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ABSTRACT

Li-S batteries are plagued by parasitic reactions driven by soluble reaction
intermediates resulting in stored energy loss and short cycle life. Electrolytes with
low solubility limits for these lithium polysulfide (LiPS) intermediates reduce
parasitic reactions, improving efficiency and life of cells. Sparingly solvating
electrolytes drive sulfur reduction through a solid state pathway, potentially
eliminating parasitic losses due to LiPS.1 Realizing the goal of electrolyte design
to enhance cell performance requires a quantitative model of LiPS solubility.

Goals:

• Develop a new electrolyte
donor number (EDN)
model

• Apply EDN to predict LiPS
solubility

• Employ EDN to predict
redox reaction pathway

THE ELECTROLYTE DONOR NUMBER MODEL
• Molar enthalpy of solvation (A1-1,01v): Enthalpy per mole of electron donating site

Similar to Gutmann's DN2, but derived computationally.

• The Electrolyte Donor Number (EDN) model:
Solvent and anions contribute to overall donicity (Muli-component).
[ADS] = Concentration of Available Donor Sites.
Solvation energy per unit volume (kcal/L) as key characteristic for [LiPS]
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AHTHF = -83 kcal/mol

Na:E(x) E Chemical shift of electrolyte at mole fraction (x)

Na:E(xi.w) = Chemical shift at RT freezing composition

8Na :Soh/ = Chemical shift of pure solvent

AHAGG = -35 kcal/mol
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MECHANISM MODELING
• aSb +ne- -> cSd (E°)

RT [Sr• E = Ei a i(E? - Ln ci 

Kb„d
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• 2.513- <-> s2- d 
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MOTIVATION
• Li-S battery cell performance
depends on redox mechanism

• No complete theoretical
framework predicts mechanism

• LIPS solubility and speciation
governs mechanism

• New model is needed for the
solvating properties of electrolytes
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METHODS
• Donicity from 23Na NMR

• Coordination ligand population
from Raman Spectroscopy

• LiPS solubility from UV/Vis
Absorption Spectroscopy

• Mechanism from Galvanostatic
Intermittent Titration Technique
(G ITT)
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POLYSULFIDE SPECIATION
• UV/Vis absorption and Raman Spectroscopies provide speciation insight.

• Cathode imaging clearly distinguishes mechanistic differences between "dilute"
electrolytes and ultra-low LiPS solubility systems.

Particle Size being the main marker. 
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CONCLUSIONS
• An Electrolyte Donor Number (EDN) Model
has been developed.

• EDN predicts LiPS solubility in electrolytes

• Redox reaction pathways are predictable with
knowledge of EDN and LiPS speciation.

Testable hypotheses generated

• We have a path forward for rational
electrolyte design.
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