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3 ‘ What is Infrasound?

16 Hz - 20 kHz > 20 kHz

" Lowrequency sound
* Can travel thousands of A A F—i—
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kilometers fg-oe iy Frequency

Bittner et al., 2010
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4 ‘ What is Infrasound? [

Generated by a variety of natural and anthropogenic sources.

Sources of Infrasound
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.| The Infrasound Event Classification
Problem

o Neaﬂy impossible to Classify by Calbuco Volcano, Chile, 2nd Eruption
cyc —— Event Detection Start

° Analysts currently require ground
truth for classification

Can we use machine learning to
exploit similarities that cannot
be seen by eye and use these to
provide real time
classifications?
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.| A Global, Labeled, Infrasound Event
Catalog

Labeled infrasound event catalog

Catalog of Events

> IMS catalog with local, regional, and
global events

750 events
> Recorded at multiple stations

o Each station consists of at least 3
infrasound microphones

> Some events (volcanos and bolides)
have multiple subevents

Variety of events

o Aircraft, Avalanches, Bolides, Cultural
Noise, Earthquakes, Chemical
Explosions, Anthropogenic Activity,
Mine Blasts, Rockets, and Volcanoes

Total of > 36,000 waveforms
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Event Class Imbalance

2%2% 5

W Aircraft ® Anthropogenic Avalanche m Bolide
m Cultural Noise ®m Earthquake ® Chemical Explosion ® Mine Blast
m Rocket m Volcano m Unknown

We welcome suggestions on how to deal with this problem!
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. | Two Approaches to a Solution

Method 1: SVM

Current feature extraction method:

Spectral Entropy (L1 et al., 20106)
> Wavelet Singular Spectrum Entropy

> Wavelet Power Spectrum Entropy
> Wavelet Energy Spectrum Entropy

Will experiment with more
“physical” features in the future

Method 2: CNN

° Trains faster and can be more
accurate than fully connected

NN

° Testing in seismic domain
indicates that performs nearly as
well as RNN (LSTM) for
sequences of similar length, but
1s more compact

° Potentially more accurate than
SVM baseline because it
identifies meaningful features
that we are unaware of

° But less transparent (without
directly encoding the physics, it
is less clear which signal
characteristics are most
important for prediction
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‘ Preliminary Results - SVM

Completed feature extraction using Spectral Entropy (L1 et al., 2010)

° 1,948 feature vectors/labels (consists of mean waveforms instead of all
waveforms)

First-pass SVM shows an accuracy of 70%
> Average of 10-fold cross validation

Note: This analysis was done with the previous event catalog version
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| Preliminary Results - CNN

Spectrogram (50 epochs)

Exclude Unknown, use first 1.0
arrival from each event. Test Accuracy: 99.30232558139535 %
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| ‘ Future Work

Feature extraction on newly updated event catalog

° Preliminary results from a previous catalog version

Try using more “physical” features for SVM
> Max, mean amplitude

> Dominant frequency

> Signal envelope

Achieve better generalization with CNN
> Use average signals across each array- less data but better performance?
> Dynamic length input sequences — not trimmed/padded
> Would RNN be a better choice for infrasound signals?

Test regions of input most important for prediction

> Saliency mapping- can we use model predictions to help analysts understand which
aspects of the signal input are most diagnostic per class?
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