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3 1 What is Infrasound?

• Low-frequency sound

• Can travel thousands of

kilometers

gravity range
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41 What is Infrasound?

Generated by a variety of natural and anthropogenic sources.
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5 The Infrasound Event Classification
Problem

o Nearly impossible to classify by
eye

Analysts currently require ground
truth for classification

Can we use machine learning to

exploit similarities that cannot

be seen by eye and use these to

provide real time

classifications?

Calbuco Volcano, Chile, 2nd Eruption
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Time (hours after 04:00 UTC)
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6 1 A Global, Labeled, Infrasound Event
Catalog

Labeled infrasound event catalog
. IMS catalog with local, regional, and

global events

750 events

o Recorded at multiple stations

o Each station consists of at least 3
infrasound microphones

. Some events (volcanos and bolides)
have multiple subevents

Variety of events

- Aircraft, Avalanches, Bolides, Cultural
Noise, Earthquakes, Chemical
Explosions, Anthropogenic Activity,
Mine Blasts, Rockets, and Volcanoes

Total of > 36,000 waveforms

Catalog of Events
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7 1

Event Class Imbalance

• Aircraft Anthropogenic Avalanche • Bolide

• Cultural Noise • Earthquake • Chemical Explosion • Mine Blast

• Rocket • Volcano • Unknown

We welcome suggestions on how to deal with this problem!
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8 1 Two Approaches to a Solution

ethod 1: SVM

Current feature extraction method:
Spectral Entropy (Li et al., 2016)

o Wavelet Singular Spectrum Entropy

o Wavelet Power Spectrum Entropy

o Wavelet Energy Spectrum Entropy

Will experiment with more
c`physical" features in the future

Method 2: CNN

o Trains faster and can be more
accurate than fully connected
NN

o Testing in seismic domain
indicates that performs nearly as
well as RNN (LSTM) for
sequences of similar length, but
is more compact

o Potentially more accurate than
SVM baseline because it
identifies meaningful features
that we are unaware of

But less transparent (without
directly encoding the physics, it
is less clear which signal
characteristics are most
important for prediction
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91 Preliminary Results - SVM

Completed feature extraction using Spectral Entropy (Li et al., 2016)

° 1,948 feature vectors/labels (consists of mean waveforms instead of all
waveforms)

First-pass SVM shows an accuracy of 70%

0 Average of 10-fold cross validation

Note: This analysis was done with the previous event catalog version
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1
o 1 Preliminary Results - CNN

Exclude Unknown, use first
arrival from each event.

Samples are trimmed or
padded to a length of 9000
(-1 std of average length)

Exclude —15k volcano
signals (use first 3k
randomly sampled class
examples)

Transform raw, filtered
timeseries to spectrogram

Achieve 85-99% accuracy
depending on architecture
and hyperparameters, but
generalization is poor

Spectrogram (50 epochs)
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11 Future Work1

Feature extraction on newly updated event catalog
O Preliminary results from a previous catalog version

Try using more "physical" features for SVM

Max, mean amplitude

O Dominant frequency

o Signal envelope

Achieve better generalization with CNN
Use average signals across each array- less data but better performance?

O Dynamic length input sequences — not trimmed/padded

o Would RNN be a better choice for infrasound signals?

Test regions of input most important for prediction

o Saliency mapping- can we use model predictions to help analysts understand which
aspects of the signal input are most diagnostic per class?

I
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