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Abstract 
Intelligent autonomous sensor networks, often comprised of large numbers of sensors, must 
be capable of jointly exploiting data collected at each agent in the network, and using that 
data to optimize their future actions towards multiple mission objectives.  Centralized signal 
processing and optimization solutions process all data and determine all future actions at a 
single agent, and the resulting information and commands are disseminated back to the 
network.  The communications bandwidth this requires and the single point of failure the 
central agent represents often make these solutions untenable for national security 
applications.  In this project, several fundamental algorithms for solving both the 
decentralized signal processing and network optimization were developed, as well as 
simulation software to validate the results of these algorithms at scale.  Specifically, novel 
algorithms for Bayesian decentralized estimation and decentralized detection and 
optimization based on the alternating direction method of multipliers (ADMM) were 
developed for autonomous sensor networks and published in the literature.  The first large-
scale simulation of autonomous sensor networks (1000 agents) was conducted on this 
project, validating the performance of the developed algorithms.  These algorithms and 
simulation tools are critical components of any decentralized autonomous network and have 
current and future national security applications, including distributed sensor networks for 
detection, estimation, and tracking problems, and large decentralized cyber-physical 
infrastructure such as the power grid.   

Background and Research Objectives 
In recent years, both sensors and embedded computing systems have become smaller, 
cheaper, and far more capable.  This has enabled smarter sensors capable of better 
understanding the data they collect, and able to use the information they extract to 
autonomously determine their future actions, due to the increase in onboard processing.  
This potential impact of networks of these sensors can be readily seen both in consumer 
applications such as the the emerging internet-of-things (IoT) and in the national security 
space.  Of particular importance in the national security domain are decentralized solutions, 
where there is no centralized command and control node or data fusion center.  Eliminating 
this single point of failure from current centralized networks adds resilience to the system 
but adds significant complexity to the data exploitation and autonomy algorithms.  While 
recent hardware advances have enabled these intelligent networks, the algorithms by which 
they collectively exploit sensor data and make decisions are still under development.  In 
particular, algorithms are needed which address Byzantine attacks, an important vulnerability 
of large decentralized networks, where one or more agents in the network is providing false 
information.   

The initial research objectives of this project were thus to develop scalable decentralized 
algorithms for 1) mapping and estimating a background or environment, 2) detecting of 



objects of interest and estimating related parameters in the presence of data falsification 
attacks, 3) optimally repositioning agents for better future performance, and 4) a simulation 
tool to test and benchmark the performance of the above algorithms at scale.   Overall, the 
project produced novel algorithms towards decentralized detection (Kailkhura et. al 2017), 
estimation (Ray et. al 2019), and optimization (Schmidt et. al 2019), as well as the first known 
large-scale simulation of autonomous sensors taking into account real-world communication 
effects (Yen et. al 2018).  However, a ubiquitous issue was the available computation 
resources; often algorithms could not be developed which would run in real time on low 
power compute platforms.  High fidelity, distributed background mapping in particular was 
identified after the first year as being infeasible with currently available algorithms and 
hardware in real time, after a quantitative study on a state-of-the-art low size, weight, and 
power (SWaP) device (Ho et. al, 2018).  Focus was shifted to detection of specific objects or 
phenomena and the estimation of their related properties.  Hardware remained a 
consideration throughout the project, and some effort was directed at identifying suitable 
hardware and tailoring algorithms and software to these platforms in the design stage.  
Preliminary work was also undertaken towards flying these algorithms on multiple 
unmanned aerial vehicles (UAVs), although issues with hardware and infrastructure limited 
progress in this area.   
 
Scientific Approach and Accomplishments 
This section describes the technical approach, results and achievements towards the above 
project objectives.   
 
Detection 
Detection is generally formulated as a binary hypothesis testing problem, where the observed 
data is due to measurement noise and background under one hypothesis (H0), and contains 
some contribution from a target, object, or phenomenon of interest under the other (H1).  
This is a well-studied problem in the centralized case, in which information is available at a 
single agent.  When parammters of the detection system and signal model are not known, 
composite hypothesis testing frameworks such as the generalized likelihood ration test 
(GLRT) are used.  However, the GLRT does not have a straightforward decentralized 
implementation.  In decentralized detection approaches, each agent communicates only with 
its neighbors and updates its local state information about the phenomenon (i.e. a summary 
statistic) by a local fusion rule that employs a weighted combination of its own value and 
those received from its neighbors. Agents continue this process until the entire network 
converges to a steady-state value which is the global test statistic. A simple decentralized 
target detection solution valid in the low signal-to-noise ratio (SNR) regime was proposed 
and applied to the problem of detecting a radiation source with unknown location.  A 
decentralized implementation of the derived test which is robust to Byzantine attacks using 
the alternating direction method of multipliers (ADMM) was derived, and a study of the 
robustness of the proposed detection algorithm to Byzantine attacks and a comparison with 
conventional approaches was conducted (Kailkhura et. al 2017).  To the best of our 
knowledge, this was the first such result on Byzantine-resilient locally optimum detection in 
collaborative autonomous sensor networks.  
Thus far, research on detection in the presence of data falsification attacks has primarily 
focused on the centralized model (Marano et. al 2008). Several attempts have been made to 
address the security threats in conventional consensus-based detection schemes in recent 
research (Kailkhura et. al 2016), however the performance analysis of ADMM in the 



presence of data falsifying Byzantine attacks has thus far not been addressed in the literature.  
Our work contributed first by rigorously analyzing the effect of erroneous data on the 
ADMM convergence behavior of multi-agent systems.  We showed that the algorithm 
linearly converges to a neighborhood of the optimal solution under certain conditions and 
characterized the neighborhood size analytically. We provided guidelines for network design 
to achieve a faster convergence to the neighborhood. We also provided conditions on the 
erroneous updates for exact convergence to the optimal solution. Finally, to mitigate the 
influence of unreliable agents, we proposed a robust decentralized ADMM algorithm 
(ROAD) and show its resilience to unreliable agents with an exact convergence to the 
optimum value (Li et. al 2019).  
 
Estimation 
In the above detection methods, the steady-state value of a scalar or vector is desired on all 
agents in a network.  In estimation problems, this can correspond to the most likely values 
of the quantities of interest, given the observed data.  Traditional approaches for distributed 
inference in networks producing only such “point estimates” include factor graphs/sum-
product/message passing/belief propagation (Ihler et. al 2005), diffusion (Cattivelli and 
Sayed 2009), and ADMM (Erseghe 2012).  However, it is often advantageous to quantify the 
uncertainty associated with such an estimate for an understanding of which other values of 
the parameters of interest may also explain the observed data.  A full probability density 
function (pdf) gives such information and can be used by an intelligent sensor networks to 
collect future data for better information about the unknown parameters in question.   
Approximating non-parametric posteriors has traditionally been approached using Markov 
chain Monte Carlo (MCMC) sampling, which can be inefficient and requires centralized 
access to all data.  A novel method of estimating a full posterior distribution over a large 
decentralized sensor network has been developed.  The method is the only known way to 
provably compute posterior distributions in a decentralized framework with limited 
communication between agents, and a record of invention has been recently filed (Ray et. al 
2019).  Further details are omitted until a patent application has been filed.   
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• Use optimization techniques such as gradient descent 

to maximize mutual information, instead of 

computationally expensive grid search

• Incorporate sensor movement strategy into distributed 

ADMM (Alternating Direction Method of Multipliers) 

algorithm for decentralized source detection

• Obtain high-fidelity data for radiation source problem 

and use NARAC model for high-fidelity chemical plume 

data
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Abstract
Source localization, such as detecting a nuclear source in an urban area or ascertaining the origin of a chemical plume, is generally regarded as a well-documented inverse problem; however, 

optimally placing sensors to collect data for such problems is a more challenging task.  In particular, optimal sensor placement depends on the location of the source, which is typically unknown 

a priori.  Mobile sensors are advantageous because they have the flexibility to adapt to any given source position.  While most mobile sensor strategies designate a trajectory for sensor 

movement, we instead employ mutual information, based on Shannon entropy, to choose the next measurement location from a discrete set of design conditions. LLNL-POST-746706
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• Mutual information is a dimensionless measure of how 

much one random variable (or a set of random 

variables) informs another random variable

• Our mobile sensor movement strategy chooses the next 

measurement location that provides the most 

information about the parameters

• Strategy does not incorporate sensor dynamics

• Chooses next location for the greatest reduction in 

parameter uncertainty

• This method was inspired by calibration of low-fidelity 

models from high-fidelity data (computer codes, 

experiments, etc.) [Lewis, et al., 2016]

Figure from: [Stockie, 2011]   
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Satellite imagery used in this poster is ©2015 
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Survey and is provided by Google Maps. Building footprints 
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contributors and is publicly available under the terms of the 

Open Database License 

(http://www.openstreetmap.org/copyright).

For a low-fidelity model with parameter vector q = [q1, q2, . . . , qp],

1. Set N equal to the number of samples to be used in the mutual informa-
tion estimator.

2. Define the set ⌅ of nL possible measurement locations.

3. Initialize with m sensors placed at locations ⇠1, ⇠2, . . . , ⇠m chosen from ⌅.
Take readings to obtain data set Dm = [(⇠1, d̃1), (⇠2, d̃2), . . . , (⇠m, d̃m)].

4. The remaining possible locations for mobile sensors are [⇠m+1, ⇠m+2, ..., ⇠nL ].

5. For r = m+ 1, . . . , nL � 1,

(a) Let ⌅r be the remaining design conditions.
(b) Employ Adaptive Metropolis MCMC using the data set Dr�1 to con-

struct a p⇥N matrix of parameters chains {qi}Ni=1.
(c) For each remaining design condition ⇠j 2 ⌅r, construct a (p+1)⇥N

matrix Qj by appending {qi} with a (p + 1)th row corresponding to
the predicted low-fidelity response at ⇠j .

(d) For every Qj , estimate the multivariate mutual information of the
(p+ 1) rows. We use the first estimator from Kraskov, et al. (2004).

(d) The design condition ⇠nr with the highest estimated mutual informa-
tion indicates where one of the mobile sensors should move next.
Append the new location and response (⇠nr , d̃nr ) to data set Dr�1

to obtain ⌘r.
(e) Remove ⇠nr from ⌅r to obtain ⌅r+1.
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Constants Physical Interpretation
z Measurement height (ground level, z = 0)
H E↵ective source height
u Wind speed
Ky Di↵usivity in the y direction
Kz Di↵usivity in the z direction
�
2
y 2Kyx/u

�
2
z 2Kzx/u
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Figure	1:	Mobile	radiation	sensors	take	measurments	to	localize	a	radiation	source.		The	numbered	'x'	marks	the	future	
positions	of	radiation	sensors	sequentially	selected	to	optimally	localize	a	radioactive	source	in	the	true	position	given	by	
the	red	triangle. 



	

Figure	2:	Sensor	positions	(red	circles)	are	optimally	chosen	using	Shannon	entropy	to	localize	the	location	of	the	
source	of	a	chemical	plume	using	a	simple	Gaussian	plume	model	to	quantify	the	information	gain	in	future	
measurements.		They	select	future	measurement	locations	which	maximally	reduce	the	uncertainty	in	the	source	
parameter	estimates,	shown	with	blue	dots.		 

Optimization 
The above estimation algorithm provides complete information about unknown parameters 
with a full quantification of uncertainty and limited sharing of data between agents.  This is 
critical for autonomous sensor networks with an estimation problem as an objective; 
understanding where the uncertainty is located in the parameter space will determine which 
of a network’s future actions will likely produce the most information gain, or the least 
uncertainty in the estimated parameters, after that data is observed.  We proposed a sensing 
strategy which maximizes mutual information, based on Shannon entropy, to choose the 
next measurement location from a discrete set of design conditions. Specifically, given a set 
of experimental measurements , we seek a future action , 
which would generate new data point	 , such that we optimally reduce the uncertainty 
in the parameters when we update the prior distribution using the new set of observations. 
Let Q denote the random vector of parameters with realizations  for p-dimensional 
parameter space Q. We employ mutual information to choose  from the set of possible 
future actions . A utility function based on the conditional Shannon entropy is used to find 

: 

 

which quantifies the reduction in uncertainty provided by the predicted mn for a yet-to-be-
obtained measurement from future sensor action . We can then compute the average 
amount of information obtained with action  by marginalizing over the set of all unknown 
future observations M as  

2.1 Employing Mutual Information to Choose an Experimental Design Con-
ditions for Optimal Model Calibration

In a variety of problems, low-fidelity models are used in place of full physics models that are compu-
tationally prohibitive. We can calibrate these low-fidelity models using experimental data, but running
experiments to obtain this data can be di�cult or costly. In such cases where obtaining data is expen-
sive, it is desirable to limit the number of experiments and, for the experiments that are carried out, to
provide the maximum amount of information. Thus, given a current data set, we seek an experimental
design condition producing a measured response that optimally informs the low-fidelity model. That
is, we wish to obtain a new data point that provides the greatest reduction in the uncertainty of the
low-fidelity parameter estimates, and we seek the design condition for the experiment that provides such
response data. In this section, we describe the use of mutual information to choose such an optimal
design condition within a Bayesian framework. This process is based on the work in [3, 15, 27] and is
more generally related to the work in [16].

Given a set of experimental measurements mn�1 = {m̃1, m̃2, ..., m̃n�1}, we seek a design condition
⇠

⇤
n 2 ⌅, which would generate new data point (⇠⇤

n, m̃n), such that we optimally reduce the uncertainty
in the low-fidelity model parameters when we re-calibrate the model using the new set of observations
mn = {m̃n,mn�1}. Let Q denote the random vector of low-fidelity model parameters with realizations
q 2 Q for p-dimensional parameter space Q. For simplicity, we assume in this paper that the model
response—and, therefore, each m̃i—is a scalar, but the method detailed in this section can be generalized
to higher-dimensional responses. Note that we can use Bayes’ Rule to represent how the posterior
parameter distributions change with the inclusion of the additional point (⇠⇤

n, m̃n). In particular, we
have

p(q|mn) =
p(mn|q)p(q)

p(mn)
=

p(m̃n,mn�1|q)p(q)

p(m̃n,mn�1)
. (6)

We employ mutual information to choose ⇠
⇤
n from the set of possible design conditions ⌅. Use of this

metric for optimization can be derived with the standard formulas for Shannon entropy. In general, for
a vector of continuous random variables X with associated probability density function p(x) for x 2 X ,
where X is the sample space, the Shannon entropy—a measure of the uncertainty of X—is given by

H(X) = �
Z

X
p(q) log(p(x))dx, (7)

and the conditional Shannon entropy given observations ⌫ is

H(X|⌫) = �
Z

X
p(q|⌫) log(p(x|⌫))dx. (8)

Based on our goal to find ⇠
⇤
n, we use the general formulas from (7) and (8) to define the utility function

U(mn, ⇠n) =

Z

Q
p(q|mn,mn�1) log(p(q|mn,mn�1))dq �

Z

Q
p(q|mn�1) log(p(q|mn�1))dq, (9)

which quantifies the reduction in uncertainty provided by the low-fidelity model prediction mn for a yet-
to-be-obtained measurement under design condition ⇠n 2 ⌅. We can then compute the average amount
of information obtained with design condition ⇠n by marginalizing over the set of all unknown future
observations M as

Emn [U(mn, ⇠n)] =

Z

M
U(mn, ⇠n)p(mn|mn�1, ⇠n)dmn. (10)

We substitute (9) into (10) to obtain the expected utility

Emn [U(mn, ⇠n)] =

Z

M

Z

Q
p(q, mn|mn�1, ⇠n) log

p(q, mn|mn�1, ⇠n)

p(mn|mn�1, ⇠n)
dqdmn

�
Z

M

Z

Q
p(q, mn|mn�1, ⇠n) log(p(q|mn�1))dqdmn

=

Z

M

Z

Q
p(q, mn|mn�1, ⇠n) log

p(q, mn|mn�1, ⇠n)

p(q|mn�1)p(mn|mn�1, ⇠n)
dqdmn

= I(Q; Mn|mn�1, ⇠n), (11)
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Figure	3:		An	example	of	a	complex	network	behavior	emerging	from	a	simple	objective	function	and	limited	
information	sharing	between	agents.		Agents	initially	move	towards	and	encircle	the	blue	agent,	a	subset	choose	to	
pursue	the	red	agent. 

 
We apply the movement strategy to two source localization examples: a radiation source in 
an urban environment (Fig. 1) and a chemical plume release (Fig. 2) (Schmidt et. al 2019).  
While mutual information is a suitable objective function which is generalizable to many 
different estimation problems, other mission-driven objectives may also be important to the 
choice of future actions.  Multiple specific objectives may be designed which produce 
complex behaviors in autonomous sensor networks and optimized using ADMM.  The 
objective function below chooses a future position for an individual sensor using only an 
estimated target position , and the positions of the immediate neighbors of the agent in 
question, .  

The desired behavior included a task assignment problem, with a portion of the agents in the 
network pursing the red agent, and the remainder staying a unit distance away from a blue 
agent and avoiding collisions with neighboring agents.  The behavior in Fig. 3 is observed, 
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with each agent drawing independently from a Bernoulli distribution with parameter p to 
decide between these conflicting objectives.  While a trivial example, it demonstrates 
sophisticated network behavior emerging from a simple objective function and requiring 
only coordination with a small number of nearby agents.   
Simulation 
While simulation tools are currently available to test single autonomous systems, there is no 
known capability to simulate large autonomous networks (>1000 agents) under realistic 
communication conditions.  Modelling of communication is particularly important given the 
degree to which such networks rely on collaboration between agents.  Dropped packets and 
the latency induced by shared, limited bandwidth channels thus substantially affect the 
performance of any collaborative detection, estimation, or optimization problem.  Simulating 
these effects is critically important when validating the performance of these algorithms at 
large scales.  We developed software based on the ns-3 network simulation software to 
conduct the first known study of autonomous sensor networks at large scale under realistic 
communications conditions, and validated the performance of our novel decentralized 
detection algorithm in a network of 1000 agents, with some of the agents providing false 
information (Yen et. al 2018).   
 
Additionally, software developed in collaboration with the University of California, San 
Diego allows the visualization of the high-dimensional data sets collected by large 
autonomous sensor networks.  In Fig. 4, the plume simulation from Fig. 2 is visualized as a 
point cloud, with both color and particle size a function of the concentration at that point in 
plume.  Individual sensors are shown with a sensor ID (‘Sx’) and the log of their current 
measured chemical concentration.  Also shown with orange dots is the posterior in latitude 
and longitude of the source location which could be computed in a decentralized manner 
using the algorithms described above.  The software is fully interactive and allows a user or 
software developer to query nodes for individual node parameters and data, for better 
understanding of network behavior, and for high-level control over mission objectives. An 
intuitive presentation of large amounts of information and the understanding and trust of 
the end user of the decisions made by the network are absolutely necessary for these 
networks to be employed in practice.   
 
 



	
Figure	4:	Visualization	software	was	developed	for	the	high	dimensional	sensor	and	telemetry	data	from	large	
autonomous	sensor	networks.		Shown	a	3D	visualization	of	the	simulation	of	plume	source	localization	from	Fig.	2. 

 
Impact on Mission  
This work represents a new research direction for LLNL and has had immediate and direct 
application to multiple program areas.  The algorithms developed under this LDRD are 
either in use or expected to benefit currently funded programmatic work for the Department 
of Energy (DOE), National Nuclear Security Administration (NNSA), Department of 
Homeland Security (DHS), and the Department of Defense (DoD) for decentralized power 
grid management, detection/estimation, and intelligence, surveillance and reconnaissance 
(ISR) applications.  The success of this project also contributed to the decision to support an 
institutional investment in a netted enclosure to safely operate unmanned ground and aerial 
systems.  This is an important capability to develop future intelligent autonomous sensor 
networks, and test, calibrate and benchmark their hardware implementations.    

The project also had a significant impact in terms of workforce development, and raised the 
profile of LLNL in this field.  The University of California (UC) San Diego and the 
University of Texas, Austin were engaged via subcontract to contribute to this work, and 
summer students were hired from Syracuse University, UC Davis, UC San Diego, and 
Northeastern University over the course of the project.  Two of these summer students were 
later hired as staff as a direct result, growing LLNL capabilities in embedded systems and 
decentralized optimization and learning.  Professor Hao Chen of Boise State University, a 
recognized expert in data falsification attacks on decentralized networks, spent a sabbatical 
year with LLNL because of this work and made important contributions to the project.   

Conclusion  
This project produced fundamental contributions in multiple important aspects of intelligent 



autonomous sensors networks, including 1) the decentralized signal processing allowing 
agents in the network information from all collected data, 2) the optimization of future 
actions based on both information theoretic and mission-driven goals, and 3) the simulation 
tools to validate these algorithms at large scale in real-world conditions.    
The means to pursue this work on a theoretical and generalizable basis will be sought, 
however there is an autonomy component in general, and a collaborative autonomy 
component in particular, to a large amount of current programmatic work for which 
autonomy is not the primary focus.  Our results may be seen as an enabling capability that 
will support many critical laboratory mission areas and allow the fielding of cheaper, more 
robust, and more effective disaggregated solutions.  Additional internal and external 
investment in the general algorithms underlying decentralized data fusion, estimation and 
network optimization will further improve performance and, in particular, add resilience to 
more sophisticated adversarial actions.    
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