of the overall IGCC process is shown in Exhibit 1-2. A WGS bypass line including a carbonyl sulfide (COS) hydrolysis reactor has been added (in blue) to illustrate the process modification for the partial capture cases that is used to evaluate systems with CO₂ emissions ranging from approximately 1,396 to 151 lb/MWh-gross (zero to 90 percent CO₂ capture). The key differences between the cases are reflected in the concentration of CO₂ in the feed to the dual-stage Selexol unit. These values range from approximately 16.3 mole percent for the 27 percent CO₂ capture case to approximately 39.7 mole percent for the 90 percent CO₂ capture case (B5B).

Exhibit 1-2. Bituminous Baseline IGCC schematic – modifications for partial capture cases

2 DESIGN BASIS

The modified plants are assumed to be located at a generic midwestern United States site, operating under ambient International Standards Organization conditions with site and coal characteristics that are identical to the Bituminous Baseline. [1] The emission targets are assumed to be the same as those of the Bituminous Baseline, except for the CO₂ emission limit, which is variable in the present investigation. The plants are evaluated at a rated net power of 650 MWe with an assumed capacity factor of 85 percent.

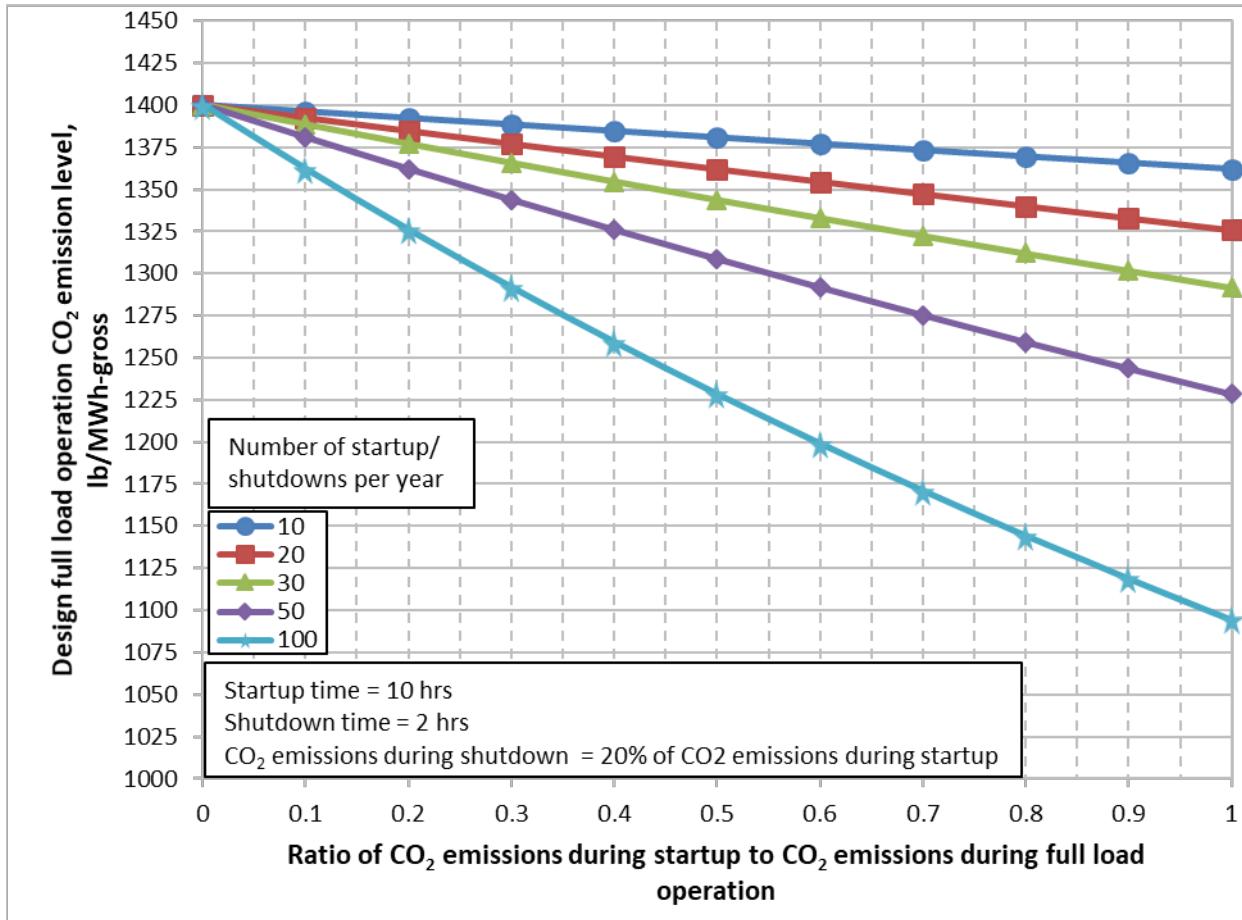
2.1 DESIGN EMISSION TARGETS

For a plant to achieve a target annual average CO₂ emission level, it must be designed to emit CO₂ at a rate sufficiently lower than the target to account for various factors that potentially result in higher emission levels, such as the frequency of startups and shutdowns, partial load operation, and equipment aging that results in increased net plant heat rate.

Exhibit 2-1 provides a simplified, hypothetical example of design emission levels that a 650 MWe plant operating with an assumed capacity factor of 85 percent could use to achieve an average annual CO₂ emission rate of 1,400 lb-CO₂/MWh^b, only accounting for various frequencies of startups and shutdowns. The values provided in Exhibit 2-1 are intended for illustrative purposes only and are not based on plant data. Additional data are required to accurately estimate startup and shutdown CO₂ emissions for any particular plant.

This example does not account for additional considerations that potentially result in higher emission levels, such as performance degradation caused by aging equipment, operation at part-load (where the unit operates at lower capacity with a lower efficiency than at full load), and off-design conditions (e.g., unplanned process upsets).

The non-baseload circumstances described above are reflective of normal operations of all fossil-fueled power plants and must be accounted for when evaluating time-averaged CO₂ emissions. The net result of these circumstances is a time averaged capture rate that is greater than the steady-state capture system design specification.


Exhibit 2-1 assumes that no power is generated once the plant enters the startup or shutdown cycle, that the CO₂ emitted during shutdown is equal to 20 percent of the CO₂ emitted during startup, and that the duration of startup and shutdown cycles are 10 hours and 2 hours, respectively.

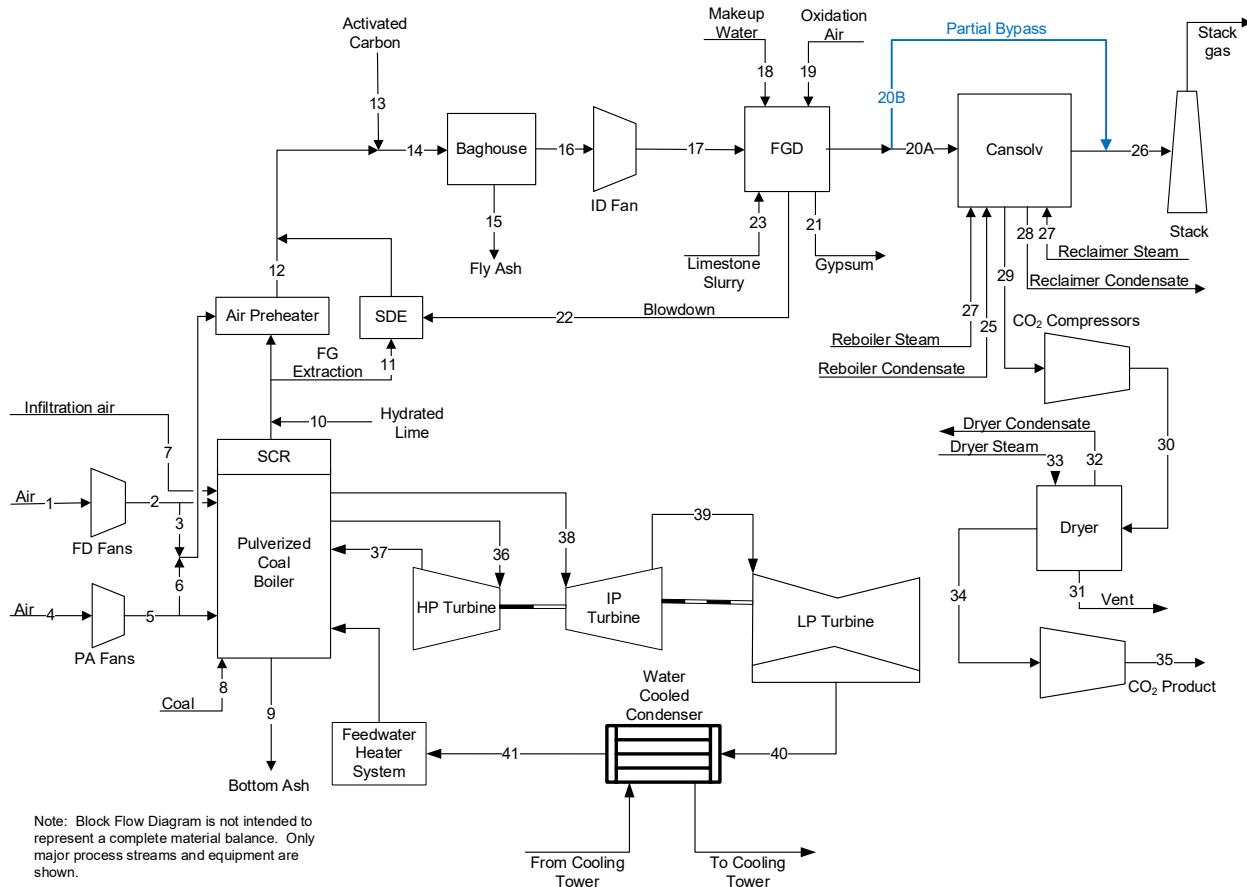
As an example, and considering the assumptions, basis, and limitations highlighted previously, a hypothetical plant with startup CO₂ emissions equal to full load CO₂ emissions (ratio of 1.0) that incurs 10 startup and shutdown cycles per year could achieve a 12-operating-month average emission rate of 1,400 lb-CO₂/MWh by operating at a higher capture rate (in this example, a full-load design CO₂ emission level below 1,362 lb-CO₂/MWh).

^b As a point of reference, the CO₂ emission rule states that newly-constructed fossil fuel-fired steam generating units are required to meet a unit-specific emission limit of 1,400 lb-CO₂/MWh on a 12-operating-month average. The required emission limit is inclusive of startup, shutdown, and upset emissions from the permitted source. [5]

Exhibit 2-1. Hypothetical example of design emission levels as a function of startup and shutdown frequencies and emissions

2.2 SC PC PARTIAL CAPTURE DESIGN

The block flow diagram of the modified SC PC system, shown in Exhibit 2-2, differs from that of the reference Case B12B only by the addition of the CO₂ capture system bypass flue gas stream, which can be tuned to meet the desired CO₂ emission level.

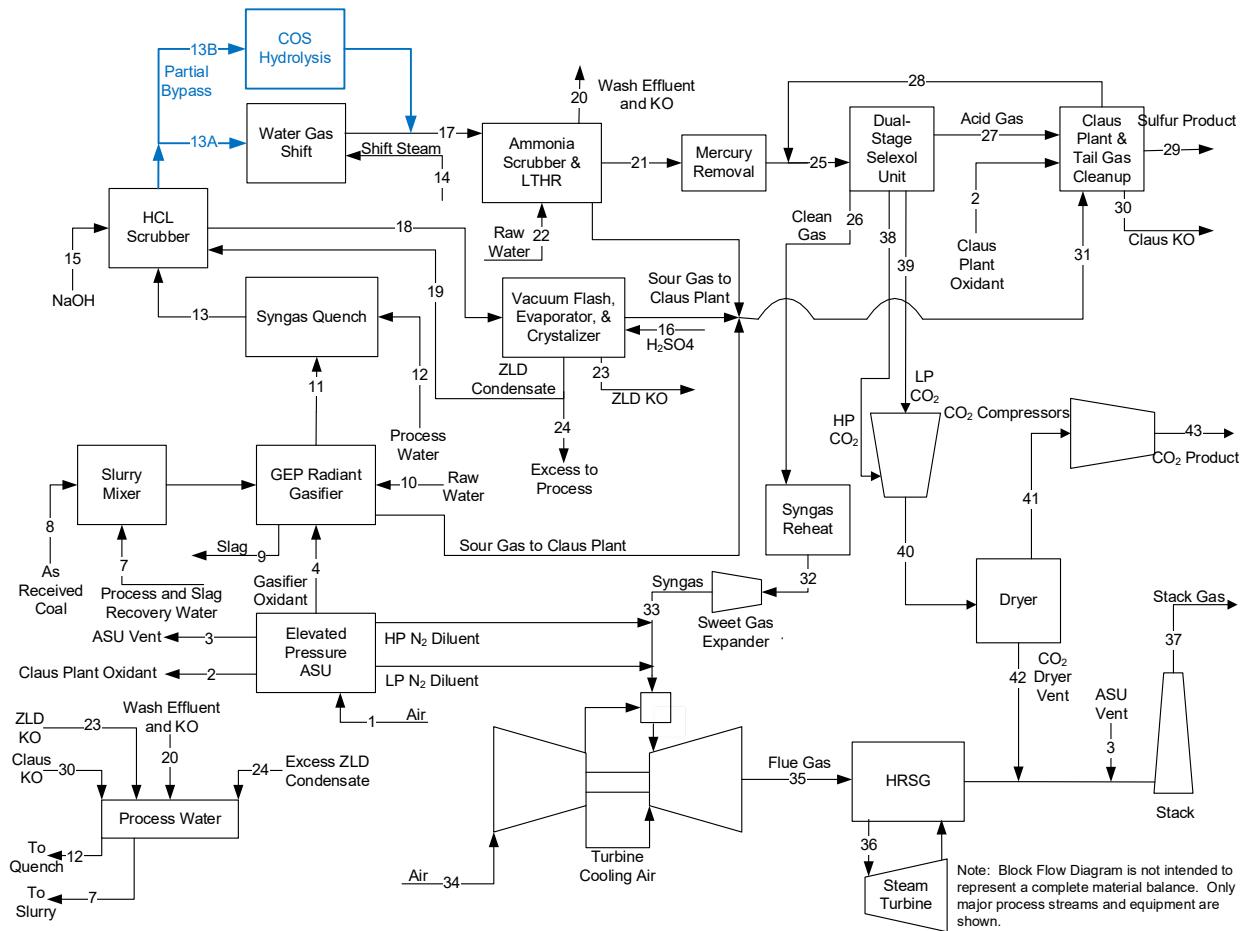

The basis for the cost and performance of all SC PC partial capture cases is the previously mentioned Shell Cansolv solvent-based system operating at 90 percent capture. No performance penalties were assessed due to the operation of the capture system at a scale smaller than the design specified in the referenced vendor data; accordingly, its auxiliary load was computed directly based on the CO₂ product flow rate.

The capital cost of the CO₂ capture system was scaled on a combination of inlet gas volumetric flow rate (40 percent) and captured CO₂ mass flow rate (60 percent), with an exponent of 0.6, in accordance with the Quality Guidelines for Energy System Studies (QGESS) procedures. [6]

It is assumed that a CO₂ monitoring system is included in the standard instrumentation and control accounts of the Bituminous Baseline and that a bypass system is included in the design of the CO₂ capture system in case of failure or emergency shut-down.

While partial bypass of the capture system results in slightly higher SO₂ emissions than in Case B12B, the emission levels will be lower than the values for Case B12A (no CO₂ capture), which is tantamount to a special subset of the modified system where all the flue gas flow bypasses the CO₂ capture system.

Exhibit 2-2. Block flow diagram of the modified B12B process for partial capture



The plants are evaluated at a rated net power of 650 MWe with an assumed capacity factor of 85 percent. All process parameters and cost assumptions are identical to the reference Case B12B.

2.3 IGCC PARTIAL CAPTURE DESIGN

The block flow diagram of the modified IGCC system, shown in Exhibit 2-3, differs from that of the reference Case B5B only by the addition of a bypass around the WGS reactors and the inclusion of a COS hydrolysis reactor in the bypass line. The amount of bypass around the WGS reactors can be tuned to meet the desired CO₂ emission level.

Exhibit 2-3. Block flow diagram of the modified B5B process for partial capture

The plants are evaluated at a variable net power, sized to maintain a constant combustion turbine gross power output of 464 MW, with an assumed capacity factor of 80 percent. All process parameters and cost assumptions are identical to Case B5B.

2.3.1 Water Gas Shift and COS Hydrolysis

The 500 through 900 lb/MWh-gross CO₂ emissions cases were achieved exactly by reducing the amount of syngas sent to the WGS reactors. The 1,000 lb/MWh-gross CO₂ emission case, however, is nominal. The CO₂ emissions from this case are the result of eliminating the WGS reactors and passing the entire gasifier exit stream through the COS hydrolysis reactor instead.

The reduced flow through the WGS reactor also increases the amount of waste heat available for steam generation, resulting in higher gross power output from the steam cycle for the partial capture cases.

The capital costs of the WGS and COS hydrolysis reactors were scaled on their respective estimated catalyst volumes with an exponent of 0.8 in accordance with QGESS procedures. [6]

2.3.2 CO₂ Capture – Dual-Stage Selexol

The basis for the cost and performance of all IGCC partial capture cases is the previously mentioned dual-stage Selexol solvent-based system designed to achieve 90 percent CO₂ removal in the reference Case B5B.

As the varying partial pressure of the syngas constituents impacts the performance of the CO₂ capture system (e.g., rate of absorption), modifications to the design and operation of the CO₂ capture system (e.g., residence time, circulation rates) would be required to maintain desired performance (e.g., high CO₂ removal rate, high CO₂ purity) at the expense of higher auxiliary loads and/or higher capital costs. However, vendor quotes for the cost and performance of the dual-stage Selexol system operating at various partial CO₂ pressures could not be obtained, and no publicly available data could be identified that correlates CO₂ partial pressures to AGR system cost or performance.

The available AGR models were calibrated at a specific design point and were not intended to predict the system performance across various CO₂ partial pressures. Since multiple design and control parameters were available to reduce the CO₂ product impurity concentration, and no data was available to validate the performance of any design changes, the results of any modified models could not be considered accurate or reflective of commercial capabilities. Therefore, the cost and performance of the CO₂ capture system was maintained consistent with the reference Case B5B.

As the portion of CO₂ removed from the syngas by the CO₂ capture system (94 percent) was assumed constant, partial capture was achieved in the IGCC cases by reducing the concentration of the CO₂ in the syngas entering the CO₂ capture system by reducing the extent of CO shifted to CO₂ by the WGS reactor. As the CO₂ concentration decreases, the CO and H₂ concentrations increase and, due to the assumed constant removal rates, the amount of CO and H₂ removed with the CO₂ product increases, negatively impacting the plant efficiency.

While the CO₂ purity reduced from 99 percent in the reference Case B5B to 95 percent in the case with no WGS reactor (highest CO₂ emissions with a dual-stage Selexol system), no CO₂ purification system was included in this study, as it was assumed that there would be multiple parameters available to adjust and maintain a high purity CO₂ product in a CO₂ capture system designed for partial capture (e.g., CO₂ flash regeneration pressures).

The capital cost of the CO₂ capture system was scaled on a combination of inlet gas volumetric flow rate (82 percent) and captured CO₂ mass flow rate (18 percent), with an exponent of 0.79, in accordance with the Quality Guidelines for Energy System Studies procedures. [6] The distribution across scaling parameters assumed that the H₂S absorption and regeneration equipment would be unaffected by the CO₂ concentration beyond gas volume and that the CO₂ absorption and regeneration equipment would be affected by both the gas volume and CO₂ production rate.

2.4 PARTIAL CAPTURE CALCULATION

The rate of CO₂ captured is estimated by using the model data and the following equation for each case:

$$CO_2 \text{ Capture Rate, \%} = \frac{CO_2 \text{ Captured, lb/hr}}{CO_2 \text{ Captured, lb/hr} + CO_2 \text{ Emitted, lb/hr}}$$

2.5 CAPTURE ENERGY PENALTY CALCULATION

The energy penalty for adding CO₂ capture was estimated using the following equation:

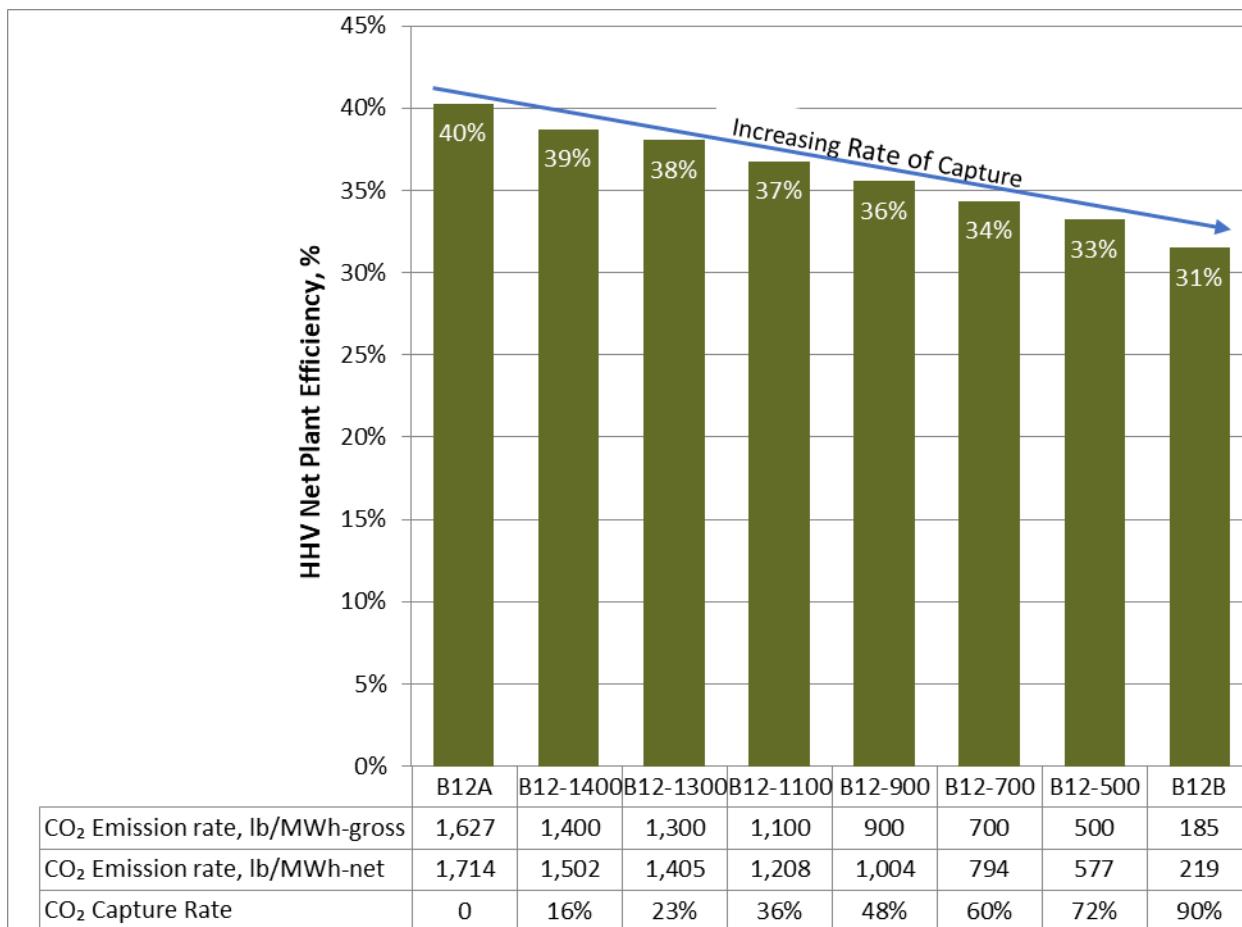
$$CEP = \frac{\left(\frac{1}{HR_{NC}} - \frac{1}{HR_C}\right) * TI_c}{CO_2 \text{ Captured}}$$

Where:

CEP = The capture energy penalty, kWh/lb-CO₂

HR_{NC} = The HHV net plant heat rate of the reference plant with no CO₂ capture, Btu/kWh

HR_C = The HHV net plant heat rate of the design plant with CO₂ capture, Btu/kWh


TI_c = The thermal input of coal on an HHV basis, Btu/hr

CO₂ captured = The flow rate of CO₂ captured at the design plant, lb/hr

3 RESULTS AND DISCUSSION

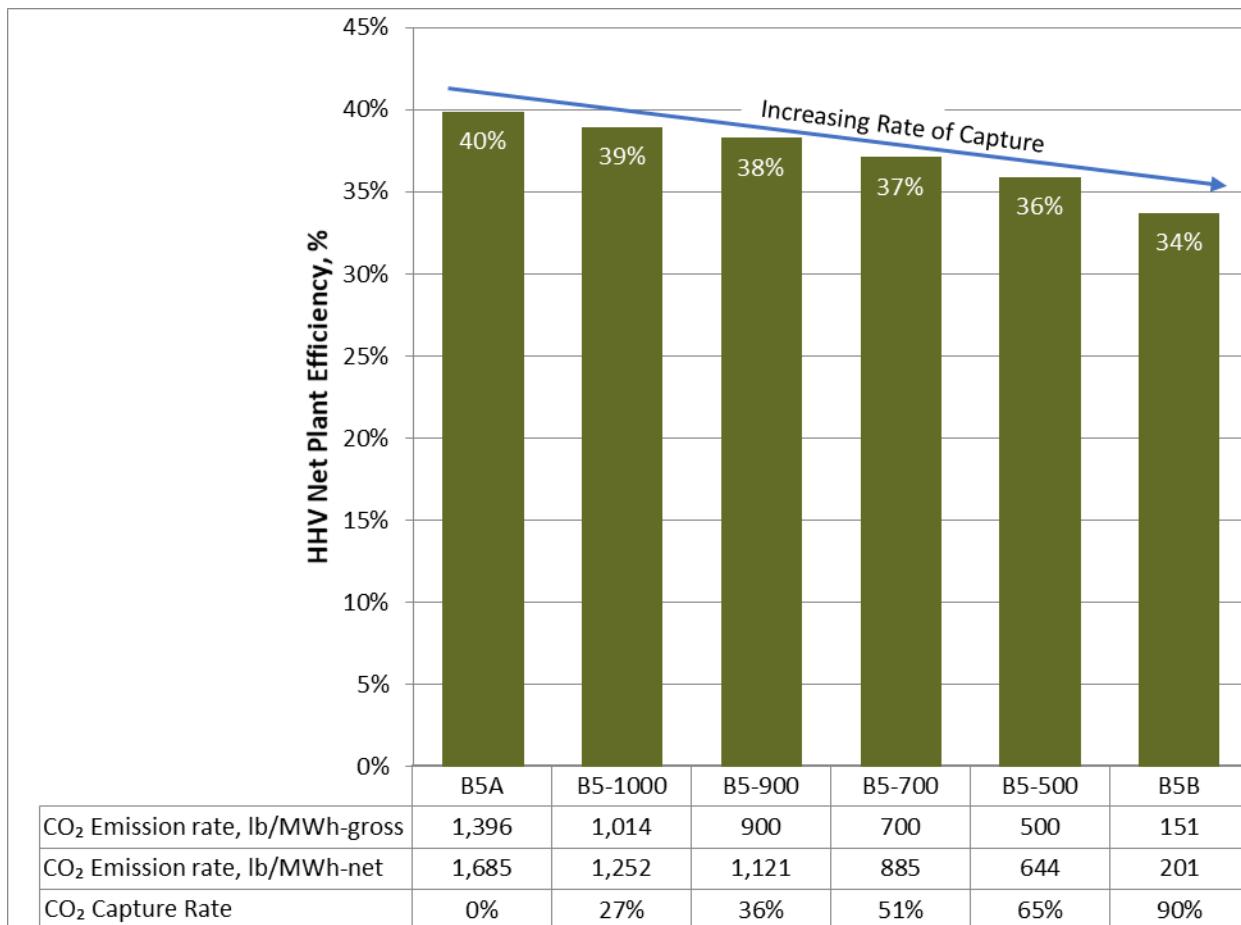
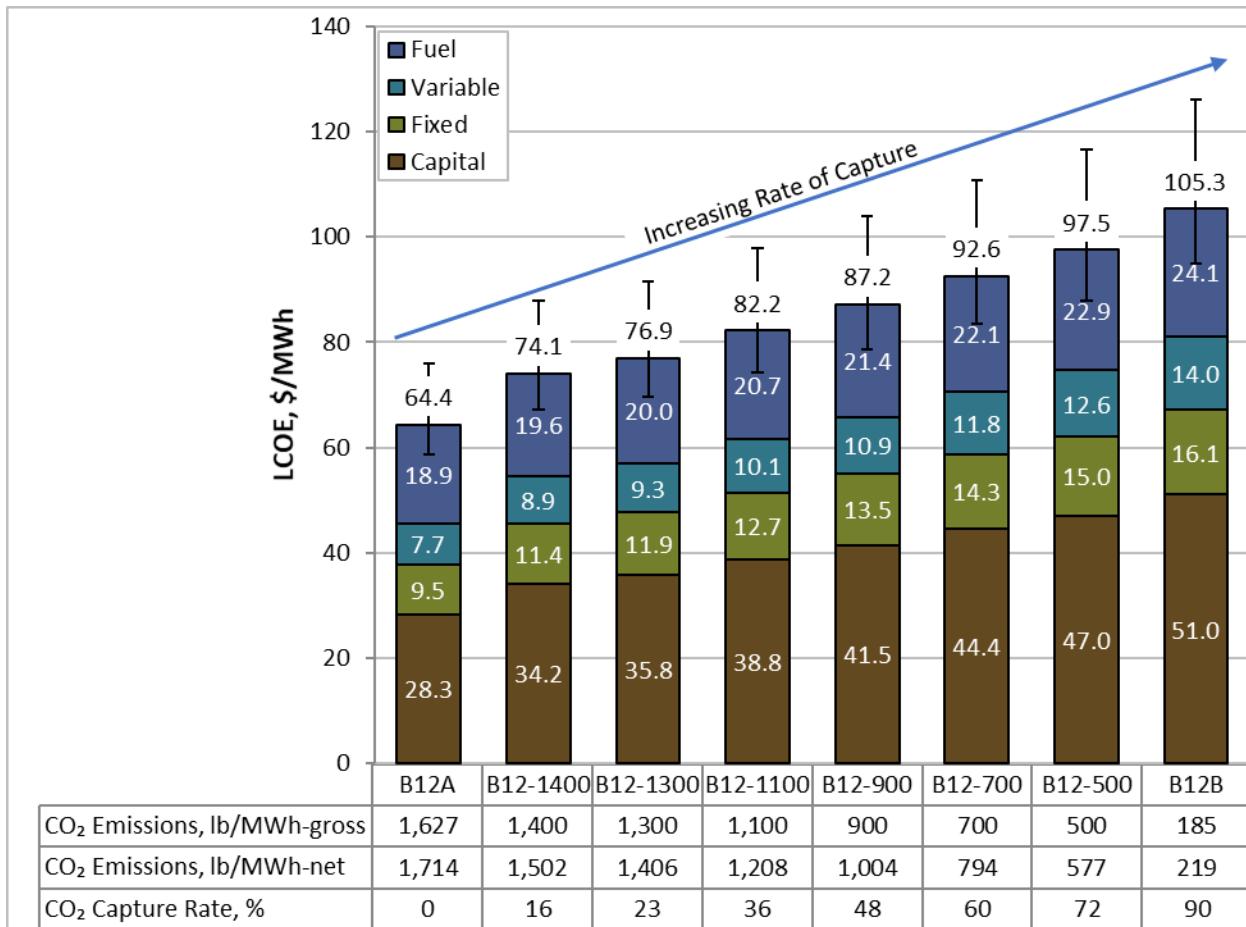

The performance and costs of both the SC PC and IGCC plants were evaluated for various partial capture cases. The higher heating value (HHV) efficiency of the plants expectedly decreases with an increase in the rate of CO₂ capture and corresponding decrease in the allowable CO₂ emission levels. This is illustrated in Exhibit 3-1 for the SC PC cases and in Exhibit 3-2 for the IGCC cases. Additional performance and cost data are found in the Appendix: Key Performance and Cost Summary Tables.

Exhibit 3-1. HHV net plant efficiency for an SC PC plant at various levels of CO₂ capture

SENSITIVITY TO CO₂ CAPTURE RATE IN COAL-FIRED POWER PLANTS


Exhibit 3-2. HHV net plant efficiency for a GEP radiant IGCC plant at various levels of CO₂ capture

The variations of the leveled cost of electricity (LCOE), excluding transportation and storage (T&S), for different design values of CO₂ emissions are shown in Exhibit 3-3 and Exhibit 3-4, showing that the LCOE (ex. T&S) increases as the capture rate increases.

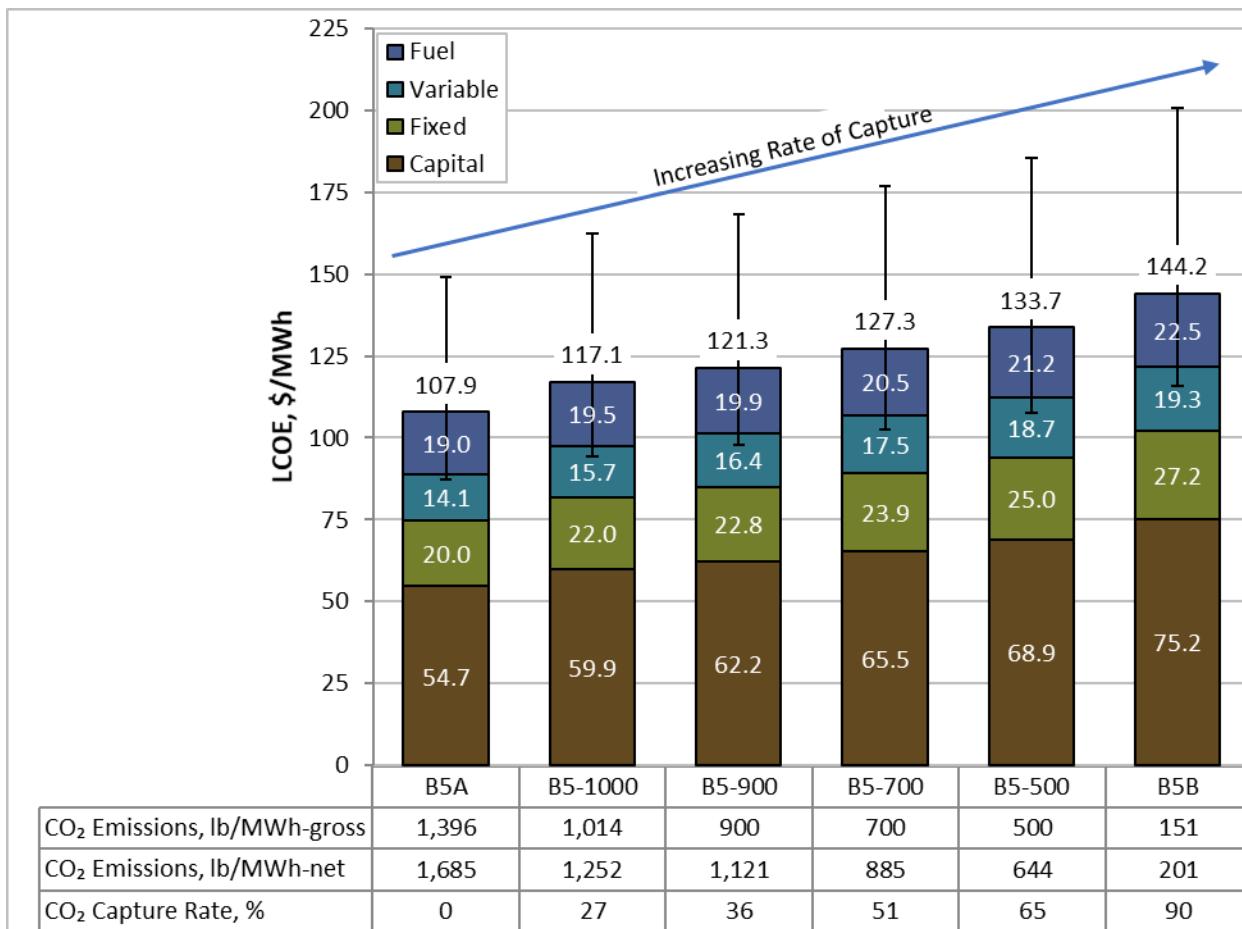
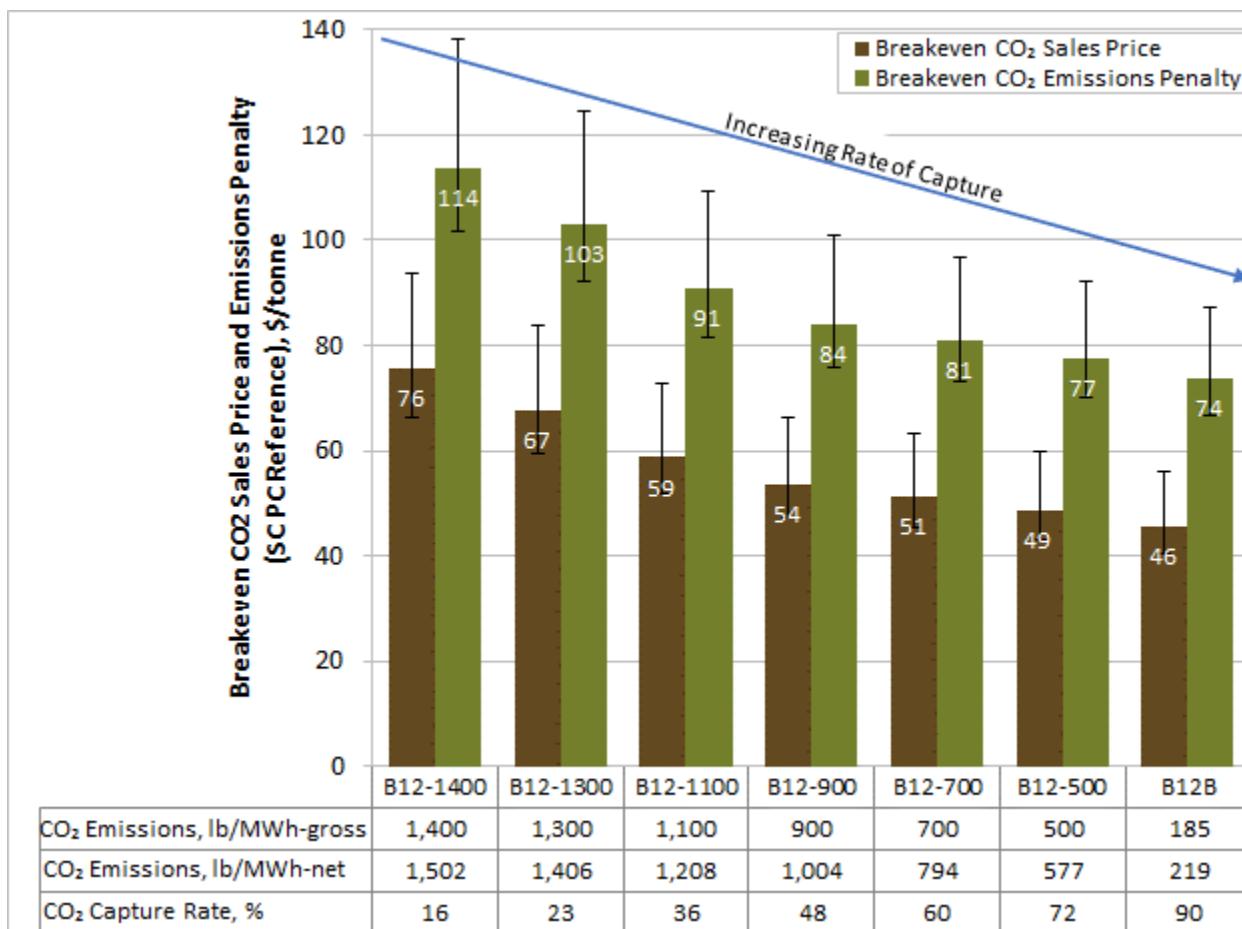

SENSITIVITY TO CO₂ CAPTURE RATE IN COAL-FIRED POWER PLANTS

Exhibit 3-3. LCOE (ex. T&S) for an SC PC plant at various levels of CO₂ capture

SENSITIVITY TO CO₂ CAPTURE RATE IN COAL-FIRED POWER PLANTS


Exhibit 3-4. LCOE (ex. T&S) for a GEP radiant IGCC plant at various levels of CO₂ capture

The breakeven CO₂ sales price and emissions penalty are shown in Exhibit 3-5 and Exhibit 3-6. The breakeven CO₂ sales price represents the minimum CO₂ plant gate sales price that will incentivize carbon capture. Similarly, the breakeven CO₂ emissions penalty represents the minimum cost of, or penalty on, CO₂ emissions that will incentivize the carbon capture cases. In lieu of a defined reference plant with no CO₂ capture and as the lowest cost coal case with no CO₂ capture, the SC PC Case B12A serves as the reference plant for both the SC PC and the IGCC cases. As the figures indicate, the breakeven CO₂ sales price and emissions penalty decrease significantly as the capture rate increases due to the economies of scale and the increasing amount of CO₂ captured.

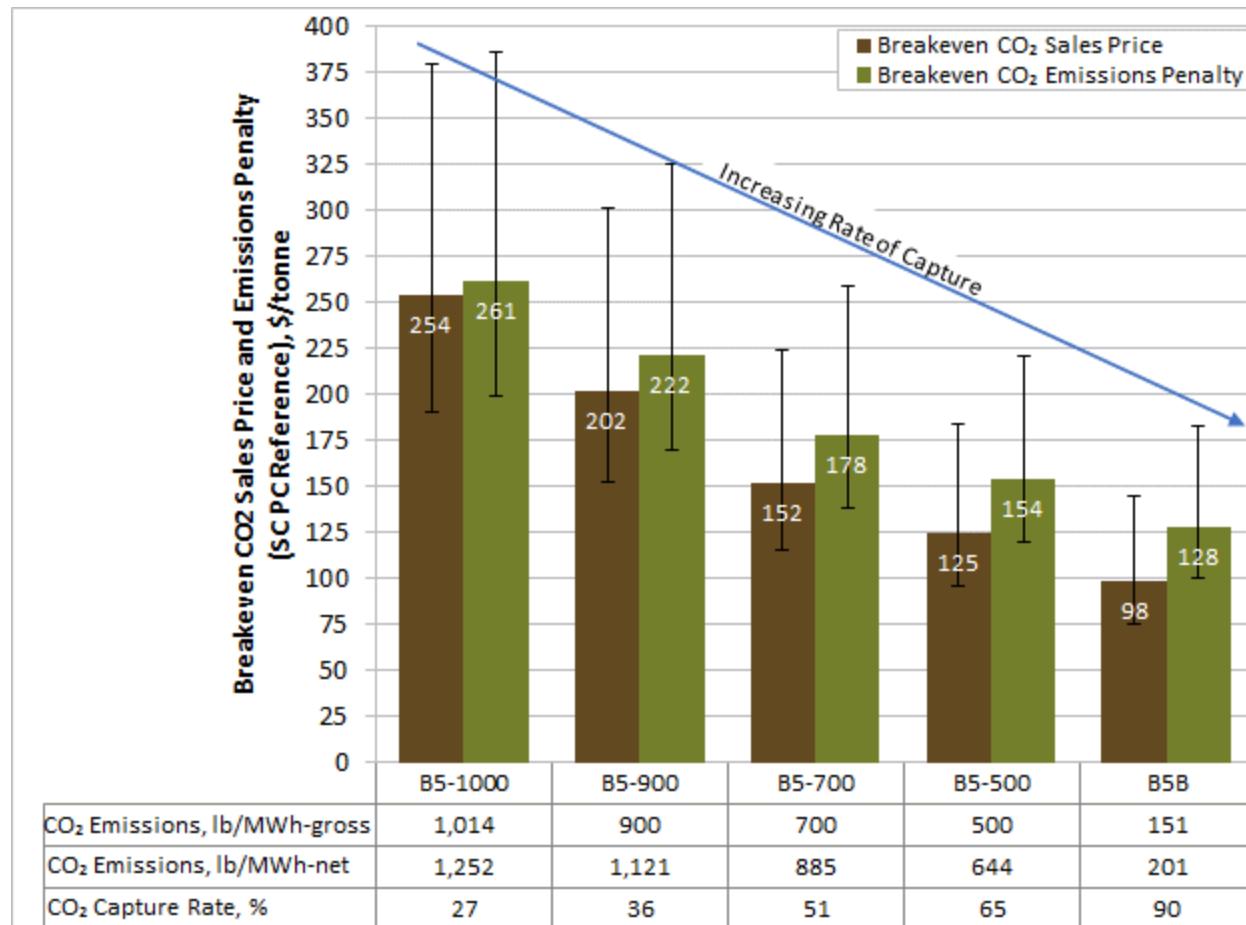
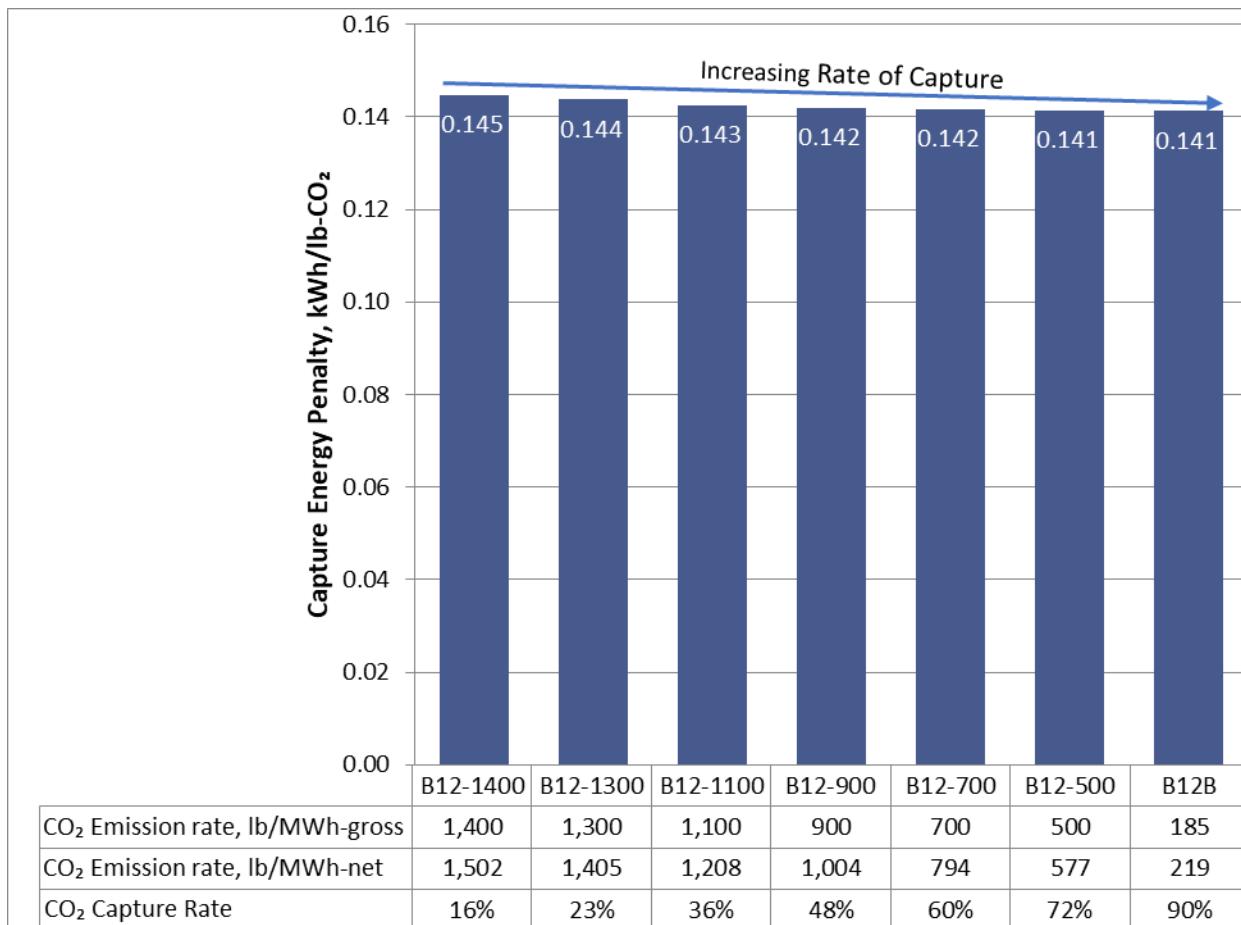

SENSITIVITY TO CO₂ CAPTURE RATE IN COAL-FIRED POWER PLANTS

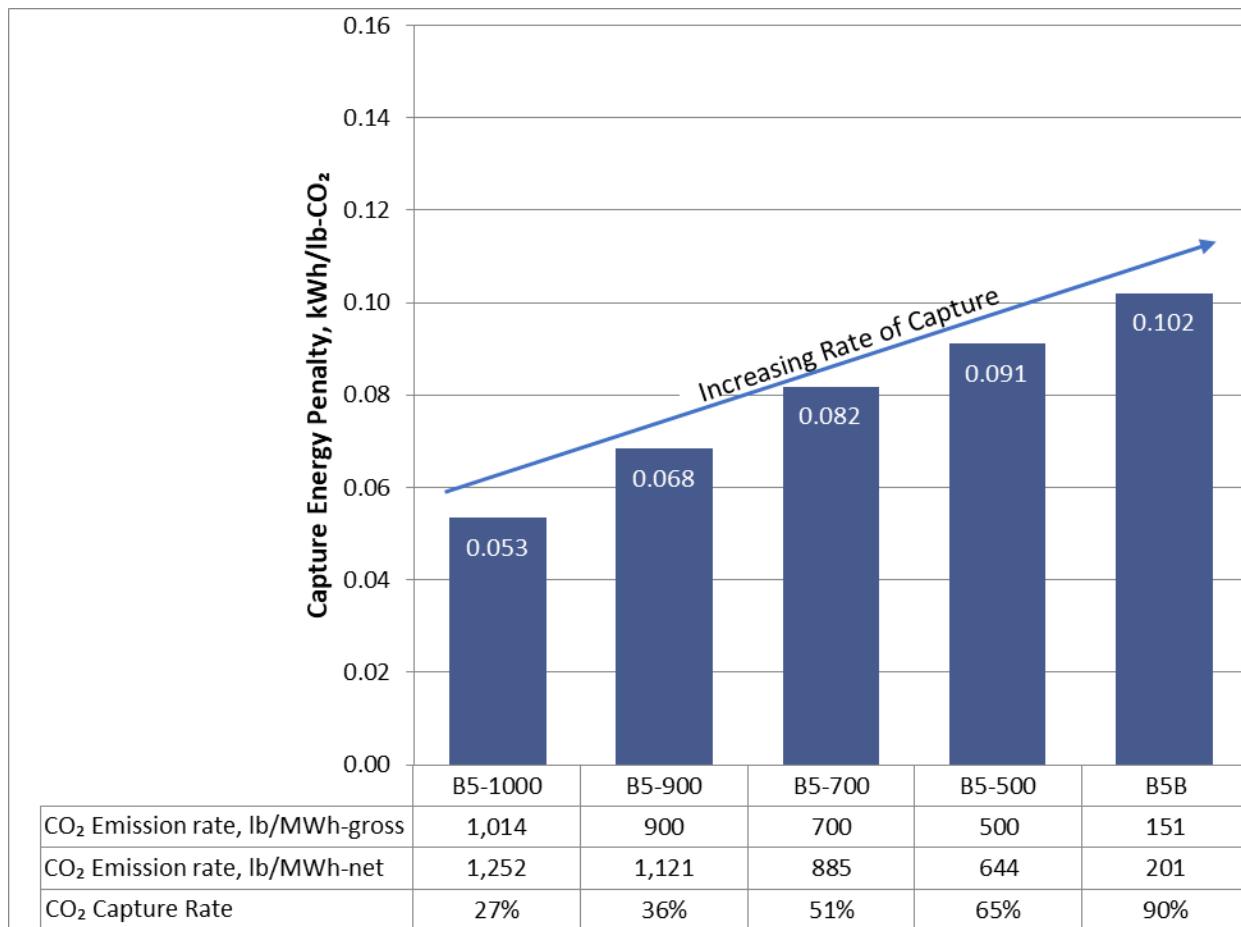
Exhibit 3-5. Breakeven CO₂ sales price and emissions penalty for an SC PC plant at various levels of CO₂ capture



SENSITIVITY TO CO₂ CAPTURE RATE IN COAL-FIRED POWER PLANTS

Exhibit 3-6. Breakeven CO₂ sales price and emissions penalty for a GEP radiant IGCC plant at various levels of CO₂ capture

Due to the use of the bypass around the CO₂ capture system, the capture energy penalties for the SC PC capture cases are nearly constant with a value of approximately 0.14 kWh/lb-CO₂, as shown in Exhibit 3-7. All cases consider 90 percent capture of CO₂ from the flue gas sent to the CO₂ capture system; flue gas that bypasses the CO₂ capture system is unabated.


Exhibit 3-7. Capture energy penalty (kWh/lb-CO₂) for an SC PC plant at various levels of CO₂ capture

Due to the addition of water gas shift (WGS) and the intensification of unit operations to drive the CO-conversion reaction to completion, the capture energy penalties for the IGCC capture cases in this study increase significantly with increasing capture rates, as shown in Exhibit 3-8.

Case B5-1000 does not have WGS, sending all the syngas to the COS hydrolysis reactor. Cases B5-900 through B5-500 incrementally increase the amount of syngas sent to the WGS reactor and Case B5B has no COS hydrolysis reactor, sending all the syngas to the WGS reactor. As the amount of syngas sent to the WGS reactor increases, the capture energy penalty increases.

SENSITIVITY TO CO₂ CAPTURE RATE IN COAL-FIRED POWER PLANTS

Exhibit 3-8. Capture energy penalty (kWh/lb-CO₂) for a GEP radiant IGCC plant at various levels of CO₂ capture

4 CONCLUSION

Plants that meet a range of design CO₂ emission levels were developed by modifying the Bituminous Baseline cases. For both the SC PC and IGCC plants, lower levels of CO₂ capture result in a lower LCOE, primarily due to the lower capital and operating costs for the reduced sizes of the capture systems and the reduced parasitic loads of the CO₂ capture equipment. In the SC PC cases, the reduction in CO₂ capture system size is due to bypassing a portion of the flue gas to the stack. In the IGCC cases, the reduction in CO₂ capture equipment size is the result of the inlet stream to the CO₂ capture system's mass flow rate and CO₂ concentration decreasing and gas density increasing as the amount of syngas sent to the WGS reactor decreases.

The breakeven CO₂ sales price, equivalent to the minimum plant gate CO₂ sales price (revenue) required to incentivize CO₂ capture relative to an SC PC plant with no CO₂ capture, is higher at lower capture rates primarily due to the associated economies of scale. Should such CO₂ revenues be available, then the higher capture rate designs are a more cost-effective method of CO₂ abatement; however, the lower capture rate designs represent lower incremental costs than the plant with 90 percent capture. Deployment of lower capture rate plants enables demonstration, progressive scaling, and optimization of the CO₂ capture system with lower absolute costs while facilitating the smooth transition, from both economic and process perspectives, to subsequent plants with higher capture rates.

5 REFERENCES

- [1] National Energy Technology Laboratory, "Cost and Performance Baseline for Fossil Energy Plants: Cost and Performance Baseline for Fossil Energy Plants, Volume 1: Bituminous Coal and Natural Gas to Electricity, Revision 4," U.S. Department of Energy, Pittsburgh, 2019.
- [2] National Energy Technology Laboratory, "Quality Guidelines for Energy System Studies: Cost Estimation Methodology for NETL Assessments of Power Plant Performance," U.S. Department of Energy, Pittsburgh, 2019.
- [3] AACE International, Conducting Technical and Economic Evaluations – As Applied for the Process and Utility Industries; TCM Framework: 3.2 – Asset Planning, 3.3 Investment Decision Making, AACE International, 2003.
- [4] AACE International, Cost Estimate Classification System – As Applied in Engineering, Procurement, and Construction for the Process Industries; TCM Framework 7.3 – Cost Estimating and Budgeting, AACE International, 2005.
- [5] Environmental Protection Agency, "Standards of Performance for Greenhouse gas Emissions from New, Modified, and Reconstructed Stationary Sources: Electric Utility Generating Units (40 CFR Parts 60, 70, 71)," Environmental Protection Agency, Washington, 2015.
- [6] National Energy Technology Laboratory, Quality Guidelines for Energy System Studies: Capital Cost Scaling Methodology, Pittsburgh: U.S. Department of Energy, October 2019.
- [7] Environmental Protection Agency, "EPA Proposes 111(b) Revisions to Advance Clean Energy Technology," [Online]. Available: <https://www.epa.gov/newsreleases/epa-proposes-111b-revisions-advance-clean-energy-technology>. [Accessed 2 October 2019].

APPENDIX: KEY PERFORMANCE AND COST SUMMARY TABLES

Exhibit A-1. Estimated performance results for SC PC cases

Case	Reference Non-Capture Design	Partial Capture Cases						Reference CO ₂ Capture Design
	B12A	B12-1400	B12-1300	B12-1100	B12-900	B12-700	B12-500	B12B
CO ₂ Capture Rate, %	0	16	23	36	48	60	72	90
Capacity Factor, %	85	85	85	85	85	85	85	85
Gross Power Output, MWe	685	697	703	714	726	737	750	770
Auxiliary Power Requirement, MWe	35	47	53	64	76	87	100	120
Net Power Output, MWe	650	650	650	650	650	650	650	650
Coal Flow rate, lb/hr	472,037	491,184	499,865	517,143	535,034	552,980	572,479	603,246
HHV Thermal Input, kWt	1,613,879	1,679,342	1,709,024	1,768,094	1,829,263	1,890,621	1,957,286	2,062,478
Net Plant HHV Efficiency, %	40.3	38.7	38.0	36.8	35.5	34.4	33.2	31.5
Net Plant HHV Heat Rate, Btu/kWh	8,473	8,820	8,972	9,282	9,601	9,932	10,273	10,834
Raw Water Withdrawal, gpm	6,054	6,113	6,402	6,987	7,592	8,208	8,860	9,911
Process Water Discharge, gpm	1,242	978	1,123	1,417	1,722	2,035	2,361	2,893
Raw Water Consumption, gpm	4,811	5,135	5,279	5,569	5,870	6,174	6,498	7,018
CO ₂ Emissions, lb/MMBtu	202	170	157	130	105	80	56	20
CO ₂ Emissions, lb/MWhgross	1,627	1,400	1,300	1,100	900	700	500	185
CO ₂ Emissions, lb/MWhnet	1,714	1,502	1,405	1,208	1,004	794	577	219
CO ₂ Emissions, tonne/yr	3,763,000	3,295,065	3,085,288	2,652,328	2,205,493	1,742,199	1,266,308	480,897
SO ₂ Emissions, lb/MMBtu	0.081	0.066	0.060	0.049	0.037	0.026	0.016	0.000
SO ₂ Emissions, lb/MWhgross	0.648	0.546	0.501	0.411	0.321	0.232	0.142	0.000
SO ₂ Emissions, tonne/yr	1,500	1,286	1,190	992	788	576	359	0
NOx Emissions, lb/MMBtu	0.087	0.085	0.084	0.083	0.081	0.080	0.079	0.077
NOx Emissions, lb/MWhgross	0.700	0.700	0.700	0.700	0.700	0.700	0.700	0.700
NOx Emissions, tonne/yr	1,619	1,648	1,661	1,688	1,715	1,742	1,773	1,819
PM Emissions, lb/MMBtu	0.011	0.011	0.011	0.011	0.010	0.010	0.010	0.010
PM Emissions, lb/MWhgross	0.090	0.090	0.090	0.090	0.090	0.090	0.090	0.090
PM Emissions, tonne/yr	208	212	214	217	221	224	228	234
Hg Emissions, lb/TBtu	0.373	0.365	0.362	0.355	0.349	0.343	0.337	0.328
Hg Emissions, lb/MWhgross	3.00E-06	3.00E-06	3.00E-06	3.00E-06	3.00E-06	3.00E-06	3.00E-06	3.00E-06
Hg Emissions, tonne/yr	0.007	0.007	0.007	0.007	0.007	0.007	0.008	0.008

SENSITIVITY TO CO₂ CAPTURE RATE IN COAL-FIRED POWER PLANTS

Exhibit A-2. Estimated cost results for SC PC cases

	Reference Non- Capture Design	Partial Capture Cases						Reference CO ₂ Capture Design	
		B12A	B12-1400	B12-1300	B12-1100	B12-900	B12-700	B12-500	
Case		B12A	B12-1400	B12-1300	B12-1100	B12-900	B12-700	B12-500	B12B
CO ₂ Capture Rate	0	16	23	36	48	60	72	90	
Total Plant Cost, \$/kW	2,099	2,538	2,661	2,882	3,085	3,307	3,500	3,800	
<i>Bare Erected Cost</i>	1,548	1,834	1,915	2,062	2,197	2,347	2,476	2,677	
<i>Home Office Expenses</i>	271	321	335	361	385	411	433	469	
<i>Project Contingency</i>	280	345	364	396	426	459	487	531	
<i>Process Contingency</i>	0	38	47	63	78	91	104	123	
Total Overnight Cost, \$MM	1,678	2,024	2,122	2,297	2,459	2,632	2,788	3,023	
Total Overnight Cost, \$/kW	2,582	3,116	3,265	3,535	3,782	4,052	4,288	4,654	
<i>Owner's Costs</i>	484	578	605	653	697	745	788	854	
Total As-Spent Capital, \$/kW	2,981	3,597	3,770	4,081	4,366	4,678	4,950	5,372	
LCOE (excluding T&S), \$/MWh	64.4	74.1	76.9	82.2	87.2	92.6	97.5	105.3	
<i>Capital Costs</i>	28.3	34.2	35.8	38.8	41.5	44.4	47.0	51.0	
<i>Fixed Costs</i>	9.5	11.4	11.9	12.7	13.5	14.3	15.0	16.1	
<i>Variable Costs</i>	7.7	8.9	9.3	10.1	10.9	11.8	12.6	14.0	
<i>Fuel Costs</i>	18.9	19.6	20.0	20.7	21.4	22.1	22.9	24.1	
LCOE (including T&S), \$/MWh	64.4	75.4	78.8	85.3	91.5	98.1	104.4	114.3	
<i>CO₂ T&S Costs</i>	0.0	1.3	1.9	3.0	4.3	5.5	6.8	8.9	
LCOE (excluding T&S) -15% TPC, \$/MWh ¹	58.6	67.1	69.7	74.3	78.8	83.6	88.0	94.9	
LCOE (excluding T&S) +30% TPC, \$/MWh ¹	75.9	87.9	91.5	98.0	104.1	110.7	116.7	126.2	
Breakeven CO ₂ Sales Price, \$/tonne	N/A	76	67	59	54	51	49	46	
Breakeven CO ₂ Sales Price -15% TPC, \$/tonne ¹	N/A	66	59	52	47	45	43	41	
Breakeven CO ₂ Sales Price +30% TPC, \$/tonne ¹	N/A	94	84	73	66	63	60	56	
Breakeven CO ₂ Emissions Penalty, \$/tonne	N/A	114	103	91	84	81	77	74	
Breakeven CO ₂ Emissions Penalty -15% TPC, \$/tonne ¹	N/A	102	92	82	76	73	70	67	
Breakeven CO ₂ Emissions Penalty +30% TPC, \$/tonne ¹	N/A	138	124	109	101	97	92	87	

¹The accuracy range is applied at the TPC level, which has a consequent impact on the fixed and variable O&M costs. [6]

SENSITIVITY TO CO₂ CAPTURE RATE IN COAL-FIRED POWER PLANTS

Exhibit A-3. Estimated performance results for IGCC cases

	Reference Non-Capture Design	Partial Capture Cases				Reference CO ₂ Capture Design
		B5-1000	B5-900	B5-700	B5-500	
Case	B5A					B5B
CO ₂ Capture Rate, %	0	27	36	51	65	90
Capacity Factor, %	80	80	80	80	80	80
Gross Power Output, MWe	765	761	758	756	752	741
Auxiliary Power Requirement, MWe	131	145	150	158	168	185
Net Power Output, MWe	634	616	609	597	584	556
Coal Flow rate, lb/hr	464,732	462,396	465,215	470,863	476,084	482,580
HHV Thermal Input, kWt	1,588,902	1,580,918	1,590,555	1,609,865	1,627,716	1,649,926
Net Plant HHV Efficiency, %	39.9	38.9	38.3	37.1	35.9	33.7
Net Plant HHV Heat Rate, Btu/kWh	8,554	8,763	8,917	9,194	9,505	10,118
Raw Water Withdrawal, gpm	4,799	4,768	4,873	5,070	5,241	5,512
Process Water Discharge, gpm	1,033	1,025	1,037	1,061	1,085	5,512
Raw Water Consumption, gpm	3,766	3,743	3,836	4,009	4,156	4,389
CO ₂ Emissions, lb/MMBtu	197	143	126	96	68	20
CO ₂ Emissions, lb/MWhgross	1,396	1,014	900	700	500	151
CO ₂ Emissions, lb/MWhnet	1,685	1,252	1,121	885	644	201
CO ₂ Emissions, tonne/yr	3,395,061	2,450,486	2,169,721	1,681,701	1,195,306	355,046
SO ₂ Emissions, lb/MMBtu	0.002	0.000	0.000	0.000	0.000	0.000
SO ₂ Emissions, lb/MWhgross	0.015	0.000	0.000	0.000	0.000	0.000
SO ₂ Emissions, tonne/yr	37	0	0	0	0	0
NOx Emissions, lb/MMBtu	0.054	0.054	0.053	0.051	0.050	0.048
NOx Emissions, lb/MWhgross	0.379	0.382	0.378	0.371	0.366	0.364
NOx Emissions, tonne/yr	922	924	912	892	875	858
PM Emissions, lb/MMBtu	0.007	0.007	0.007	0.007	0.007	0.007
PM Emissions, lb/MWhgross	0.050	0.050	0.051	0.052	0.052	0.054
PM Emissions, tonne/yr	122	122	122	124	125	127
Hg Emissions, lb/TBtu	0.423	0.423	0.419	0.413	0.406	0.395
Hg Emissions, lb/MWhgross	3.00E-06	3.00E-06	3.00E-06	3.00E-06	3.00E-06	3.00E-06
Hg Emissions, tonne/yr	0.007	0.007	0.007	0.007	0.007	0.007

SENSITIVITY TO CO₂ CAPTURE RATE IN COAL-FIRED POWER PLANTS

Exhibit A-4. Estimated cost results for IGCC cases

Case	Reference Non- Capture Design	Partial Capture Cases				Reference CO ₂ Capture Design
		B5A	B5-1000	B5-900	B5-700	
CO ₂ Capture Rate	0	27	36	51	65	90
Total Plant Cost, \$/kW	3,822	4,196	4,355	4,576	4,807	5,240
<i>Bare Erected Cost</i>	2,679	2,912	3,021	3,174	3,333	3,631
<i>Home Office Expenses</i>	402	437	453	476	500	545
<i>Project Contingency</i>	557	619	644	679	715	783
<i>Process Contingency</i>	184	228	237	247	258	281
Total Overnight Cost, \$MM	2,972	3,165	3,250	3,356	3,452	3,589
Total Overnight Cost, \$/kW	4,690	5,142	5,340	5,618	5,908	6,450
<i>Owner's Costs</i>	868	946	985	1,042	1,102	1,210
Total As-Spent Capital, \$/kW	5,414	5,936	6,164	6,485	6,821	7,446
LCOE (excluding T&S), \$/MWh	107.9	117.1	121.3	127.3	133.7	144.2
<i>Capital Costs</i>	54.7	59.9	62.2	65.5	68.9	75.2
<i>Fixed Costs</i>	20.0	22.0	22.8	23.9	25.0	27.2
<i>Variable Costs</i>	14.1	15.7	16.4	17.5	18.7	19.3
<i>Fuel Costs</i>	19.0	19.5	19.9	20.5	21.2	22.5
LCOE (including T&S), \$/MWh	107.9	119.2	124.1	131.5	139.2	152.3
<i>CO₂ T&S Costs</i>	0.0	2.1	2.8	4.1	5.5	8.1
LCOE (excluding T&S) -25% TPC, \$/MWh ¹	87.2	94.4	97.8	102.6	107.7	115.9
LCOE (excluding T&S) +50% TPC, \$/MWh ¹	149.2	162.4	168.3	176.7	185.6	200.8
Breakeven CO ₂ Sales Price, \$/tonne	N/A	254	202	152	125	98
Breakeven CO ₂ Sales Price -25% TPC, \$/tonne ¹	N/A	191	153	115	96	75
Breakeven CO ₂ Sales Price +50% TPC, \$/tonne ¹	N/A	380	301	225	184	144
Breakeven CO ₂ Emissions Penalty, \$/tonne	N/A	261	222	178	154	128
Breakeven CO ₂ Emissions Penalty -25% TPC, \$/tonne ¹	N/A	199	170	138	120	101
Breakeven CO ₂ Emissions Penalty +50% TPC, \$/tonne ¹	N/A	386	325	259	221	183

¹The accuracy range is applied at the TPC level, which has a consequent impact on the fixed and variable O&M costs. [6]

www.netl.doe.gov

Albany, OR • Anchorage, AK • Morgantown, WV • Pittsburgh, PA • Sugar Land, TX

(800) 553-7681

**NATIONAL
ENERGY
TECHNOLOGY
LABORATORY**