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Abstract—A parameter tuning based co-optimization scheme
for the hybrid electric vehicles (HEV) powertrain system is
designed to maximize the fuel efficiency. The optimization con-
trolled input parameters are chosen based on sensitivity study
of powertrain control parameters. The vehicle to vehicle (V2V)
and vehicle to infrastructure information is another optimization
input, to have the driving conditions taking in to considerations
for maximizing fuel efficiency. The catalyst temperature is con-
sidered as an additional constraint as the speed to reach light-
off temperature should not decrease during optimized operation.
Neural network is used to develop a simplified yet equivalent
model for the optimization problem model. We have achieved an
average of 9.22% fuel savings for a random driving cycle on a
Toyota Prius test model.

Keywords— Hybrid Electric Vehicle, Neural Network, Param-
eter Optimization

I. INTRODUCTION

Hybrid electric vehicle (HEV) combines a conventional
internal combustion engine (ICE) with an electric propulsion
system. HEV has become a rising trend in the market as it
is a solution to achieve a better fuel economy and a better
performance than conventional vehicles [1]. Moreover, the
emerging Connected Vehicle (CV) techniques [2] has been
encouraging researches on developing optimization schemes
with Vehicle to Vehicle (V2V) and Vehicle to Infrastructure
(V2I) knowledge to maximize the fuel efficiency. Such optimal
control strategy utilize the traffic information (such as traffic
signal and the speed of closed vehicles) as an optimization
input and develop on-time optimization scheme.

There has been many optimal power management ap-
proaches to maximize the fuel efficiency for the HEVs. Ali et
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al. in [3] has given a systematic review of the optimal power
management. Typical optimal power management strategy can
be divided in to the following two categories: optimization
based methods and rule based methods. In this paper, we
primarily consider the optimal power management strategy
for a Toyota Prius Hybrid, which uses a rule-based power
management framework. Thus, this work will develop optimal
power management based on rule-based methods.

Rule-based (RB) power management strategy has been
the most commonly seen method in the market, which is
widely used by commercial vehicle brands. In [4], the authors
developed power follower control strategy, which is a well-
known strategy within the rule based methods. There has been
several approaches on optimal rule-based power management
strategies. For example, in [5], the authors developed a non-
dominated sorting genetic algorithm-II (NSGA-II) to achieve
parameter optimization for the HEVs. In [6], the authors
developed a particle swarm optimization strategy of driving
torque demand decision. However, in these rearches did not
consider V2V/V2I information as an optimization input. In
[7]], the authors came up with a four levels fuzzy rules based
on traffic congestion to optimize fuel consumption. This study
uses the traffic information to optimize the operation cost with
RB method. However, the application of this method would
require some major changes to the existing commercial vehicle
control logic.

Despite the optimization approach for rule-based power
management, optimization based power management method
has also been a research trend recent years. Such method di-
rectly minimize the operation cost over time. In [8]], the authors
used particle swarm optimization (PSO) to deal with the energy
management for hybrid electric vehicles. It is known as the
first attempt to use PSO for HEV power management, but
it has been limited due the off-line implementation. In [9],
the authors used neuro-dynamic programming (DP) methods
to build controllers and optimize the energy flow. In [10], the
authors used DP methods for optimal power management with
the use of trip based information.

Developing optimal power management strategy for hybrid
electric vehicle has become a raising research trend. From the
above discussion, one can see that while rule based power



management strategy has been widely used in commercial
vehicle control, most research which directly implement to
commercial vehicles did not consider traffic conditions. To
address these outstanding issues, this work develops a param-
eter co-optimization tuning strategy for the powertrain system
in Toyota Prius hybrid 2017. To take traffic condition into
consideration, this work consider the future driving condition
to be modeled by V2V and V2I information as optimization
inputs. The ultimate objective is to design an optimization
method which can lead to the solution to optimal parameter
tuning of the control system parameters to achieve fuel savings.
This paper is the extended work of [11]. In the previous
work, the simplified optimization problem is formulated with
neural network and the Toyota Prius Hybrid model has been
well validated. The main contributions of this paper are the
followings:

e  Define cost and constraints of the optimization prob-
lem. Use neural network techniques to establish simple
yet equivalent models for the powertrain and the
cost function (i.e., the fuel consumption rate) via the
first principle powertrain models. This is performed
with respect to the driving cycles and the system
parameters.

e Design powertrain control parameter tuning strategy
based on the solution of the optimization problem.
Verify the design with simulations.

The reminder of this paper is organized as follows: Section
defines the optimization problem. Section introduces
the formulation of the optimization problem via developing
equivalent neural network models for the system dynamics
and the cost function. Section solves the optimization
problem and derives the control parameter tuning law. Section
[V]contains concluding remarks and discusses the future works.

II. PROBLEM STATEMENT

This section introduces the optimization problem. First
the dynamic model of HEV is introduced. Then, the hybrid
vehicle dynamic model (powertrain model) used in this work
is first introduced. Then, the parameter selection and how
V2V/V2I information is characterized as optimization input is
introduced. Finally, the objectives of the optimization design
are stated.

A. Dynamic Model of HEV

In this paper, the dynamic model of 2017 Toyota hybrid is
considered. This model is derived based on previous studies in
[12], [13]. The Toyota Hybrid system is built with a planetary
gear system is the power split device. The system dynamic
equation derived by [[12] can be summarized as following
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where Thrc1, Thrge and T, are the torques generated by first
and secondary motor/generator sets and the engine; I,., I; and
1. are inertia of the ring gear, sun gear, and carrier gear, In;G1
and Ip;g2 and I, are the inertia of the power sources, F
represents the internal force on the pinion gears and m is the
vehicle mass, T’ is the brake torque, K is the final drive ratio,
fr is the rolling resistance coefficient, and 0.5pACy is the
aerodynamic drag resistance, P, is the battery power, the sign
of P, indicates the charging states of the battery (P, < 0 when
battery is charging), V;, is the open circuit battery voltage, Ry is
the battery internal resistance and @), is the battery capacity.

SOC = -V, — “

B. Hybrid Vehicle Model Validation

In this research a Matlab/Simulink model is used to
represent the dynamic of the powertrain system of a 2017
Toyota prius hybrid. The powertrain model is built based
on the previous studies of Toyota Prius hybrid modeling in
[12], [13]. The aftertreatment system modeling is realized
based on ADVISOR (a MATLAB Simulink based package
for aftertreatment systems of different vehicles developed by
National Renewable Energy Laboratory, US Department of
Energy). Figure (1| shows the integrated model structure. This
integrated model is then validated with the measurement (of
states in powertrain) collected from several test drives on a
Toyota Prius hybrid 2017. The validation of this simulink
model has been introduced in the previous work [11].

C. Parameter Selection

The powertrain controller parameters to be tuned in our co-
optimization scheme is chosen based on two aspects: (i) the
parameter sensitivity to fuel efficiency variation; and (ii) the
fuel efficiency saving test on the Toyota Prius hybrid Simulink
model. In our previous work [11]], we have constructed the sen-
sitivity studies and found the three control parameter which are
sensitive to fuel efficiency variation. Testing these parameter
in the Simulink model and analyzing the physic meaning of
these parameters, the three parameter chosen for the tuning
strategy shown in Table

TABLE I: Three control parameters selected for parameter
tuning.

Parameter Physical Nominal Range
Name Meaning Value used
Generator speed controller [0.5,
paraml g . 0.9
proportional gain 1]
- Generator speed controller [0.0001,
param2 integral gain 0.005 0.05]
- Battery charging [13000,
param3 controller gain 15000 17000]

D. Use of V2V/V2I Information

In this work, we use V2V/V2I information as an op-
timization input. The objective is to find the influence of
future driving condition on the controller parameter to achieve
maximum fuel saving, i.e., find the function which represent
driving condition and parameter to fuel saving. To this end, we
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Fig. 1: Integrated HEV Simulink model [[11].

need to characterize the real-time signals in to mathematical
term to be used in optimization design. The V2I information
mainly contains the traffic signal S7, and the V2V information
includes the speed and the acceleration of the preceding vehicle
and the left/right front vehicles, denoting v, a,, v, ar, Uy, Gy
respectively. In this study, we consider the effect of V2V/V2I
information represented by the predicted future vehicle speed
vy, where

Vf = W<STaUp7apavl7al7v7‘7a’r)- (5)

E. Control Objectives

To achieve a better fuel saving for the HEVs, the objective
of this work is to design a parameter optimal tuning scheme
for the powertrain controller parameters chosen in Table [I to
achieve maximize fuel saving with future driving condition
taken into account.

The optimization model is simplified by neural network
which is used to capture the characteristic of the real model
and eliminates the amount of calculations.

III. PARAMETER OPTIMIZATION DESIGN

This section formulates the parameter optimization prob-
lem. First the neural network is introduced as a preparation
to construct the simplified optimization model. Then the cost
function is derived using the neural network. Finally the states
constraints to the optimization problem are defined and the
optimization design is presented.

A. Optimization Problem Formulation

Cost function. The fuel consumption of the HEV with
respect to driving condition and control parameter can be

directly derived based on the mathematical model of the HEV

powertrain as
- [ 100

where 6(7) = [01(7),02(7),05(7)] are the three controller
parameters at time 7, which is chosen to be tuned in Table
EI, and cyc;(7) indicates the vehicle speed at time 7. This
expression indicates that the amount of fuel consumption in the
time period [0,¢] can be expressed by all history information
of controller parameters and driving cycle in [0,¢]. Since the
fuel consumption curve is a smooth slowly increasing function,
equation (6) can be simplified to a discrete-time form as

Z Afi(0

where T is the step size, A f; indicates the fuel consumption
in the time period [(k — 1)T, kT]. Equation is the cost
function to the parameter optimization problem, denoting

Z Afi(0

fuel(t) ), eye;i(T))dT, 6)

fuel(nT) k), cyc(k)), 7

J = fuel(nT) k), cyc(k)). (8)

State constraints. To form the optimization problem, state
constraints is needed to represent the powertrain dynamic. The
discrete-time state constraint is defined as

w(k+1) = g(x(k), 0(k), cyc(k)), ©)

where ¢ = [T, Ty, T, we, Wq, Wm, SOC] indicates the en-
gine, generator, motor torque and speed, and battery state of
charge (SOC) respectively.



B. Equvalent Neural Network Model

For the optimization problem formulated in Subsection
the dynamics are captured by the Matlab Simulink
model described in Subsection While one can directly
solve the optimization problem based on the first principle
model of the Simulink model, the amount of calculation
required to solve the optimization problem is significantly large
since there exist three interdependent controller parameters to
be tuned. Thus, this work come up with a scheme to collect
data from the Simulink model to train equivalent neural net-
work models for the cost function and state constraints. Then
the optimization problem is solved based on the equivalent
neural network model. The detailed neural network training
results are shown in our previous work [[11]].

1) Training Procedure: The training procedure of the op-
timization model can be concluded with the following steps:
(a) Run the Simulink model with different choice of arbitrary
controller parameter dynamics in different driving cycles; (b)
collect input/output time-series data for cost function and state
constraints, where the controller parameter dynamic and future
vehicle speed dynamic are also considered as the input time-
series data. Note that in training process, since the model
is trained with some given driving cycles (the vehicle speed
trajectories are known), the future driving condition (future
speed information) is directly obtained from the driving cycle
information; and (c) train the neural network model with the
collected data.

2) Cost functions: The cost function, namely the fuel
consumption, defined in () can be predicted by a neural
network model. The prediction of the cost function is

J = Z Afi(0(k), cye(k)), (10)

where Af; is obtained by training the neural network. The
neural network expression is given by

Afy = wer Ly (wery s (k) + ber) + bea (11)

which indicate a neural network with 1 input layer y¢(k)
(note that y;(k) contains 3+ny input, where 3 4 n; indicates
the ny number of driving cycle future step known and three
controller parameters), 3 hidden layer (20 neurons), 1 output
layer (1 output: fuel consumption), and w.; € R29*G+7s)
wey € R?°%1 are the weights, b, € R?°*!, by, € R are
the biases, L is the activation function, chosen to be 'RELU’
function (z = z1(z > 0)).

3) State Constraints: The neural network estimation of the
state constraint (9) is given by

§ = st(tanh(wslys(k) + bsl) + bs2; (12)

which indicate a neural network with 1 input layer ys(k)
(note that y,(k) includes 10+n inputs, where the inputs are 7
powertrain states, 3 controller parameters and ny step of future
driving information), 1 hidden layer (20 neurons), 1 output
layer (7 output), and wy; € R20X(104n5) 45 € R0 are
the weights, by, € R?°%1, b,y € R7¥! are the biases.

C. Equivalent Optimization Problem Description

The equivalent optimization problem is to solve € to the
minimized fuel consumption given by the equivalent cost
function

T =2 AfilO(k), cye(k)), (13)

and satisfy the following constraint:
w(k+1) = g(x(k), 0(k), cyc(k)) + € (14)

where € is a bounded constant indicates the estimation upper
bound for state constraint.

IV. PARAMETER TUNING STRATEGY
A. Optimization Problem Solution

This work uses the MATLAB function fmincon to solve
the optimization problem with the cost function and the con-
straints developed in Section 3. Note that cost function which
represented by the neural network is not a convex problem,
thus, a global minimum of the cost function may not exist.
In order to find the minimum, this work propose to essential
point for the fmincon function to solve for the local minimum,
and find the solution to the optimization problem among all
the local minimums.

Parameter Tuning Law. To solve the optimization prob-
lem, we should solve 6§ for

aJ
o7 =0 (15)
r(k+1) = g(=(k),0(k), cyc(k)) + € (16)

For each time step k, we only need to solve 6 for jk =A fk
which gives the following result

L
Orpi1 =0k — wgw’lgy;cyc(k) (17
z(k+1) = g(z(k), 0(k), cyc(k)) + € (18)

where w] is the corresponding weight with cyc(k). The above
equation set can be rewritten in the form

0(k+1) = S(x(k), cyc(k)). (19)

This parameter tuning law indicates that after solving the
optimization problem, the dynamic of controller parameter will
depend on the powertrain states and future driving condition.
This result indicates that driving condition will have influence
to fuel saving.

B. Simulation Study

To illustrate how the parameter tuning law is applied
to the HEV controller and how future driving information
will influence the optimization result, simulation studies are
accomplished in this subsection.

Simulation model. This simulation study is based on
the Matlab/Simulink model introduced in Section First
the equivalent optimization model is trained based on the
data collected from the Simulink model operating different
driving cycles. The training procedure is introduce in Section



[IT-B] Then, the optimization problem is solved based on the
equivalent optimization model, and the parameter tuning law
is obtained. In this study, to test the influence of future driving
information to fuel saving, we solved the optimization problem
with different amount of knowledge in future driving condition.

1) Simulation results: First we consider if two step of
future driving information is known, with the step size T' = 2s,
ie., cyc(k) = [v(k),v(k + 1),v(k + 2)]. Figure [2| shows the
optimization results. Figure 2(a)| shows the fuel saving, catalyst
temperature, battery state of charge (SOC) and the driving
cycle information respectively. The blue curves indicates the
nominal performance and the red curves shows the optimal
performance. From which we can see that fuel saving of 9.93%
is achieved. The optimal battery SoC remain similar with
nominal SoC, indicating the fuel saving is not from reducing
the battery state of charge. Figure [2(b)] shows the optimal
parameter trajectory of the three controller parameters. The
red curves are the nominal controller parameter value, and the
blue curves are the optimal parameter trajectory. The greed
curves are the driving cycle information. This result shows that
the controller parameter varies the most when vehicle speed
changes, indicating the relationship between parameter tuning
strategy and the future driving condition information.
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Fig. 2: Optimization result with two future step known.

Influence of future driving condition. To test the influ-
ence of future driving cycle information to parameter tuning
strategy and fuel savings, similar optimization test is made
with different numbers of future step used in the optimization
modeling. The optimization performance is similar to Figure
[2] Figure [3] shows the fuel saving with different future driving
cycle knowledge. One can see that the more future driving
information available for optimization modeling, the more fuel
saving is achieved. We constructed the similar test for several
different driving cycles and found the following pattern: every
one step (2 seconds) more future vehicle speed information
known, the fuel saving can increase by approximately 0.8%,
and this increase will decrease after 8 seconds of future vehicle
speed information. Thus, we should use 8 seconds (4 steps)
of future speed information for future optimization problem
modeling for best results.

fuel saving

13.00%
12.50%
12.00%
11.50%

11.00%

fuel saving (%)

10.50%
10.00%

9.50%
2 4 6 8 10 12 14 16 18

available future driving cycle information (s)

Fig. 3: Fuel saving with different future driving information.

Fuel saving summary. To test the fuel saving of the
proposed parameter tuning strategy, we tested our algorithm
in 10 different driving cycles and record the fuel savings. An
average of 9.22% of fuel saving is achieved with 4 steps of
future speed information available. Figure [] shows the fuel
saving of individual driving cycle tested.

Fuel saving summary

14.00%
12.00%
10.00%

| D 1]
8.00%
6.00%
4.00%
2.00%
0.00%
1 2 3 4 5 6 7 8 9 10

Driving cycle number

Fuel savings

mmm fuel savings Average saving

Fig. 4: Fuel saving in 10 driving cycles.

V. CONCLUSIONS AND FUTURE WORK

In this paper, a parameter tuning strategy to optimize the
fuel consumption for HEV is designed. First the equivalent
optimization model is built using neural network tools. Then
the optimization problem is solved and the parameter tuning
strategy is obtained. Finally the simulation study is presented
to verify the parameter tuning strategy designed in this paper.
From the simulation result, we achieved an average of 9.22%
fuel saving for different driving cycles. Thus, one can conclude
that the designed parameter tuning strategy the desired fuel
saving can be achieved.

This paper gives an inspiration on using parameter tuning
strategy with V2V/V2I information to achieve fuel saving. This
method can be applied for commercial vehicle to save energy.
Some future work related to this paper are to test the fuel
saving on an actual vehicle.
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