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Abstract

Intelligent autonomous sensor networks, often comprised of large numbers of sensors, must
be capable of jointly exploiting data collected at each agent in the network, and using that
data to optimize their future actions towards multiple mission objectives. Centralized signal
processing and optimization solutions process all data and determine all future actions at a
single agent, and the resulting information and commands are disseminated back to the
network. The communications bandwidth this requires and the single point of failure the
central agent represents often make these solutions untenable for national security
applications. In this project, several fundamental algorithms for solving both the
decentralized signal processing and network optimization were developed, as well as
simulation software to validate the results of these algorithms at scale. Specifically, novel
algorithms for Bayesian decentralized estimation and decentralized detection and
optimization based on the alternating direction method of multipliers (ADMM) were
developed for autonomous sensor networks and published in the literature. The first large-
scale simulation of autonomous sensor networks (1000 agents) was conducted on this
project, validating the performance of the developed algorithms. These algorithms and
simulation tools are critical components of any decentralized autonomous network and have
current and future national security applications, including distributed sensor networks for
detection, estimation, and tracking problems, and large decentralized cyber-physical
infrastructure such as the power grid.

Background and Research Objectives

In recent years, both sensors and embedded computing systems have become smaller,
cheaper, and far more capable. This has enabled smarter sensors capable of better
understanding the data they collect, and able to use the information they extract to
autonomously determine their future actions, due to the increase in onboard processing.
This potential impact of networks of these sensors can be readily seen both in consumer
applications such as the the emerging internet-of-things (IoT) and in the national security
space. Of particular importance in the national security domain are decentralized solutions,
where there is no centralized command and control node or data fusion center. Eliminating
this single point of failure from current centralized networks adds resilience to the system
but adds significant complexity to the data exploitation and autonomy algorithms. While
recent hardware advances have enabled these intelligent networks, the algorithms by which
they collectively exploit sensor data and make decisions are still under development. In
particular, algorithms are needed which address Byzantine attacks, an important vulnerability
of large decentralized networks, where one or more agents in the network is providing false
information.

The initial research objectives of this project were thus to develop scalable decentralized
algorithms for 1) mapping and estimating a background or environment, 2) detecting of



objects of interest and estimating related parameters in the presence of data falsification
attacks, 3) optimally repositioning agents for better future performance, and 4) a simulation
tool to test and benchmark the performance of the above algorithms at scale. Overall, the
project produced novel algorithms towards decentralized detection (Kailkhura et. al 2017),
estimation (Ray et. al 2019), and optimization (Schmidt et. al 2019), as well as the first known
large-scale simulation of autonomous sensors taking into account real-world communication
effects (Yen et. al 2018). However, a ubiquitous issue was the available computation
resources; often algorithms could not be developed which would run in real time on low
power compute platforms. High fidelity, distributed background mapping in particular was
identified after the first year as being infeasible with currently available algorithms and
hardware in real time, after a quantitative study on a state-of-the-art low size, weight, and
power (SWaP) device (Ho et. al, 2018). Focus was shifted to detection of specific objects or
phenomena and the estimation of their related properties. Hardware remained a
consideration throughout the project, and some effort was directed at identifying suitable
hardware and tailoring algorithms and software to these platforms in the design stage.
Preliminary work was also undertaken towards flying these algorithms on multiple
unmanned aerial vehicles (UAVs), although issues with hardware and infrastructure limited
progress in this area.

Scientific Approach and Accomplishments
This section describes the technical approach, results and achievements towards the above
project objectives.

Detection

Detection is generally formulated as a binary hypothesis testing problem, where the observed
data is due to measurement noise and background under one hypothesis (H0), and contains
some contribution from a target, object, or phenomenon of interest under the other (H1).
This is a well-studied problem in the centralized case, in which information is available at a
single agent. When parammters of the detection system and signal model are not known,
composite hypothesis testing frameworks such as the generalized likelihood ration test
(GLRT) are used. However, the GLRT does not have a straightforward decentralized
implementation. In decentralized detection approaches, each agent communicates only with
its neighbors and updates its local state information about the phenomenon (i.e. a summary
statistic) by a local fusion rule that employs a weighted combination of its own value and
those received from its neighbors. Agents continue this process until the entire network
converges to a steady-state value which is the global test statistic. A simple decentralized
target detection solution valid in the low signal-to-noise ratio (SNR) regime was proposed
and applied to the problem of detecting a radiation source with unknown location. A
decentralized implementation of the derived test which is robust to Byzantine attacks using
the alternating direction method of multipliers (ADMM) was derived, and a study of the
robustness of the proposed detection algorithm to Byzantine attacks and a comparison with
conventional approaches was conducted (Kailkhura et. al 2017). To the best of our
knowledge, this was the first such result on Byzantine-resilient locally optimum detection in
collaborative autonomous sensor networks.

Thus far, research on detection in the presence of data falsification attacks has primarily
focused on the centralized model (Marano et. al 2008). Several attempts have been made to
address the security threats in conventional consensus-based detection schemes in recent
research (Kailkhura et. al 2016), however the performance analysis of ADMM in the



presence of data falsifying Byzantine attacks has thus far not been addressed in the literature.
Our work contributed first by rigorously analyzing the effect of erroneous data on the
ADMM convergence behavior of multi-agent systems. We showed that the algorithm
linearly converges to a neighborhood of the optimal solution under certain conditions and
characterized the neighborhood size analytically. We provided guidelines for network design
to achieve a faster convergence to the neighborhood. We also provided conditions on the
erroneous updates for exact convergence to the optimal solution. Finally, to mitigate the
influence of unreliable agents, we proposed a robust decentralized ADMM algorithm
(ROAD) and show its resilience to unreliable agents with an exact convergence to the
optimum value (Li et. al 2019).

Estimation

In the above detection methods, the steady-state value of a scalar or vector is desired on all
agents in a network. In estimation problems, this can correspond to the most likely values
of the quantities of interest, given the observed data. Traditional approaches for distributed
inference in networks producing only such “point estimates” include factor graphs/sum-
product/message passing/belief propagation (Thler et. al 2005), diffusion (Cattivelli and
Sayed 2009), and ADMM (Erseghe 2012). However, it is often advantageous to quantify the
uncertainty associated with such an estimate for an understanding of which other values of
the parameters of interest may also explain the observed data. A full probability density
function (pdf) gives such information and can be used by an intelligent sensor networks to
collect future data for better information about the unknown parameters in question.
Approximating non-parametric posteriors has traditionally been approached using Markov
chain Monte Carlo (MCMC) sampling, which can be inefficient and requires centralized
access to all data. A novel method of estimating a full posterior distribution over a large
decentralized sensor network has been developed. The method is the only known way to
provably compute posterior distributions in a decentralized framework with limited
communication between agents, and a record of invention has been recently filed (Ray et. al
2019). Further details are omitted until a patent application has been filed.
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Figure 1: Mobile radiation sensors take measurments to localize a radiation source. The numbered 'x' marks the future
positions of radiation sensors sequentially selected to optimally localize a radioactive source in the true position given by
the red triangle.
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Figure 2: Sensor positions (red circles) are optimally chosen using Shannon entropy to localize the location of the
source of a chemical plume using a simple Gaussian plume model to quantify the information gain in future
measurements. They select future measurement locations which maximally reduce the uncertainty in the source
parameter estimates, shown with blue dots.

Optimization

The above estimation algorithm provides complete information about unknown parameters
with a full quantification of uncertainty and limited sharing of data between agents. This is
critical for autonomous sensor networks with an estimation problem as an objective;
understanding where the uncertainty is located in the parameter space will determine which
of a network’s future actions will likely produce the most information gain, or the least
uncertainty in the estimated parameters, after that data is observed. We proposed a sensing
strategy which maximizes mutual information, based on Shannon entropy, to choose the
next measurement location from a discrete set of design conditions. Specifically, given a set

my_q = {m, Mo, .. &, ex
b

of experimental measurements K m”—l}, we seek a future action

which would generate new data point (&:-7) | such that we optimally reduce the uncertainty
in the parameters when we update the prior distribution using the new set of observations.
Let Q denote the random vector of parameters with realizations ¢ € € for p-dimensional

* .
parameter space Q. We employ mutual information to choose $4 from the set of possible
future actions =. A utility function based on the conditional Shannon entropy is used to find

U(mn,&n) =/p(qlmn,mn—l)log(p(QImn,mn—l))dq—/ p(glmyp_1)log(p(g/mu_1))dg,
Q Q

which quantifies the reduction in uncertainty provided by the predicted m, for a yet-to-be-
obtained measurement from future sensor action $n € =, We can then compute the average

*k
amount of information obtained with action by marginalizing over the set of all unknown
future observations M as
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Figure 3: An example of a complex network behavior emerging from a simple objective function and limited
information sharing between agents. Agents initially move towards and encircle the blue agent, a subset choose to
pursue the red agent.
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We apply the movement strategy to two source localization examples: a radiation source in
an urban environment (Fig. 1) and a chemical plume release (Fig. 2) (Schmidt et. al 2019).
While mutual information is a suitable objective function which is generalizable to many
different estimation problems, other mission-driven objectives may also be important to the
choice of future actions. Multiple specific objectives may be designed which produce
complex behaviors in autonomous sensor networks and optimized using ADMM. The
objective function below chooses a future position for an individual sensor using only an

estimated target position *t, and the positions of the immediate neighbors of the agent in
question, MIEN (),
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“Stay distance 1 from the blue dot”
The desired behavior included a task assignment problem, with a portion of the agents in the
network pursing the red agent, and the remainder staying a unit distance away from a blue
agent and avoiding collisions with neighboring agents. The behavior in Fig. 3 is observed,



with each agent drawing independently from a Bernoulli distribution with parameter p to
decide between these conflicting objectives. While a trivial example, it demonstrates
sophisticated network behavior emerging from a simple objective function and requiring
only coordination with a small number of nearby agents.

Simulation

While simulation tools are currently available to test single autonomous systems, there is no
known capability to simulate large autonomous networks (>1000 agents) under realistic
communication conditions. Modelling of communication is particularly important given the
degree to which such networks rely on collaboration between agents. Dropped packets and
the latency induced by shared, limited bandwidth channels thus substantially affect the
performance of any collaborative detection, estimation, or optimization problem. Simulating
these effects is critically important when validating the performance of these algorithms at
large scales. We developed software based on the ns-3 network simulation software to
conduct the first known study of autonomous sensor networks at large scale under realistic
communications conditions, and validated the performance of our novel decentralized
detection algorithm in a network of 1000 agents, with some of the agents providing false
information (Yen et. al 2018).

Additionally, software developed in collaboration with the University of California, San
Diego allows the visualization of the high-dimensional data sets collected by large
autonomous sensor networks. In Fig. 4, the plume simulation from Fig. 2 is visualized as a
point cloud, with both color and particle size a function of the concentration at that point in
plume. Individual sensors are shown with a sensor ID (*Sx°) and the log of their current
measured chemical concentration. Also shown with orange dots is the posterior in latitude
and longitude of the source location which could be computed in a decentralized manner
using the algorithms described above. The software is fully interactive and allows a user or
software developer to query nodes for individual node parameters and data, for better
understanding of network behavior, and for high-level control over mission objectives. An
intuitive presentation of large amounts of information and the understanding and trust of
the end user of the decisions made by the network are absolutely necessary for these
networks to be employed in practice.



Figure 4: Visualization software was developed for the high dimensional sensor and telemetry data from large
autonomous sensor networks. Shown a 3D visualization of the simulation of plume source localization from Fig. 2.

Impact on Mission

This work represents a new research direction for LLNL and has had immediate and direct
application to multiple program areas. The algorithms developed under this LDRD are
either in use or expected to benefit currently funded programmatic work for the Department
of Energy (DOE), National Nuclear Security Administration (NNSA), Department of
Homeland Security (DHS), and the Department of Defense (DoD) for decentralized power
gtid management, detection/estimation, and intelligence, surveillance and reconnaissance
(ISR) applications. The success of this project also contributed to the decision to support an
institutional investment in a netted enclosure to safely operate unmanned ground and aerial
systems. This is an important capability to develop future intelligent autonomous sensor
networks, and test, calibrate and benchmark their hardware implementations.

The project also had a significant impact in terms of workforce development, and raised the
profile of LLNL in this field. The University of California (UC) San Diego and the
University of Texas, Austin were engaged via subcontract to contribute to this work, and
summer students were hired from Syracuse University, UC Davis, UC San Diego, and
Northeastern University over the course of the project. Two of these summer students were
later hired as staff as a direct result, growing LLNL capabilities in embedded systems and
decentralized optimization and learning. Professor Hao Chen of Boise State University, a
recognized expert in data falsification attacks on decentralized networks, spent a sabbatical
year with LLNL because of this work and made important contributions to the project.

Conclusion
This project produced fundamental contributions in multiple important aspects of intelligent



autonomous sensors networks, including 1) the decentralized signal processing allowing
agents in the network information from all collected data, 2) the optimization of future
actions based on both information theoretic and mission-driven goals, and 3) the simulation
tools to validate these algorithms at large scale in real-world conditions.

The means to pursue this work on a theoretical and generalizable basis will be sought,
however there is an autonomy component in general, and a collaborative autonomy
component in particular, to a large amount of current programmatic work for which
autonomy is not the primary focus. Our results may be seen as an enabling capability that
will support many critical laboratory mission areas and allow the fielding of cheaper, more
robust, and more effective disaggregated solutions. Additional internal and external
investment in the general algorithms underlying decentralized data fusion, estimation and
network optimization will further improve performance and, in particular, add resilience to
more sophisticated adversarial actions.
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