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Few-shot Learning: Omniglot Dataset
MNIST Dataset

10 Classes with > 6000 examples of each class

Omniglot is like "MNIST Transpose"

r%) 6000 Classes with 20 examples of each class

Multiple alphabets: Japanese, Tibetan, Korean, Tengwar

Note: Few-shot learning does not mean few data
samples!



Omniglot Examples

Tibetan Character 2 (no rotations)

Fr r" ik N N

Tengwar Character 21 (no rotations)
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Prototypical Networks Overview
Prototypical Networks for Few-shot Learning, Snell, Swersky, Zemel
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1. Compute Class Prototype for n-shot learning
n
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2. Classify

class = argmax s o f tmax (c 1 ,p (f 9 (x) , ck))
k EClasses
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Learning episode
C = Select Random Sample of N Classes

For each class k:

S_k = Random Sample of N examples from Class k
Q_k = Random Sample of M examples from Class k not in S_k

Compute Class Prototype c_k

For each class k:
For Query Example in Q_k

Update Loss/Neural net parameters 0

Notes:

• 100 Learning episodes per Epoch

• Quit training when 200 Epochs have passed with no

improvement on validation set



Datasets Full

Train

Validation

Test Set

# classes

# rotation classes

# samples/classes

total samples

# alphabets

# classes

# rotation classes

# samples/classes

total samples

# alphabets

# classes

# rotation classes

# samples/classes

total samples

# alphabets

4112

3084

20

82240

33

688

516

20

13760

5

1692

1269

20

33840

13

Reduced
# classes

# rotation classes

# samples/classes

total samples

# alphabets

635

480

20

12700

33

# classes

# rotation classes

# samples/classes

total samples

# alphabets

# classes

# rotation classes

# samples/classes

total samples

# alphabets

98

69

20

1960

5

1692

1269

20

33840

13



Full Dataset Results for 20-way training
Test Set Accuracy
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Reduced Dataset Results for 20-way training
Test Set Accuracy
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Full vs Reduced Datasets
Way/Classes M.D

3 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

98.1 97.5 96.3 95.2 94.4 93.8 92.9 92 91.5 90.9 90.5 89.7 89.2 88.9 88.3 87.8 87.4 86.9 86.4 86

98.8 98.5 97.8 97.1 96.5 96.1 95.7 95.1 94.5 94.1 93.9 93.4 92.9 92.8 92.3 91.9 91.7 91.4 91.1 90.6

99.2 99 98.3 97.9 97.3 97 96.6 96.1 95.8 95.5 95.2 94.8 94.5 94.2 93.9 93.7 93.4 93.1 92.9 92.5

99.4 99.2 98.8 98.4 98 97.8 97.4 97 96.7 96.5 96.3 96 95.7 95.6 95.3 95.1 94.9 94.7 94.5 94.1

99.4 99.2 98.8 98.3 97.9 97.7 97.5 97.1 96.8 96.5 96.3 96.1 95.8 95.6 95.4 95.2 95 94.8 94.6 94.3

99.6 99.4 99.1 98.8 98.4 98.4 98.1 97.8 97.6 97.4 97.2 97 96.8 96.7 96.5 96.4 96.2 96 95.8 95.6

99.6 99.4 99 98.7 98.4 98.2 98 97.7 97.5 97.3 97.1 96.9 96.6 96.6 96.3 96.2 96 95.8 95.7 95.4

99.7 99.5 99.3 99.2 98.9 98.8 98.6 98.4 98.2 98.1 98 97.8 97.6 97.6 97.4 97.3 97.2 97.1 96.9 96.7

99.6 99.4 99.1 98.8 98.5 98.3 98.1 97.9 97.6 97.5 97.3 97.1 96.9 96.7 96.5 96.4 96.2 96.1 95.9 95.7

99.7 99.5 99.3 99.1 98.8 98.7 98.5 98.3 98.1 97.9 97.8 97.7 97.4 97.4 97.1 97.1 96.9 96.8 96.7 96.5

= Reduced Dataset



Prototypica I Networks Reca p

1. c_k is optimal w.r.t. training data when d is a Bregman divergence
1. Euclidean Distance was used for these results

2. Versatile:
1. Can train with (k-shot, n-way) and apply to NOT (k-shot, n-way)

problem
2. Prototypical Network don't require retraining for new classes*

3. 1-shot degrades as
1. Way goes up
2. Training data set size goes down

1. Few-shot does not mean few data samples!



Neural Turing Machines
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Differentiable Neural Computers
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Least Recently Used Access and One Shot

Class Prediction
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(a) Task setup

Model is learning deduction.
Is this few-shot or meta-learning?
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(b) Network strategy

MODEL 1"
INSTANCE (% CORRECT)
2ND 3RD 4TH 5 TH 1 OTH

HUMAN 34.5 57.3 70.1 71.8 81.4 92.4
FEEDFORWARD 24.4 19.6 21.1 19.9 22.8 19.5
LSTM 24.4 49.5 55.3 61.0 63.6 62.5
MANN 36.4 82.8 91.0 92.6 94.9 98.1

M.D

(Santoro et al 2016)



Nearest Neighbor Memory and Few-shot

Very Long Term Memory

For Rare Events

Traditional Few-Shot

Encoder Output

X
1

x
n

Memory

\ Key Value 

<GO>

Model 5-way 1-shot 5-way 5-shot 20-way 1-shot 20-way 5-shot
Pixels Nearest Neighbor 41.7% 63.2% 26.7% 42.6%
MANN (no convolutions) 82.8% 94.9% —
Convolutional Siamese Net 96.7% 98.4% 88.0% 96.5%
Matching Network 98.1% 98.9% 93.8% 98.5%
ConvNet with Memory Module 98.4% 99.6% 95.0% 98.6%

<END>

M.D

(Kaiser et al 2017)



More Info and Results

https://gitlab.sandia.gov/deeplearning/low-shot 
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