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Few-shot Learning: Omniglot Dataset

MNIST Dataset
10 Classes with > 6000 examples of each class

Omniglot is like “MNIST Transpose”
~ 6000 Classes with 20 examples of each class

Multiple alphabets: Japanese, Tibetan, Korean, Tengwar

Note: Few-shot learning does not mean few data
samples!



Omniglot Examples

Tibetan Character 2 (no rotations)
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Tengwar Character 21 (no rotations)
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Prototypical Networks Overview

Prototypical Networks for Few-shot Learning, Snell, Swersky, Zemel
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1. Compute Class Prototype for n-shot learning &

1 n M.DL
Cp = EE f@(xki)
1=1
2. Classity

class = argmax softmax(d,(fg(x),ck))
k eClasses



Conv NN for learning fo Jo(X)
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Learning episode

C = Select Random Sample of N Classes
For each class k:
S_k =Random Sample of N examples from Class k
Q_k = Random Sample of M examples from Class k notin S_k

Compute Class Prototype c_k

For each class k:
For Query Example in Q_k
Update Loss/Neural net parameters 0

Notes:

* 100 Learning episodes per Epoch

e Quit training when 200 Epochs have passed with no
improvement on validation set



Datasets

Train

Validation

Test Set

Full

# classes

# rotation classes
# samples/classes
total samples

# alphabets

# classes

# rotation classes
# samples/classes
total samples

# alphabets
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# rotation classes
# samples/classes
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# alphabets
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Full Dataset Results for 20-way training
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Reduced Dataset Results for 20-way training
Test Set Accuracy
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Shot

Full vs Reduced Datasets
Way/Classes

3 4 6 8 10 12 14 16
98.1 97.5 96.3 95.2 94.4 93.8 92.9 92
98.8 98.5 97.8 97.1 96.5 96.1 95.7 95.1

99.2 99 98.3 979 97.3 97 96.6 96.1
99.4 99.2 98.8 98.4 98 97.8 97.4 97

99.4 99.2 98.8 98.3|97.9 97.7 |97.597.1
99.6 99.4 99.1 98.8 98.4 98.4 98.1 97.8

99.699.4 99 98.7/|98.4 98.2 | 98 | 97.7
99.7 99.5 99.3 99.2 98.9 98.8 98.6 98.4

99.6 99.4 99.1 98.8 98.5 98.3 98.1 9/7.9
99.7 99.5 99.3 99.1 98.8 98.7 98.5 98.3

= Reduced Dataset

18 20 22 24 26 28
91.5 90.9 90.5 89.7 89.2 88.9
94.5 94.1 93.9 93.4 92.9 92.8

95.8 95.5 95.2 94.8 94.5 94.2
96.7 96.5 96.3 96 95.7 95.6

96.8 96.5 96.3|96.1 95.8 95.6
97.6 97.4 97.2 97 96.8 96.7

97.597:397.196.9 96.6 96.6
98.2 98.1 98 97.8 97.6 97.6

97.6 97.5 97.3 97.1 96.9 96.7
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30 32 34 36 38 40
88.3 87.8 87.4 86.9 86.4 86
92.3 91.9 91.7 91.4 91.1 90.6

93.9 93.7 93.4 93.1 92.9 925
95.3 95.1 949 94.7 945 94.1

95.4 95.2 95 94.8 94.6 94.3
96.5 96.4 96.2 96 95.8 95.6

96.3 96.2 96 95.8 95.7 95.4
97.4 97.3 97.2 97.1 96.9 96.7

96.5 96.4 96.2 96.1 95.9 95.7

98.1 97.9 97/.8 97.7 97.4 97.4 97.1 97.1 96.9 96.8 96.7 96.5



Prototypical Networks Recap

1. c_k is optimal w.r.t. training data when d is a Bregman divergence
1. Euclidean Distance was used for these results

2. Versatile:
1. Can train with (k-shot, n-way) and apply to NOT (k-shot, n-way)
problem
2. Prototypical Network don’t require retraining for new classes*

3. 1-shot degrades as
1. Way goes up

2. Training data set size goes down

1. Few-shot does not mean few data samples!



Neural Turing Machines
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Differentiable Neural Computers
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Least Recently Used Access and One Shot

Class Prediction
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(b) Network strategy

Retrieve Bound Information

Is this few-shot or meta-learning?

INSTANCE (% CORRECT)
MODEL lST 2ND 3RD 4TH 5TH 10TH
g HuUMAN 345 57.3 70.1 71.8 81.4 924
FEEDFORWARD | 24.4 19.6 21.1 19.9 22.8 19.5
LSTM 24.4 49.5 553 61.0 63.6 62.5
MANN 36.4 82.8 91.0 92.6 94.9 98.1

(Santoro et al 2016)



Nearest Neighbor Memory and Few-shot

Value ) =— J <END>
Very Long Term Memory / A

For Rare Events —— \ —
|
e
Traditional Few-Shot <Go> Y,
Model 5-way I-shot | 5-way 5-shot | 20-way I-shot | 20-way 5-shot
Pixels Nearest Neighbor 41.7% 63.2% 26.7% 42.6%
MANN (no convolutions) 82.8% 94.9% - —
Convolutional Siamese Net 96.7% 98.4% 88.0% 96.5%
Matching Network 98.1% 98.9% 93.8% 98.5%
ConvNet with Memory Module 98.4% 99.6% 95.0% 98.6%

(Kaiser et al 2017)



More Info and Results

https://gitlab.sandia.gov/deeplearning/low-shot
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