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Preface (2017)

In the late 1980’s, Lawrence Livermore National Laboratory (LLNL), developed an outstanding multi-physics two-
dimensional model of the underground coal gasification (UCG) process called CAVSIM (c.f. Britten and Thorsness, 1989).
From 2009 to 2013, a different LLNL team developed along the same lines a modern high-fidelity multi-physics three-
dimensional model of UCG called UCG-SIM3D.

UCG-SIM3D models much the same phenomena as CAVSIM, but takes advantage of modern computational capabilities,
algorithms, and software elements from other state-of-art codes. Important advances over CAVSIM include: flexible 3-D
geometry that allows for arbitrary spatial variations of geologic properties such as multiple coal seams of different
compositions, dip, varying permeabilities, etc.; flexibility to move one or more injection points and production points to
locations that can change with time; a sophisticated algorithm that tracks 3-D growth of the cavity and rubble boundaries
and rubble composition; an improved 3-D model of flow, reactions, and heat transfer within the rubble bed and in the open
void region; a 3-D non-isothermal unsaturated water and gas flow model for both the near- and far-field surroundings. As
with CAVSIM, sideward and upward growth of the cavity in coal and overburden rock is by spalling, with user-specified
rate coefficients in a temperature-dependent model. The code structure would allow for interface with a geomechanics code
that could predict cavity growth by structural roof collapse, but this was not implemented. After fitting some parameters,
UCG-SIM3D very accurately calculated the 3-dimensional development of the cavity and its rubble contents, the 3-
dimensional temperature, pressure, and composition fields, and product gas composition of the Hoe Creek Il and Rocky
Mountain 1-CRIP field tests. UCG-SIM3D development ended before being matured into an engineering tool for use by
non-experts.

UCG-SIM3D was not fully documented in a technical report, as the last available resources were directed at completing the
successful simulation of the Rocky Mountain 1 UCG field test. A 2013 conference presentation (Camp et al., 2013) has
been the best overview description of the UCG-SIM3D model. (That 2013 presentation superceded another very similar
2012 conference presentation (Camp et al., 2012)). The 2013 presentation is reproduced here as an LLNL Technical Report
to make it easily accessible to a wider audience. This Preface has been added and the cavity sketch in Slide 14 has modified
to more properly illustrate the vertical growth of the cavity. Two accessible technical reports that describe the model at
earlier stages of development are Nitao et al., 2011 and Nitao et al., 2010. The code itself and its software-level
documentation were largely written by John Nitao and reside within LLNL as internal files.

David W. Camp
LLNL UCG program leader, 2009-2014
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The slides that follow in this 2017 TR document are nearly identical to a
June 2013 presentation prepared for the UCGA Conference in London
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The June 2013 presentation prepared for the UCGA Conference followed a very similar
presentation made at the August 2012 IEA Clean Coal Centre’s UCG Workshop
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Lawrence Livermore National Laboratory is a U.S.
Department of Energy institution applying science and
technology to missions of national and global importance

8 e &

= Approximately 6,000 employees

« Scientists, engineers, technicians, and
support staff

= World class experimental and
computational facilities, capabilities

= Multidisciplinary project approach

= Worldwide reputation in
supercomputing

National Ignition Facility (laser fusion)
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LLNL was a UCG leader in the 1970’s and 1980’°s
- only US institution still active in UCG

i
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Site Selection

We continue with state-of-art
analyses and practical support
for projects

Site Characterization
= Design

— i _ = Simulation

= Environmental Analyses
= Critical Reviews

= Process engineering
and economics

= Monitoring
Program planning

25.0 37.5 50.0
Y meters
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We have a multidisciplinary UCG team of ~20, and a
suite of UCG modeling tools, from simple to simulator
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Simulator Goal:
A Full-physics, flexible 3-D UCG simulator

= Models all necessary physical domains
- Near-field cavity, wall, and rubble zones
- Far-field hydrologic and geomechanic domains

= Flexible and powerful
- Complex geology
- Any module design

= Predictive
- Cavity shape Is predicted, not specified

- Product composition, hydrologic pressure field,
overburden changes

 Process details such as T, P fields

i . 11
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LLNL’s Simulation Philosophy

= Model the right physics

= Assure the model is consistent with observations
and the best understanding of how UCG works

= Stand on the shoulders of past giants

= Employ modern computational capabilities

i . 12
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Typical UCG
Well Layout

Hydrology and
geomechanics
are important 290t

_ ~1500m
far-field
domains

- ~100m
Lawrence Livermore National Laboratory
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Near-field domains include open cavity, rubble cavity,
coal wall zone, rock wall zone, and near surroundings.

Inject air Produce gas H, CH, CO,
or O2 & HZO (steam optional) ( 100-300 BtU/SCf) H,0, & CO,

RN B

...\ Wall Zone
¥ (Coal)

Wet coal

Dry coal
Char
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Rubble e
Cavity wwllo
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Cavities often grow up in the coal and into the overburden by small-scale
spalling and/or mechanical collapse. Collapsed solids form a packed bed
that allows gas flow, dries, reacts, moves, and transfers heat.
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Models of key domains are coupled

Geologic Property
_ Near-Field & Far- Field Model &
= Build or ad apt Field Hydrologic Mesh Generator

for each domain Geomechanics

.| & Roof Collapse

best-in-class models Models \/

Coal & Rock Boundaries, Model
Wall Zone Solids Move,
and Spalling Integrate All
= Track and Models
communicate Rubble Zone
changing boundaries & Model
Cavity Gas

and moving solids Mode

= Couple and integrate

i . 16
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Far-field and near-field transport of fluids and
heat outside the cavity use LLNL's NUFT code
(Nonlsothermal Unsaturated Flow & Transport)

Porous media flow and transport

Thermal and chem transport
Saturated and unsaturated

Matrix and fracture flow
and transport

Meshing from geomodel

Handles active aquifer
management activities

Usually we use:

Near-field is unsaturated
nonisothermal

Far field is saturated isothermal

Lawrence Livermore National Laboratory
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For geomechanics we use a streamlined version

of state-of-art Geocentrics code

Pseudocolor
Var: plastic_strain_norm

E I N |
0.000 0.001 0.003 0.004 0.005

| Damage/Collapse

Rubble

Lawrence Livermore National Laboratory
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Coal wall zone model includes transport anc

reactions at fine spatial resolution. With spalling.
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Coal Coal Char
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Spalling can be a major mechanism of
vertical and sidewards cavity growth

Photos of
heated cores

(Oak Ridge National Laboratory, ca 1978)

Wilcox Hoe Creek

Lignite Overburden
15 cm 5 Ccm

heated to heated to
800°C 1000°C @

= Spalling is the localized fracture and falling of coal or rock, typically:
- scale of a few millimeters up to a meter
- at or near drying front or zones of high local gradients
- due to steam escape pressure, thermo-mechanical stresses, ...

Our wall-zone models for coal and roof rock include spalling

i . 20
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For the open cavity domain, we use a 3-D
advection dispersion model with reactions and

radiation. Advised by CFD runs.

- 3-D CFD simulation of 75 x 60 x 40 m
* 3-D Advective- cavity. With heat, buoyancy, turbulence,
radiation, but no chemistry

Dispersive
 Potential flow with or
without gravity
Dispersivities f()

Full reactions

Radiative and convective
heat transfer

Advised by CFD runs

» 3-D CFD (STAR)
« Too slow

» 2-D CFD (STAR)
 Inadequate

i . 21
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Rubble Zone Model is a 3-D extension of the Britten-
Thorsness model, + extra physics & chemistry

= Accumulations from falling ash; spalled char, coal,
and roof rock; collapsed roof rock

= Solids move due to gravity, angle of repose, and
settling (from reaction-caused volume reduction)

= 3-D fluid flow (gas and liquid) within rubble with
radiative and convective heat transport, &
dispersive mass transport

= Full set of gas, solid, and heterogeneous reactions

= Tracks rubble composition (Char, VM, Ash, Rock) &
energy

i . 22
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The Boundary and Rubble Tracking Module uses a
sophisticated algorithm to move material and boundaries

= Algorithm tracks wall boundaries
within a 3-D lattice of small cubes

= Conserves mass exactly

= Handles convex and concave
curvature

" Accommodates small-scale
spalling and large-scale block
collapse

= Simplifies computational geometry

i . 23
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Simulation of our old field tests

= Version 1
applied to
Hoe Creek IlI
Days 1-13

= Version 2
modeling Rocky
Mountain 1 CRIP
Days 1-35

24
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The Hoe Creek Ill test (1979, Powder River Basin, WY)

had two coal seams, two injection points, two injection

compositions, and changing injection rate and pressure
2" injection phase 1%injection phase production

 dayg-dayis * dayi-day8 well
* 5o/50 oxygen/steam ° airinjection

open
cavity

upper — 150

coalseam 125
10.0

7.5

5.0
lower ====i:
coal seam '

0.0 12.5 . 37.5
Y meters

bottom depth=56m
rubbelized

material
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Hoe Creek Ill observed cavity growth
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FI16. 12. Plan and elevation views of the Hoe Creek No. 3 burn cavity on day 238 of 19 pre 14, plan and elevation views of the Hoe Creek No. 3 burn cavity for day 242
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Observed Cavity Growth for Hoe Creek Il

Frames from a 3-D visualization of reported cavity boundary locations

i . 27
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The following movie shows simulation results
for cavity growth and rubble accumulation

2"d injection phase 1stinjection phase 1stinjection
» day 9-day 15 » day 1-day 8 _ well
 50/50 oxygen/steam -« air injection production 11

12 =) | !

15.0
Uupper —
coal seame
7.5
5.0

lower

25.0 37.5

coal seam’  ®° O meters

bottom depth=56m rubblized
material

75 10.0 1255 15.0 17.5 20.0 225
meters

side view cross-section at 1st injector
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Simulation* of HC-IIl Cavity Growth

Movie of model-calculated zone locations in .ppt file

Y=25.0
15.0
0.0 day 125
15.0
125 10.0
10.0
75 75
o 5.0

12.5 25.0 37.5 50.0
Y meters 2.5

0.0

7.5 10.012.515.017.520.022.5
CEPNCPNCTS

side view cross-section at 1st injector

* Hoe Creek Il simulations used the 2011 version of UCG-SIM3D
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Simulation* of HC-IIl Cavity Growth

Snapshots at progressing time, 4.5 days; injecting into well I-1

Y=25.0
15.0

12.5

7.5 10.012.515.017.520.022.5

CNEN

4.5 day
15.0
12.5 10.0
10.0
7.5 7.5
5.0 ‘
& 5.0
12.5 25.0 37.5 50.0
Y meters 2.5
0.0
side view

cross-section at 1st injector

* Hoe Creek Il simulations used the 2011 version of UCG-SIM3D

Lawrence Livermore National Laboratory
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Simulation* of HC-IIl Cavity Growth

Snapshot at progressing time, 8.5 days; still injecting into well 1-1

Y=25.0

7.5 10.012.515.017.520.022.5

VNN N

15.0

8.5 day 12.5
15.0

12.5 10.0
10.0

7.5 7.5
5.0

i 5.0

12.5 25.0 37.5 50.0
Y meters 2.5
0.0
side view

cross-section at 1st injector

* Hoe Creek Ill simulations used the 2011 version of UCG-SIM3D

The lack of backward burn within the coal was fixed before the Rocky Mountain 1 simulations

Lawrence Livermore National Laboratory
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Simulation* of HC-IIl Cavity Growth

Snapshot at 10.3 days; after switching injection to I-2

Y =25.0
15.0
10.3 day 12.5
15.0
12.5 10.0
10.0
53 Ve
5.0
- 5.0

12.5 25.0 7.9 50.0
Y meters 2.5

0.0

7.5 10.012.515.017.520.022.5

SV

side view cross-section at 1t injector

* Hoe Creek Il simulations used the 2011 version of UCG-SIM3D
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Simulation* of HC-IIl Cavity Growth

Snapshot at 13.7 days; spalling had penetrated up to the upper seam

Y=25.0
15.0
13.7 day 12.5
15.0
12.5 10.0
10.0
7.5 7.5
5.0
o 5.0
125 250 375 500
Y meters 2.5
0.0
7.5 10.012.515.017.520.022.5
SIS
side view cross-section at 15t injector

* Hoe Creek Ill simulations used the 2011 version of UCG-SIM3D

In 2011, the model rubble included ash from consumed coal, and spalled roof rock,
but not coal/char from spalled coal

0 . 33
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Comparison of cavity shape for HC-II
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Comparison of product histories for HC-II!

Gas production rate Gas Heating value
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The Rocky Mountain | CRIP test (Hanna Basin, WY,
1987-88) had intersecting horizontal injection and

production wells, and changing injection location,
composition, rate, and pressure.

Plan views of growing cavity and moving injection points

i i 36
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RM | post-burn coring showed much roof
spall/fall, rubble, and a complex cavity shape

Cavity Boundary

Plan view

cCross sections CC’, BB’, AA’
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Note: corings were months? after the test
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Plan View of Simulated RM1 Cavity Growth
First 35 Days

11.8 day

30.0 ;
25.0 F

20.0 F

A 15.0 | - N
10.0 |
5.0 L 1 L L 1
5.0 0.0 5.0 10.0 15.0 20.0 25.0
meters
B!
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Plan View of Simulated RM1 Cavity Growth
First 35 Days

B

14.1 day

25.0
20.0 \
A 15.0 A

10.0

>%50

meters

B!
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Plan View of Simulated RM1 Cavity Growth
First 35 Days

B

17.6 day

30.0
25.0
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Plan View of Simulated RM1 Cavity Growth
First 35 Days
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38.4 day
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Cross sections of simulated RM 1 cavity growth
First 35 days

Cross section perpendicular
to injection borehole through
initial injection point

1)
B 46.6 day B
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rock s open gas
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6.5
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seam 4.0
15
0 \
ash+char 75 10.0 125 1.0 175 20.0 225 25.0
Imeters
o init. prod.
Init. inject. borehole
borehole
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Cross section along
injection borehole
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Simulation Cross-section movie
Showing Cavity Growth, Coal and Rock Spalling
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RM | cavity growth animation from
simulator (days 14-46)  Animatonfiein ppt
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RM | cavity growth animation from
simulator (days 14-46) Still frames
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RM | cavity growth animation from
simulator (days 14-46) Still frames
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RM | cavity growth animation from
simulator (days 14-46) Still frames
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RM | cavity growth animation from
simulator (days 14-46) Still frames
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Comparison of Predicted Heating Value Rate
with Rocky Mt. | Field Test
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UCG-SIM3 can accurately model UCG

= UCG-SIMS3 is a full-physics, Meas“red!
flexible, 3-D UCG simulator |
« Correct physics & chemistry

« Handles complex geology and
design/operation configuration

* Predicts cavity growth, water, | -
products, T, P, y. fields, ... | Calculated

= |t is still a research code

Y meters

* Requires expert to set up,
troubleshoot, and run

« Each new case will require effort

* Not yet mature engineering tool
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