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Brief description of the project

The search for simple and elegant equations to explain and predict observable natural phenomena has
been a driving force in scientific theory for several centuries. The great successes of Newton's laws,
Maxwell's equations, the Schrodinger equation, and the theory of General Relativity have encouraged this
perspective, and perhaps a beautiful equation comprising a “theory of everything” remains to be
discovered. But now scientists are grappling with systems of ever-increasing complexity, fraught with
nonlinearity, and with the quantities of interest often only indirectly observed. Nature may resist a simple
description, and the most important discoveries of the next century may be complex theories with
countless variables and parameters.

The era of big data opens up a promising new approach to scientific discovery in this setting. The
predictions of modern theories, even if complex or nonlinear, can be examined through detailed and
computationally-intensive simulations that take days or weeks to run and fill petabytes of disk space.

The upcoming generation of scientific instruments will provide petabytes of observations at
unprecedented resolution and depth. The challenge is to compare data to simulations so as to test theories
and identify those that best match the observations. The data are numerous and rich but are subject to
noise and various systematic biases. The simulations are large and detailed but are so costly that the
effective sample size is small. Moreover, the mapping from data to simulation to the parameters of
interest is typically complicated and ill-conditioned.

Although these challenges, and the solutions we propose, apply across the sciences, we will ground our
efforts by focusing on cosmology. Here, we are truly entering the era of big data in several senses. Ever
larger experiments survey larger and larger cosmological volumes, resulting in enormous amounts of
pixel data to process and extract the information of cosmological interest. These include large imaging
surveys, which collect all the light in broad wavelength ranges over significant fractions of the sky, and
spectroscopic surveys, which measure the light as a function of wavelength to map out 3D distances.
These experiments are designed to shed light on the big unanswered guestions in cosmology. Distilling
the petabytes of data into observed quantities for comparison with theory is a daunting task. But these
large experiments do not only result in large amounts of data to analyze: if we wish to compare to theories
of physics, then we need increasingly extensive predictions for the observed quantities as well, which
requires ever-larger cosmological simulations that take substantial -- and at times prohibitive --
computational resources to produce.

Our goal is to develop statistical and machine learning methods for using observed and simulated
data to advance machine learning with applications cosmology. In particular, we focus our research
efforts on the following tasks:



= The challenge for automated science is that it is computationally impossible and statistically
dangerous to consider every possible model in order to find the best one. We will develop
Bayesian Optimization based active-learning methods that accelerate both the execution of the
simulations and the search for best-fitting parameters. The key idea is to make the simulations
adaptive -- across resolutions, time, and parameters -- using the data to search as the simulation
runs.

= Most ML methods operate on simple finite dimensional feature vectors. However, many
cosmology and other science applications require ML methods that can operate on more complex
objects as inputs or outputs such as functions, distributions, or sets and point clouds (Ntampaka
et al., 2015a, 2015b). Our goal is to develop efficient ML methods for this problem and
demonstrate their applicability in Cosmology, Astrophysics, and other science problems.

DOE Relevance. The goal of this project is to make fundamental contributions in machine learning,
statistics, and cosmology. Our scientific focus on cosmology combines massive data, complex theories,
and important open questions. We analyze existing simulation and observational data sets as well as new
ones that become available during the project. This will produce scientific advances in machine learning
and cosmology and demonstrate the value of our methods for use in other data and simulation-intensive
sciences of importance to DOE.

Accomplishments
In this section we list our publications and accomplishments and provide a short description of them.

1. M. Ravanbakhsh, J. Schneider, and B. Péczos. “Deep Learning with Sets and Point Clouds”.
International Conference on Learning Representations (ICLR) — workshop track. Toulon, France,
2017. (Ravanbakhsh et al 2017a)

2. S. Ravanbakhsh, J. Schneider, and B. P6czos. “Equivariance Through Parameter-Sharing”.
International Conference on Machine Learning (ICML). Sydney, Australia, 2017. (25%
acceptance rate). (Ravanbakhsh et al 2017b)

3. M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. Salakhutdinov, and A. Smola. “Deep Sets”.
Proceedings of the Neural Information Processing Systems (NIPS). Long Beach , CA, 2017.
(Accepted for oral presentation, 1.23% acceptance rate). (Zaheer et al 2017)

In the above listed three papers we study the problem of designing models for machine learning
tasks defined on sets / point clouds. In contrast to traditional approach of operating on fixed
dimensional vectors, we consider objective functions defined on sets that are invariant to
permutations. Such problems are widespread, ranging from estimation of population statistics
(poczosl3aistats), to anomaly detection in piezometer data of embankment dams
(Jung15Exploration), to cosmology (Ntampaka et al. 2015a, Ntampaka et al. 2015b, Ravanbakhsh
2016). Our main theorem characterizes the permutation invariant functions and provides a family
of functions to which any permutation invariant objective function must belong. This family of
functions has a special structure which enables us to design a deep network architecture that can
operate on sets and which can be deployed on a variety of scenarios including both unsupervised
and supervised learning tasks. We also derive the necessary and sufficient conditions for
permutation equivariance in deep models. We demonstrate the applicability of our method on
population statistic estimation, point cloud classification, set expansion, set-outlier detection, and



semi-supervised learning with clustering side-information outlier detection.

S. Ravanbakhsh, F. Lanusse, R. Mandelbaum, J. Schneider, and Péczos. “Enabling Dark
Energy Science with Deep Generative Models of Galaxy Images”. Thirty-First AAAI
Conference on Artificial Intelligence (AAAI-17). San Francisco, CA, 2017. (24.6% acceptance
rate). (Ravanbakhsh et al 2017c)

Understanding the nature of dark energy, the mysterious force driving the accelerated expansion
of the Universe, is a major challenge of modern cosmology. The next generation of cosmological
surveys, specifically designed to address this issue, rely on accurate measurements of the
apparent shapes of distant galaxies. However, shape measurement methods suffer from various
unavoidable biases and therefore will rely on a precise calibration to meet the accuracy
requirements of the science analysis. This calibration process remains an open challenge as it
requires large sets of high quality galaxy images. To this end, we study the application of deep
conditional generative models in generating realistic galaxy images. In particular we consider
variations on conditional variational autoencoder and introduce a new adversarial objective for
training of conditional generative networks. Our results suggest a reliable alternative to the
acquisition of expensive high quality observations for generating the calibration data needed by
the next generation of cosmological surveys.

K. Kandasamy, A. Krishnamurthy, J. Schneider, and B. Pdczos. “Asynchronous Parallel
Bayesian Optimisation via Thompson Sampling”. AutoML workshop, ICML 2017, 2017.
(Kandasamy et al 2017)

We design and analyse variations of the classical Thompson sampling (TS) procedure for
Bayesian optimisation (BO) in settings where function evaluations are expensive, but can be
performed in parallel. Our theoretical analysis shows that a direct application of the sequential
Thompson sampling algorithm in either synchronous or asynchronous parallel settings yields a
surprisingly powerful result: making n evaluations distributed among M workers is essentially
equivalent to performing n evaluations in sequence. Further, by modeling the time taken to
complete a function evaluation, we show that, under a time constraint, asynchronously parallel TS
achieves asymptotically lower regret than both the synchronous and sequential versions. These
results are complemented by an experimental analysis, showing that asynchronous TS
outperforms a suite of existing parallel BO algorithms in simulations and in a hyper-parameter
tuning application in convolutional neural networks. In addition to these, the proposed procedure
is conceptually and computationally much simpler than existing work for parallel BO.

F. Lanusse, Q. Ma, N. Li, T. Collett, C. Li, S. Ravanbakhsh, R. Mandelbaum, and B. Péczos.
“CMU DeepLens: Deep Learning For Automatic Image-based Galaxy-Galaxy Strong Lens
Finding”. Monthly Notices of the Royal Astronomical Society Main Journal (MNRAS), 2017.
(Lanusse et al 2017)

Galaxy-scale strong gravitational lensing is not only a valuable probe of the dark matter
distribution of massive galaxies, but can also provide valuable cosmological constraints, either by
studying the population of strong lenses or by measuring time delays in lensed quasars. Due to
the rarity of galaxy-scale strongly lensed systems, fast and reliable automated lens finding
methods will be essential in the era of large surveys such as LSST, Euclid, and WFIRST. To
tackle this challenge, we introduce CMU DeepLens, a new fully automated galaxy-galaxy lens
finding method based on Deep Learning. This supervised machine learning approach does not



require any tuning after the training step which only requires realistic image simulations of
strongly lensed systems. We train and validate our model on a set of 20,000 LSST-like mock
observations including a range of lensed systems of various sizes and signal-to-noise ratios (S/N).
We find on our simulated data set that for a rejection rate of non-lenses of 99%, a completeness
of 90% can be achieved for lenses with Einstein radii larger than 1.4" and S/N larger than 20 on
individual g-band LSST exposures. Finally, we emphasize the importance of realistically
complex simulations for training such machine learning methods by demonstrating that the
performance of models of significantly different complexities cannot be distinguished on simpler
simulations.

K. Kandasamy, J. Schneider, and B. P06czos. “Query Efficient Posterior Estimation in
Scientific Experiments via Bayesian Active Learning”. Artificial Intelligence Journal, 2016
(Kandasamy et al 2016a)

A common problem in disciplines of applied Statistics research such as Astrostatistics is of
estimating the posterior distribution of relevant parameters. Typically, the likelihoods for such
models are computed via expensive experiments such as cosmological simulations of the
universe. An urgent challenge in these research domains is to develop methods that can estimate
the posterior with few likelihood evaluations. In this paper, we study active posterior estimation
in a Bayesian setting when the likelihood is expensive to evaluate. Existing techniques for
posterior estimation are based on generating samples representative of the posterior. Such
methods do not consider efficiency in terms of likelihood evaluations. In order to be query
efficient we treat posterior estimation in an active regression framework. We propose two myopic
query strategies to choose where to evaluate the likelihood and implement them using Gaussian
processes. Via experiments on a series of synthetic and real examples we demonstrate that our
approach is significantly more query efficient than existing techniques and other heuristics for
posterior estimation.

Z. Szabd, B. Sriperumbudur, B. Pdczos, and A. Gretton. “Learning Theory for Distribution
Regression”. Journal of Machine Learning Research (JMLR), 2016. (Szabo et al 2016)

We focus on the distribution regression problem: regressing to vector-valued outputs from
probability measures. Many important machine learning and statistical tasks fit into this
framework, including multi-instance learning and point estimation problems without analytical
solution (such as hyperparameter or entropy estimation). Despite the large number of available
heuristics in the literature, the inherent two-stage sampled nature of the problem makes the
theoretical analysis quite challenging, since in practice only samples from sampled distributions
are observable, and the estimates have to rely on similarities computed between sets of points. To
the best of our knowledge, the only existing technique with consistency guarantees for
distribution regression requires kernel density estimation as an intermediate step (which often
performs poorly in practice), and the domain of the distributions to be compact Euclidean. In this
paper, we study a simple, analytically computable, ridge regression-based alternative to
distribution regression, where we embed the distributions to a reproducing kernel Hilbert space,
and learn the regressor from the embeddings to the outputs. Our main contribution is to prove that
this scheme is consistent in the two-stage sampled setup under mild conditions (on separable
topological domains enriched with kernels): we present an exact computational-statistical
efficiency trade-off analysis showing that our estimator is able to match the one-stage sampled
minimax optimal rate [Caponnetto and De Vito, 2007; Steinwart et al., 2009]. This result answers
a 17-year-old open question, establishing the consistency of the classical set kernel [Haussler,
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1999; Gaertner et. al, 2002] in regression. We also cover consistency for more recent kernels on
distributions, including those due to [Christmann and Steinwart, 2010].

K. Kandasamy, G. Dasarathy, B. P6czos, and J. Schneider. “The Multi-fidelity Multi-armed
Bandit”. Proceedings of the Neural Information Processing Systems (NIPS). Barcelona, Spain,
2016. (23% acceptance rate). (Kandasamy et al 2016b)

We study a variant of the classical stochastic K-armed bandit where observing the outcome of
each arm is expensive, but cheap approximations to this outcome are available. For example, in
online advertising the performance of an ad can be approximated by displaying it for shorter time
periods or to narrower audiences. We formalise this task as a multi-fidelity bandit, where, at each
time step, the forecaster may choose to play an arm at any one of M fidelities. The highest fidelity
(desired outcome) expends cost A(m). The mth fidelity (an approximation)

expends A(m)<A(M) and returns a biased estimate of the highest fidelity. We develop MF-UCB, a
novel upper confidence bound procedure for this setting and prove that it naturally adapts to the
sequence of available approximations and costs thus attaining better regret than naive strategies
which ignore the approximations. For instance, in the above online advertising example, MF-
UCB would use the lower fidelities to quickly eliminate suboptimal ads and reserve the larger
expensive experiments on a small set of promising candidates. We complement this result with a
lower bound and show that MF-UCB is nearly optimal under certain conditions.

K. Kandasamy, G. Dasarathy, J. Oliva, J. Schneider, and B. P6czos. “Gaussian Process Bandit
Optimisation with Multi-fidelity Evaluations”. Proceedings of the Neural Information
Processing Systems (NIPS). Barcelona, Spain, 2016. (23% acceptance rate). (Kandasamy et al
2016¢)

In many scientific and engineering applications, we are tasked with the optimisation of an
expensive to evaluate black box function f. Traditional methods for this problem assume just the
availability of this single function. However, in many cases, cheap approximations to f may be
obtainable. For example, the expensive real world behaviour of a robot can be approximated by a
cheap computer simulation. We can use these approximations to eliminate low function value
regions cheaply and use the expensive evaluations of f in a small but promising region and
speedily identify the optimum. We formalise this task as a multi-fidelity bandit problem where
the target function and its approximations are sampled from a Gaussian process. We develop MF-
GP-UCB, a novel method based on upper confidence bound techniques. In our theoretical
analysis we demonstrate that it exhibits precisely the above behaviour, and achieves better regret
than strategies which ignore multi-fidelity information. MF-GP-UCB outperforms such naive
strategies and other multi-fidelity methods on several synthetic and real experiments.

A. Tallavajhula, A. Kelly, and B. Péczos. “Nonparametric Distribution Regression Applied to
Sensor Modeling”. IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). Daejeon, Korea. (Accepted for oral presentation). (Tallavajhula et al 2016)

Sensor models, which specify the distribution of sensor observations, are a widely used and
integral part of robotics algorithms. Observation distributions are commonly approximated by
parametric models, which are limited in their expressiveness, and may require careful design to
suit an application. In this paper, we propose nonparametric distribution regression as a procedure
to model sensors. It is a data-driven procedure to predict distributions that makes few
assumptions. We apply the procedure to model raw distributions from real sensors and
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demonstrate its utility to a mobile robot state estimation task. We show that nonparametric
distribution regression adapts to characteristics in the training data, leading to realistic
predictions. The same procedure competes favorably with baseline parametric models across
applications. The results also help develop intuition for different sensor modeling situations. Our
procedure is useful when distributions are inherently noisy and sufficient data is available.

S. Ravanbakhsh, J. Oliva, S. Fromenteau, L. Price, S. Ho, J. Schneider, and B. PGczos.
“Estimating Cosmological Parameters from the Dark Matter Distribution”. International
Conference on Machine Learning (ICML). NYC, NY, 2016. (24% acceptance rate).
(Ravanbakhsh et al 2016)

A grand challenge of the 21st century cosmology is to accurately estimate the cosmological
parameters of our Universe. A major approach in estimating the cosmological parameters is to
use the large scale matter distribution of the Universe. Galaxy surveys provide the means to map
out cosmic large-scale structure in three dimensions. Information about galaxy locations is
typically summarized in a “single” function of scale, such as the galaxy correlation function or
powerspectrum. We show that it is possible to estimate these cosmological parameters directly
from the distribution of matter. This paper presents the application of deep 3D convolutional
networks to volumetric representation of dark-matter simulations as well as the results obtained
using a recently proposed distribution regression framework, showing that machine learning
techniques are comparable to, and can sometimes outperform, maximum-likelihood point
estimates using “cosmological models”. This opens the way to estimating the parameters of our
Universe with higher accuracy.

J. Oliva, A. Dubey, A. Wilson, B. Péczos, J. Schneider, and E. Xing. “Bayesian Nonparametric
Kernel-Learning”. International Conference on Artificial Intelligence and Statistics (AISTATS).
Cadiz, Spain, 2016. (30% acceptance rate) (Oliva et al 2016)

Kernel methods are ubiquitous tools in machine learning. However, there is often little reason for
the common practice of selecting a kernel a priori. Even if a universal approximating kernel is
selected, the quality of the finite sample estimator may be greatly affected by the choice of kernel.
Furthermore, when directly applying kernel methods, one typically needs to compute a N xN
Gram matrix of pairwise kernel evaluations to work with a dataset of N instances. The
computation of this Gram matrix precludes the direct application of kernel methods on large
datasets, and makes kernel learning especially difficult. In this paper we introduce Bayesian
nonparmetric kernel-learning (BaNK), a generic, data-driven framework for scalable learning of
kernels. BaNK places a nonparametric prior on the spectral distribution of random frequencies
allowing it to both learn kernels and scale to large datasets. We show that this framework can be
used for large scale regression and classification tasks. Furthermore, we show that BaNK
outperforms several other scalable approaches for kernel learning on a variety of real world
datasets.

D. Sutherland, J. Oliva, B. P6czos, and J. Schneider. “Linear-time Learning on Distributions
with Approximate Kernel Embeddings”. 30th AAAI Conference on Artificial Intelligence
(AAAI-16). Phoenix, AZ, 2016. (26% acceptance rate). (Sutherland et al 2016)

Many interesting machine learning problems are best posed by considering instances that are
distributions, or sample sets drawn from distributions. Previous work devoted to machine learning
tasks with distributional inputs has done so through pairwise kernel evaluations between pdfs (or
sample sets). While such an approach is fine for smaller datasets, the computation of
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an NxN Gram matrix is prohibitive in large datasets. Recent scalable estimators that work over
pdfs have done so only with kernels that use Euclidean metrics, like the L2 distance. However,
there are a myriad of other useful metrics available, such as total variation, Hellinger distance,
and the Jensen-Shannon divergence. This work develops the first random features for pdfs whose
dot product approximates kernels using these non-Euclidean metrics, allowing estimators using
such kernels to scale to large datasets by working in a primal space, without computing large
Gram matrices. We provide an analysis of the approximation error in using our proposed random
features and show empirically the quality of our approximation both in estimating a Gram matrix
and in solving learning tasks in real-world and synthetic data.

M. Ntampaka, H. Trac, D.J. Sutherland, N. Battaglia, B. Poczos, & J. Schneider, “A Machine
Learning Approach for Dynamical Mass Measurements of Galaxy Clusters”, 2015,
Astrophysical Journal, 803, 2, http://iopscience.iop.org/article/10.1088/0004-637X/803/2/50/pdf,
(Ntampaka et al. 2015a)

M. Ntampaka, H. Trac, D.J. Sutherland, S. Fromenteau, B. Poczos, & J. Schneider, Dynamical
Mass Measurements of Contaminated Galaxy Clusters using Machine Learning, The
Astrophysical Journal, http://arxiv.org/abs/1509.05409, (Ntampaka et al. 2015b).,

In the Ntampaka et al. (2015a) and Ntampaka et al. (2015b) papers we use Support Distribution
Machines (SDM; Sutherland et al. 2012) to improve dynamical mass measurements of galaxy
clusters. SDM is a new machine learning classification method developed by our team.
Conventionally, a standard power-law scaling relation is used to infer cluster mass from line-of-
sight velocity dispersion. When applied to a mock cluster catalog, the resulting fractional mass
error distribution is very broad and has extended high-error tails. The problem with this method is
that much useful information is thrown away. With SDM, we train and test on the entire
distribution of galaxy velocities. We demonstrate that it can reduce the width of the error
distribution by a factor of two and effectively eliminate the problematic high-error tails.
Remarkable, we show that SDM applied to realistic clusters contaminated by interloper galaxies
is better able to recover masses than even the scaling relation approach applied to idealistic
clusters without interlopers. Decreasing cluster mass errors will improve measurements of the
growth of structure and lead to tighter constraints on cosmological parameters.

Chen, Y., Ho, S., Brinkman, J., Freeman, P., Genovese, C., Schneider, D., Wasserman, L.,
“Cosmic Web Reconstruction through density ridges: Catalog”, arxiv:1509.06443, (Chen et
al. 2015a)

In Chen et al. (2015a) we construct a catalogue for filaments using a novel approach called
subspace constrained mean shift (SCMS, Ozertem & Erdogmus 2011). SCMS is a gradient-based
method that detects filaments through density ridges (smooth curves tracing high-density
regions). A great advantage of SCMS is its uncertainty measure, which allows an evaluation of
the errors for the detected filaments. To detect filaments, we use data from the Sloan Digital Sky
Survey, which consist of three galaxy samples: the NYU main galaxy sample (MGS), the LOWZ
sample and the CMASS sample. Each of the three dataset covers different redshift regions so that
the combined sample allows detection of filaments up to z = 0.7. Our filament catalogue consists
of a sequence of two-dimensional filament maps at different redshifts that provide several useful
statistics on the evolution cosmic web. To construct the maps, we select spectroscopically
confirmed galaxies within 0.050 < z < 0.700 and partition them into 130 bins. For each bin, we
ignore the redshift, treating the galaxy observations as a 2-D data and detect filaments using
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SCMS. The filament catalogue consists of 130 individual 2-D filament maps, and each map
comprises points on the detected filaments that describe the filamentary structures at a particular
redshift. We also apply our filament catalogue to investigate galaxy luminosity and its relation
with distance to filament. Using a volume-limited sample, we find strong evidence (6.16 - 12.30)
that galaxies close to filaments are generally brighter than those at significant distance from
filaments.

Chen, Y., Ho, S., Mandelbaum, R., Bahcall, N., Brownstein J., Freeman, P., Genovese, C.,
Schneider, D., Wasserman, L., “Detecting Effects of Filaments on Galaxy Properties in the
Sloan Digital Sky Survey I11”, arxiv.1509:06376, (Chen et al. 2015b)

In Chen et al. (2015b) we study the effects of filaments on galaxy properties in the Sloan Digital
Sky Survey (SDSS) Data Release 12 using filaments from the “Cosmic Web Reconstruction”
catalogue (Chen et al. 2015a), a publicly available filament catalogue for SDSS. Since filaments
are tracers of medium-to-high density regions, we expect that galaxy properties associated with
the environment are dependent on the distance to the nearest filament. Our analysis demonstrates
a red galaxy or a high-mass galaxy tend to reside closer to filaments than a blue or low-mass
galaxy. After adjusting the effect from stellar mass, on average, late-forming galaxies or large
galaxies have a shorter distance to filaments than early-forming galaxies or small galaxies. For
the Main galaxy sample, all signals are very significant (>5c). For the LOWZ and CMASS
samples, most of the signals are significant (with >3c). The filament effects we observe persist
until z = 0.7 (the edge of the CMASS sample). Comparing our results to those using the galaxy
distances from redMaPPer galaxy clusters as a reference, we find a similar result between
filaments and clusters. Our findings illustrate the strong correlation of galaxy properties with
proximity to density ridges, strongly supporting the claim that density ridges are good tracers of
filaments.

Chen, Y., Ho, S., Tenneti, A.,Mandelbaum, R., Freeman, P., Croft, R., DiMatteo, T., Genovese,
C., Wasserman, L., “Investigating Galaxy-Filament Alignments in Hydrodynamic
Simulations using Density Ridges”, 2015, MNRAS, 454, 3341C, (Chen et al. 2015c)
http://adsabs.harvard.edu/abs/2015MNRAS.454.3341C:

In Chen et al. (2015c), we study the filamentary structures and the galaxy alignment along
filaments at redshift z=0.06 in the MassiveBlack-1l simulation, a state-of-the-art, high-resolution
hydrodynamical cosmological simulation which includes stellar and AGN feedback in a volume
of (100 Mpc/h)3. The filaments are constructed using the subspace constrained mean shift
(SCMS; Ozertem & Erdogmus (2011) and Chen et al. (2015a)). First, we show that reconstructed
filaments using galaxies and reconstructed filaments using dark matter particles are similar to
each other; over 50% of the points on the galaxy filaments have a corresponding point on the dark
matter filaments within distance 0.13 Mpc/h (and vice versa) and this distance is even smaller at
high-density regions. Second, we observe the alignment of the major principal axis of a galaxy
with respect to the orientation of its nearest filament and detect a 2.5 Mpc/h critical radius for
filament's influence on the alignment when the subhalo mass of this galaxy is between 109M®/h
and 1012M@®/h. Moreover, we find the alignment signal to increase significantly with the
subhalo mass. Third, when a galaxy is close to filaments (less than 0.25 Mpc/h), the galaxy
alignment toward the nearest galaxy group depends on the galaxy subhalo mass. Finally, we find
that galaxies close to filaments or groups tend to be rounder than those away from filaments or
groups.

Chen, Y., Ho, S,. Genovese, C., Wasserman, L., “Optimal Ridge Detection Using Coverage
Risk”, Neural Information Processing Systems (NIPS) 2015, [Acceptance Rate for the
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conference is 18%], (Chen et al. 2015d)

In Chen et al. (2015d), we introduce the concept of coverage risk as an error measure for density
ridge estimation. The coverage risk generalizes the mean integrated square error to set estimation.
We propose two risk estimators for the coverage risk and we show that we can select tuning
parameters by minimizing the estimated risk. We study the rate of convergence for coverage risk
and prove consistency of the risk estimators. We apply our method to three simulated datasets and
to cosmology data. In all the examples, our proposed method successfully recovers the underlying
density structure.

Chen, Y., Ho, S., Freeman, P., Genovese, C., Wasserman, L., “Cosmic Web Reconstruction
through Density Ridges: Method and Algorithm” , arXiv:1501.05303, (Chen et al. 2015e)
http://adsabs.harvard.edu/abs/2015MNRAS.454.1140C

In Chen et al. (2015¢), we demonstrate how one may apply the SCMS algorithm (Ozertem and
Erdogmus (2011); Genovese et al. (2012)) to uncover filamentary structure in galaxy data. The
detection and characterization of filamentary structures in the cosmic web allows cosmologists to
constrain parameters that dictate the evolution of the Universe. While many filament estimators
have been proposed, they generally lack estimates of uncertainty, reducing their inferential
power. The SCMS algorithm is a gradient ascent method that models filaments as density ridges,
one-dimensional smooth curves that trace high-density regions within the point cloud. We also
demonstrate how augmenting the SCMS algorithm with bootstrap-based methods of uncertainty
estimation allows one to place uncertainty bands around putative filaments. We apply the SCMS
method to datasets sampled from the P3M N-body simulation, with galaxy number densities
consistent with SDSS and WFIRST-AFTA and to LOWZ and CMASS data from the Baryon
Oscillation Spectroscopic Survey (BOSS). To further assess the efficacy of SCMS, we compare
the relative locations of BOSS filaments with galaxy clusters in the redMaPPer catalog, and find
that redMaPPer clusters are significantly closer (with p-values <10-9) to SCMS-detected
filaments than to randomly selected galaxies.

Oliva, J., Neiswanger, W., Poczos, B., Xing, E., Trac, H., Ho, S., & Schneider, J., “Fast
Function to Function Regression”, Artificial Intelligence & Statistics 2015 [Acceptance Rate
for oral presentation= 26/441=5.9% ]. (Oliva et al, 2015)

In Oliva et al. (2015) we analyze the problem of regression when both input covariates and output
responses are functions from a nonparametric function class. Function to function regression
(FFR) covers a large range of interesting applications including time-series prediction problems,
and also more general tasks like studying a mapping between two separate types of distributions.
However, previous nonparametric estimators for FFR type problems scale badly computationally
with the number of input/output pairs in a data-set. Given the complexity of a mapping between
general functions it may be necessary to consider large data-sets in order to achieve a low
estimation risk. To address this issue, we develop a novel scalable nonparametric estimator, the
Triple-Basis Estimator (3BE), which is capable of operating over datasets with many instances.
To the best of our knowledge, the 3BE is the first nonparametric FFR estimator that can scale to
massive datasets. We analyze the 3BE's risk and derive an upperbound rate. Furthermore, we
show an improvement of several orders of magnitude in terms of prediction speed and a reduction
in error over previous estimators in cosmological N-body simulations and various real-world
data-sets.



23. Garnett, R., Ho, S. & Schneider, J., “Finding Galaxies in the Shadows of Quasars with
Gaussian Processes”, International Conference on Machine Learning, 2015, [Acceptance Rate
~25%] (Garnett et al, 2015)

In Garnett et al. (2015), we develop an automated technique for detecting damped Lyman-a
absorbers (DLAS) along spectroscopic sightlines to quasi-stellar objects (QSOs or quasars). The
detection of DLAS in large-scale spectroscopic surveys such as SDSS-III is critical to address
outstanding cosmological questions, such as the nature of galaxy formation. We use nearly
50,000 QSO spectra to learn a tailored Gaussian process model for quasar emission spectra,
which we apply to the DLA detection problem via Bayesian model selection. We demonstrate our
method’s effectiveness with a large-scale validation experiment on over 100,000 spectra, with
excellent performance.

24. Kandasamy, K., Schneider, J., and Poczos, B., “Bayesian Active Learning for Posterior
Estimation” International Joint Conference on Artificial Intelligence (IJCAI), 2015.
(Buenos Aires, Argentina) [Distinguished Paper Award, 0.1% acceptance rate]
(Kandasamy et al, 2015a)

The Kandasamy et al. (2015a) paper studies active posterior estimation in a Bayesian setting
when the likelihood is expensive to evaluate. Existing techniques for posterior estimation are
based on generating samples representative of the posterior. Such methods do not consider
efficiency in terms of likelihood evaluations. In order to be query efficient we treat posterior
estimation in an active regression framework. We propose two myopic query strategies to choose
where to evaluate the likelihood and implement them using Gaussian processes. Via experiments
on a series of synthetic and real examples we demonstrate that our approach is significantly more
query efficient than existing techniques and other heuristics for posterior estimation.

25. Kandasamy, K., Schneider, J., and Poczos, B. “High Dimensional Bayesian Optimization and
Bandits via Additive Models”. International Conference on Machine Learning (ICML), 2015.
(Lille, France) [26% acceptance rate], (Kandasamy et al, 2015b)

Bayesian Optimisation (BO) is a technique used in optimizing a D-dimensional blackbox
objective function which is typically expensive to evaluate. While there have been many
successes for BO in low dimensions, scaling it to high dimensions has been notoriously difficult.
Existing literature on the topic are under very restrictive settings. In this paper, we identify two
key challenges in this endeavor. In the Kandasamy et al. (2015b) paper we tackle these
challenges by assuming an additive structure for the function. This setting is substantially more
expressive and contains a richer class of functions than previous work. We prove that, for
additive functions the regret has only linear dependence on D even though the function depends
on all D dimensions. We also demonstrate several other statistical and computational benefits in
our framework. Via synthetic examples, a cosmology simulation, and a face detection problem
we demonstrate that our method outperforms naive BO on additive functions and on several
examples where the function is not additive.

Software artifacts

1. Dragonfly [https://github.com/dragonfly/dragonfly]
This is an open source python library for scalable Bayesian optimisation. Bayesian optimisation is
used for optimising black-box functions whose evaluations are usually expensive. Beyond vanilla
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optimisation techniques, Dragonfly provides an array of tools to scale up Bayesian optimisation
to expensive large-scale problems. These include features/functionality that are especially suited
for high dimensional optimisation (optimising for a large number of variables), parallel
evaluations in synchronous or asynchronous settings (conducting multiple evaluations in
parallel), multi-fidelity optimisation (using cheap approximations to speed up the optimisation
process), and multi-objective optimisation (optimising multiple functions simultaneously).

FuncLearn [https://github.com/junieroliva/funcLearn]
This is a matlab package for performing machine learning tasks when inputs, and possibly
outputs, are functions, distributions, or sets.

SKL-Groups [https://github.com/dougalsutherland/skl-groups]

This is a package to perform machine learning on sets (or "groups") of features in Python. It
extends the scikit-learn library with support for either transforming sets into feature vectors that
can be operated on with standard scikit-learn constructs or obtaining pairwise similarity/etc
matrices that can be turned into kernels for use in scikit-learn.

Py-SDM [https://github.com/dougalsutherland/py-sdm/]
This is a Python implementation of nonparametric divergence estimators.

CMU DeepLens [https://github.com/McWilliamsCenter/CMUDeepL ens]

CMU DeepLens, or DeepLens for short, is a completely automated strong lens finder based on
Deep Residual Networks, a state of the art Deep Learning architecture for image detection and
classification tasks.
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