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The Project

MXD is a project that aims to provide alternatives to principal

component analysis (PCA) to MiXeD data types

XPCA PCA COCA Column Mean —e— XPCA
Rank 1 0.466 0480 0.489 0.8 &~ PCA
Rank 2 0.350 0379 0.364 = ‘i‘oc"

Rank 3 0.330 0365 0.330
Rank4 0.319 0341 0377
Rank 5 0.316 1476  0.383
Rank 6 0.340 3307 0430
Rank 7 0.344 11.754  0.532
Rank 8 0.329 14030 0.653
Rank 9 0.353 9.287 0.717
Rank 10 0.336 53.885  0.717 1.005

Table 1: Rescaled MSE by decomposition type A P P LI c AT I O N (a) In-sample
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Our Problem a,
M.DL
Principal Component Analysis (PCA) B
 Standard Statistical Tool ]
* Not all column marginals are gaussian Is this data
.3 . «— | Gaussian?
 Sensitive to scaling
* Sensitive to outliers o
Problem: B i
How can we relax the
assumptions of PCA, ultimately
to handle data that is binary,

ordinal or continuous?
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Enter copulas {

Copula (ka-pu-la): A connecting word, in particular a form of the verb be
connecting a subject and complement.

Copula (kowu-pu-la): A function that joins univariate distribution functions to form
multivariate distribution functions. (Wolfram Mathworld)

A copula model provides the decomposition of the dependency of the marginal
distributions such that the copula contains the dependency structure only...We
uncouple variance and dependency structure such that PCA is only influenced by
the dependency in the data. (Egger et al., 2016)

0151

Gaussian copula: Assumes multivariate normal 0,051
dependency. 0
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XPCA: eXtension of PCA

MDL

XPCA estimates the marginal distributions of each column and accounts for discrete
variables in the likelihood calculation by integrating over appropriate intervals.
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» XPCA uses copulas to better handle discrete
values and outliers — both of which PCA
struggles with

« XPCAis an improvement of academic research
Copula Component Analysis (COCA)*?

[1] Han & Liu. Semiparametric principal component analysis. 2012
[2] Egger et al. Copula eigenfaces - semiparametric principal component analysis for facial
appearance modeling. 2016



XPCA: eXtension of PCA
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n Reverse each of those steps by taking inverse of each step

Latent variables follow
same model as
probabilistic PCA
BUT subject to a different
loss

A Gaussian Copula relates
non-Gaussian variables to
Gaussian latent variables via
Gaussian Cumulative
Distribution Function



XPCA: eXtension of PCA
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XPCA: eXtension of PCA
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A Gaussian Copula relates non-
Gaussian variables to Gaussian latent
variables via Gaussian Cumulative
Distribution Function
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XPCA: eXtension of PCA
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XPCA: eXtension of PCA
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Application: the data

Senator Voting Data from January 1989 — 2017

271 senators and their votes over 1015t — 114t congressional
sessions

* 1:Yay | -1: Nay | O: abstain
e 271 rows (senators) x 9044 columns (bills)
* 63% of data is missing

www.senate.gov/legislative/votes.htm

NBA Basketball Statistics from 2015-16 season

* 476 players and their various statistics
* e.g. shots scored, number of assists, draft number

* 476 rows (players) x 40 columns (stats)

www.nba.com/stats

7/31/2018 11



Senator Data: model fit
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In-Sample Error
the amount of
error when fit is
made across all
available data
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Senator Data: components

Senators

PCA

Component 4 Component 3 Component 2 Component 1

° Democrat

° Republican

° Independent

> Switched parties

® > 50% D/R Yay

e > 50% D/R Nay
e >50%DYay& >
50% R No

e >50%RYay &>
50% D No

® None of above
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MSE (rescaled)

NBA Basketball Data: Model fit
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20 Fold Cross-
Validation Error
the amount of error
when % of data is left
out, calculated for
each quarter
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Kevin Durant: | Anthony
MVP? Morrow: MVP?
True Value 1 0
XPCA 0.3833959 0
estimate at
best rank
(r=5)
PCA estimate | 0.1427923 -0.05687824

at best rank
(r=4)

/

PCA estimates
values outside

range
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NBA Basketball Data: Components

* The first component of both XPCA and PCA represent the minutes played and
the count variables (e.g. shots made or times fouled or double doubles).
 However, XPCA also captures “triple doubles” influence
* PCA cannot capture this influence possibly due to the heavy atom at O
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Minutes Played Minutes Played

These is a clear correlation between minutes played and
triple doubles. However, PCA struggles to find this
correlation, while XPCA does not.
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Top 5 last thoughts

Ongoing Threads:

Application into mission problems

Clustering post-XPCA in the analysis stage!

Scaling up to tens of thousands of rows & columns
Future Work:

Pipeline into other machine learning applications

Scaling up to millions of rows and columns
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Learn more

To read more:
Paper is written (currently in R&A) and is available to read!
To try it out:

MXDLIB, the software package, is written in both R (stable) and
Python (testing)

POC. Kina Kincher-Winoto
o kwinoto@sandia.gov

7/31/2018 17



