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ABSTRACT

Thousands of facilities worldwide are engaged in biological research activities. One of DTRA’s missions is to
fully understand the types of facilities involved in collecting, investigating, and storing biological materials.
This characterization enables DTRA to increase situational awareness and identify potential partners focused
on biodefense and biosecurity. As a result of this mission, DTRA created a database to identify biological
facilities from publicly available, open-source information. This paper describes an on-going effort to automate
data collection and entry of facilities into this database. To frame our analysis more concretely, we consider
the following motivating question: How would a decision maker respond to a pathogen outbreak during the 2018
Winter Olympics in South Korea? To address this question, we aim to further characterize the existing South
Korean facilities in DTRA’s database, and to identify new candidate facilities for entry, so that decision makers
can identify local facilities properly equipped to assist and respond to an event. We employ text and social
analytics on bibliometric data from South Korean facilities and a list of select pathogen agents to identify
patterns and relationships within scientific publication graphs.

Keywords: bibliometrics, graph analytics, collaboration analytics, open source analytics, biodefense, biosecu-
rity, community detection

1. INTRODUCTION

DTRA’s database of biological facilities is designed to provide information related to potential pathogen reposito-
ries worldwide to support capability assessments of a country’s bio-infrastructure and other bio-related activities.
This database is composed of consolidated open-source information and provides a novel user interface prototype
for displaying all pathogen repository data points, which allows decision makers to better understand the loca-
tion of research facilities, hospitals, diagnostic laboratories, etc., that collect, investigate, and/or store biological
materials. Due to the open-source nature of its information, this database can be used to facilitate cross-agency
sharing of information regarding vital biological and technical content to aid in the development of i) responses
to global bio-related humanitarian crises and ii) countermeasures to prevent pathogens from impacting local
communities.

Since 2012, the Defense Threat Reduction Agency (DTRA) has identified over 1750 facilities worldwide,
based on limited open-source research. Of these facilities, roughly half are considered fully characterized within
the database. However, work is still required to ingest data to improve both the database’s characterization of
existing facilities and to discover new facilities that, if included, could help DTRA and its global partners react
to threats to public health. This effort is enabled by the proliferation of freely available information, including
public literature repositories such as PubMed, which provide ready access to references, abstracts, and links to
full-text articles on life sciences and biomedical topics. However, the sheer volume of information necessitates the
development of analytics for a semi-automated, analyst-driven, pipeline for data ingestion and entry into DTRA’s
database. DTRA has partnered with Sandia National Laboratories to leverage the laboratories’ capabilities in
data analytics, with a focus here on bibliometrics.
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Pathogen Name | Current Identifier I Other Identifiers

Avian Influenza virus (highly pathogenic) influenza a hpai, h5n1
Bacillus anthracis anthracis anthrax
Clostridium botulinum (pathogen and toxin) botulinum
Burkholderia mallei mallei

Burkholderia pseudomallei pseudomallei

Ebola virus ebola, ebolavirus
Foot-and-mouth disease virus fmdv
Francisella tularensis tularensis

Marburg virus marburg, marburgvirus
Reconstituted 1918 Influenza influenza a hinl, spanish flu
Rinderpest virus rinderpest, morbillivirus
Variola major variola

Variola minor variola
Yersinia pestis pestis

Table 1. List of select pathogen agents used in this study.

Analysis of bibliometric data may utilize text and social analytics to identify patterns and relationships within
scientific publication graphs. These analytics may also be utilized to interpret the flow of information through
communities of agents,* as well as identify sub-communities given complex rules governing inter-agent relation-
ships.® Additionally, graph analytics have been shown to provide weak predictors of collaborative behavior by
encoding similarities among agents such as authors or institutions. Combining institution-level text and social
analytics to construct various community graphs, this paper will document the effort to enhance DTRA’s ability
to characterize known facility information and to identify new potential data points for inclusion in DTRA’s
database, all while reducing the manual load imposed on analysts.

This paper is structured as follows. Section 2 discusses the data, including a description of the steps necessary
for collection and pre-processing. Section 3 contains a description of our graph-fusion pipeline and graph analytics
for community detection and characterization. Section 4 provides results and analyses of graphs constructed from
existing data and newly-ingested PubMed data. Finally, Section 5 concludes with a summary and brief discussion
of future work.

2. DATA
2.1 Data Collection

This section describes the two datasets used in this work: the existing DTRA dataset and a PubMed dataset
collected from PubMed’s publicly available metadata. This work is framed in the context of a motivating
question: What resources are available to respond to a pathogen outbreak during the 2018 Winter Olympics in
South Korea? By focusing on this question, we are able to focus our dataset to South Korean facilities.

2.1.1 DTRA Dataset

DTRA’s database is a small, hand-curated database of over 1750 facilities worldwide. Each entry in the dataset
represents an institution and contains data related to the activities, pathogens and equipment present at the
facility. Each data field has been parsed and added to our dataset. The following is a sample of the potentially
interesting and relevant fields: a) facility name, b) country, c) specific location, d) facility description, e) pathogens
stored at the facility, and f) known equipment. The results and analyses described in this work will make use
of the italicized fields. The database, when filtered to South Korea, contains 72 facilities. Of these facilities,
15 contain a facility description and 14 contain pathogens. For the remainder of the paper, the DTRA dataset
refers to the reduced dataset of 72 South Korean facilities with a description and/or known pathogens.



2.1.2 PubMed Dataset

PubMed openly publishes metadata corresponding to its vast collection of papers from medical and biological
fields. All data is free to download through PubMed’s web interface.” We started by collecting all records
containing ‘Korea’ in the affiliation field that also mentioned at least one of the pathogens from Table 1 anywhere
in the record. This approach returned 311 papers. We parsed these records for the following fields: a) PubMed
identifier (PMID, a unique value assigned to each PubMed record), b) article title, ¢) author list, d) list of
institutions affiliated with each paper, e) abstract (if available), and f) keywords (if available).

For this study, we focus on the institutions present in the PubMed data. Once parsed, our dataset contains
over 4,600 unique institution strings. Each string contains the name of an institution, as well as location
information including the institution’s country. Filtering to remove institutions that did not include “Korea” in
the name yielded 566 unique institution strings.

Although the PubMed dataset contains many more institutions than are present in DTRA’s dataset, the for-
matting of institution strings is extremely inconsistent and sometimes contains typographic errors. Furthermore,
many of these strings actually refer to the same physical institution, necessitating a cleaning and disambiguation
phase before applying further analysis. The disambiguation process (described in Section 2.2) yields 128 South
Korean facilities. For the remainder of the paper, the PubMed dataset refers to the reduced dataset of 128
disambiguated South Korean facilities and their associated papers, on which we perform the analyses described
in this work.

2.2 Facility Name Disambiguation

The lack of standardization in institution names necessitates the need to disambiguate these names, which is
the process of identifying groups of distinctly formatted strings that refer to the same physical institution.
Disambiguation proved necessary for two reasons: 1) to determine when two facilities listed in the affiliation list
on different PubMed documents are in actuality the same facility with a different format, and 2) to map facilities
found in the DTRA dataset to facilities appearing in the PubMed dataset.

The disambiguation process comprises two phases, each with several steps. The first phase consists of cleaning
the data, and removing inconsistencies that interfere with the second phase, which involves grouping institution
strings that correspond to the same physical institution. In the following sections, we describe each phase
separately.

2.2.1 Cleaning

Several of the affiliation strings contain multiple institutions; others include additional information about the
authors such as email addresses and telephone numbers. In order for the second phase of the disambiguation
process to work well, it is necessary to split affiliation lists into as many distinct institution name strings as
possible and to remove as much of the unrelated information as possible. This cleanup process involves a series
of semi-supervised steps involving visual inspection of the data to determine how to split strings and what
patterns to remove.

To split affiliation strings into multiple institutions, common delimiters are identified and used to separate in-
stitutions.® To remove unrelated information, patterns that indicate email addresses, parenthesized phrases, and
common name suffixes (e.g., “PhD”) are used to trigger removing characters. The strings are also standardized
(e.g. ampersands are converted to “and”) and run through a spell checker.

Despite splitting many affiliation lists into multiple new institution name strings, this cleaning process ul-
timately reduced the number of unique strings. In many instances, removing unwanted characters resulted in
exact matches with other strings. After cleanup, 517 out of 566 unique strings remained to be disambiguated.

*Separators used in this work: “”, “Korea and”, “Korea 7, “Korea, and”, “Korea.”, “ USA.”, “ USA)”, 7«7 «g7
Wl WL 113 ” “ ” “ ” “ ” “ ”
17, “7, “[2]7, “B]”, “[4]”, “[5]", “[6]



| Step | Counts |

Unique strings parsed from raw data 4606
Unique strings parsed from raw data 566
containing “Korea”

Unique strings after cleaning 517
Institutions found by matching algo- 129
rithm

Institutions after manual correction 128

Table 2. Reduction in the number of strings through the disambiguation process, which involves a cleaning and a matching
phase.

2.2.2 Matching

After the institution name strings are considered clean, they are run through a matching algorithm. The matching
algorithm considers strings in a pairwise fashion and determines whether or not two strings should be merged,
meaning they represent the same institution. Merged strings are included together in a set, along with any other
strings they had previously been merged with. Each set denotes a unique institution. Thus, the output of this
algorithm is a grouping of institution name strings, where each group represents a unique physical institution.

At a high level, the process involves searching for a match between important substrings from two different
institution name strings. If a match is found, the institution name strings are considered the same physical
institution. This process is outlined below. For each pair of facilities:

1. Split each name string into substrings based on commas.
2. Identify substrings containing at least one keyword from a prioritized list of keywords."

3. Identify important substrings as those containing the n highest-priority keywords found within the sub-
strings.

4. Compare the sets of important substrings for two facilities. If a substring in one set contains a substring in
the second set, a match is found indicating that the two institution name strings from which the substring
sets were derived are the same physical institution.

For example, by setting “university” as a higher priority keyword than “institute”, and by excluding “de-
partment” from our list of keywords, this process attempts to match facilities at the university level, followed
by the institute level, all while ignoring the department level. The disambiguation algorithm reduced the 517
unique name strings to 129 unique institutions. Manual verification of this list found one pair of strings that
failed to be merged. The final list, after manually merging the final pair, contained 128 institutions. Reduction
of the number of strings through the cleaning and disambiguation process is summarized in Table 2.

3. METHODS

Graph analytics have been shown to provide weak predictors of collaborative behavior by encoding similarities
between agents such as authors or institutions.® Combining institution-level text and social analytics to construct
various community graphs, this section will describe our graph-fusion pipeline for generating fused-similarity
graphs and discuss the discovery analytics we use to identify or characterize potentially interesting research
communities for analyst-driven entry into DTRA’s database.

M ML

tThe prioritized list of keywords used in this work: “samsung”, “university”, “universe”, “administration”, “hospital”,
“ministry”, “agency”, “brewery”, “institute”, “institut”, “academy”, “arboretum”, “foundation”, “laboratory”, “labs”,
“center”, “facility”, “school”, “service”, “bank”, “products”



/* —-—-— Fusion Pipeline Example---- */

// Adjacency Matrix Creation
graph = new graphMatrix(numNodes)

// Pipeline processors

// Draws all edges for shared pathogens.
gl=boolSharedPathogenProcessor.compute ()

// Selects only the edges in which the institution have collaborated.
g2=boolCollabProcessor.compute ()

// Boolean AND corresponding entries in gl,g2

graph = andProcessor.compute(gl, g2)

// Gephi format writer
gexfGraphWriter.write(graph, filename)

Figure 1. An example fusion pipeline that will create a graph of institutions who share pathogens and collaborate, then
write the graph to a Gephi-compatible format.

3.1 Graph Fusion Pipeline

To aid rapid and modular analytic development, we developed a graph fusion pipeline that is capable of fusing
basic similarity processors to produce graphs which encode composite measures of similarity. To develop such
a pipeline, we represent graphs as adjacency matrices G € RN*N where a given entry, gij € [0,1], encodes a
similarity score used to draw edges between institutions 7 and j, and N represents the number of nodes in G.
A series of user-defined similarity processors and fundamental operator (e.g., AND, XOR, NOT, ADD, MULT)
processors then compute various similarity scores between nodes ¢ and j, and combines the scores. For the
PubMed data, we consider similarity scores based off collaboration or shared pathogens. Edges in the graph
may or may not be weighted. A weighted edge directly corresponds to the calculated similarity score. However,
in an unweighted graph, edges are present if and only if some similarity criteria is met. We call these boolean
similarity metrics. Finally, a writer translates the adjacency matrix into a graph format interpretable by existing
graph analytics software such as Gephi.®

An example pipeline is provided in Fig. 1 as a Groovy script that calls on Citrus,” a text analysis library devel-
oped at Sandia National Laboratories. The user-defined similarity processors, boolSharedPathogenProcessor
and boolCollabProcessor, in Fig. 1 are processors that will construct an edge between two institutions ¢ and j
if the two institutions share at least one pathogen or have collaborated on at least one publication, respectively.
The fundamental andProcessor will select only the edges for which the two institutions have collaborated AND
share pathogens. By combining fundamental operation processors and user-defined similarity processors, we
allow for the generation of arbitrary graph fusions.

Weighted similarities based on shared pathogens or collaborations make use of the Jaccard similarity coeffi-
cient to determine a similarity score. For pathogen similarity,

Jij = IPi0 B|/|P; U Pyl (1)
where P; is the set of pathogens for institution 4. Similarly for collaboration similarity,
Ji; =1C: N Cl/1C; L Gy, (2)

where C} is the set of publications for institution i. The score of the fused graph using the AND operator is then
the product of the two scores for pathogen and collaboration:



Once these similarity scores have been fused, we may then view the resulting adjacency matrix as a graph and
utilize graph analytics algorithms for the discovery and characterization of research communities.

An additional similarity metric, which we applied to the DTRA dataset, is the similarity between facility
descriptions. Our similarity metric for text descriptions uses a metric called term frequency-inverse document
frequency (TFIDF; 4).1° TFIDF, 4 is commonly used in information retrieval and text mining as a reflection of
how important a term ¢ is to a document d, relative to a corpus of N documents. It is important to note that here
“document” really refers to “facility description”, since we are comparing facilities. Several versions of TFIDF 4
exist. We use the default version implemented in Citrus, which is defined by, TFIDF; 4 = tf; 4 x log(N/df;),
where the first term tf; 4 is the term frequency and the second term idf; is the definition for the inverse document
frequency. Importantly, this expression is highest when a term ¢ shows up many times only within a small
number of documents.

Description similarity scores for between facilities are based off of the cosine distance between TFIDF; 4 vec-
tors. For each facility, we can construct a document vector, V(d). Each vector has n components, corresponding
to the TFIDF, g4 weight of the n terms in the dictionary. The similarity of two documents d; and da is then
defined by,

sim(dy,ds) = v(dy) - v(da), (4)

where v(d) is the document vector normalized by the Euclidean norm: v(d) = V(d)/||V(d)||.

3.2 Discovery Analytics

The graphs that are written out at the end of the fusion pipeline are ingested into Gephi® to facilitate visualization
and analysis of the graphs. In particular, Gephi provides a modularity optimization algorithm known as the
Louvain community detection algorithm.'! Modularity measures the density of edges inside verses the density
of edges between assigned communities. Optimizing the modularity theoretically results in an optimal grouping
of the nodes of a given graph.

Once we have applied Louvain for community detection, a major issue remains with characterizing the results
of these communities. One option is to compute a degree of focus of the pathogen profile for each community,
as defined by the entropy:

H; =- pi;logpi;, (5)

where p;; is the probability of pathogen ¢ in community j. H; is calculated by taking the sum over each of the
pathogens in community j. A second option is to compute the spread of the top pathogen P in community j,
where P is defined as the pathogen present at the highest number of institutions in community j. We can then
define o, which is the proportion of facilities in community j that have published on P:

_np
J

Here np is the number of institutions in j associated with P and n; is the number of institutions in community
j. A third option is to compute the relative number of known facilities in community j:

np

=D 7

BJ n; ’ ( )

where np is the number of institutions in j that also appear in the DTRA dataset. This metric can be used to
link discovered communities to established ground truth of known facilities.

Each of these characterizations may be used to help an analyst determine if a community and its associated
facilities warrant further attention. Additional metrics used in this work are described as they are introduced.

4. RESULTS
In what follows, we discuss results obtained from analysis of the DTRA dataset and the PubMed dataset.



Figure 2. Graph constructed from the description similarity between known institutions. Node colors corresponds to
community and edge weights represent strength of the similarity score.

Figure 3. Pathogen similarity between institutions. Edge weights on the left graph were computed using the Jaccard
similarity coefficient. Edge weights in the graph on the right reflect total number of pathogens common between facilities.
The nodes are labeled by the size of the pathogen set.

4.1 DTRA Database

To set up a baseline for comparison with results from our PubMed dataset, we construct graphs based on the
DTRA dataset, where nodes represent known facilities and edge weights represent a similarity score between two
facilities. In this work, we consider similarities based on 1) the cosine distance of tfidf; 4 vectors constructed from
the facility description; 2) the Jaccard distance of the pathogens stored at the facilities; and 3) the total number
of pathogens shared between two facilities, essentially the un-normalized Jaccard distance. Of the 72 South
Korean facilities in the DTRA database, 15 contain a facility description and 14 contain pathogen attributions,
where we have not limited ourselves to the pathogens in Table. 1. The resulting graphs are quite small, further
motivating the use of PubMed data to enhance the DTRA database.

Following construction of the graphs, we apply the Louvain algorithm!! in Gephi to identify communities
of institutions. In the following figures, node color represents community, and edge thickness reflects similarity
scores between institutions. In Fig. 2 we show the facility description similarity graph, with similarities computed
as defined in Eq. 4. We can see that all facilities are related to some extent, i.e. the graph is fully connected.
Although the community detection algorithm identifies three communities, each with several of the most strongly
connected nodes in the graph, manual inspection of the facility descriptions of the most strongly connected nodes
does not reveal any notable similarity. This is not surprising, however, as the cosine similarities range from



0.01 — 0.28, indicating that even the most similar descriptions are not very similar.

Next, in Fig. 3, we show the similarity graphs constructed from the overlap in pathogen sets between
DTRA’s known facilities. The left graph shows edges weighted by the Jaccard similarity, Jipj; the right graph
shows edges weighted by the number of overlapping pathogens, essentially the un-normalized Jaccard similarity,
jf} = |P; N Pj|. The nodes are labeled by the number of pathogens listed in the DTRA dataset. By compar-
ing these two graphs, we can see that the graph based on JZ. (left) tends to emphasize focused similarity of
pathogens, where three purple nodes with 1 — 2 pathogens each are connected by the strongest edge weights
and are therefore detected as their own community. In contrast, the graph based on jl-’; (right) identifies overall
similarity of pathogens, where now the nodes connected by the strongest edge weights contain 7 — 18 pathogens.
The two purple nodes represent the most similar facilities, with 5 shared pathogens. Interestingly, the node with

44 pathogens is not strongly connected in either shared pathogen graph.

4.2 PubMed

In addition to characterizing known institutions from DTRA’s database, we seek to develop a flexible framework
to guide the analyst-driven discovery of new institutions and collaborative research communities using openly
available data retrieved from PubMed. As discussed previously, this work is framed in the context of a pathogen
outbreak during the 2018 Winter Olympics in South Korea so that the specific goals of our PubMed analysis are
to identify and characterize the research communities of South Korean institutions that have published on the
set of pathogens previously defined in Table 1. Our approach is to apply social and text analytics to construct
fused-similarity graphs that encode 1) communities with a shared specific research topic and 2) communities with
a focused research interest.

We examine the graphs based on four metrics, which are described in more detail in Section 3.2:

1. n, the average community size.
2. B, the average percentage of institutions from DTRA’s database in discovered research communities.

3. a, the average coverage coefficient, which describes the proportion of institutions in a community that
share the community’s most prominent pathogen P.

4. H, the average entropy in the distribution of a community’s focus over the set of pathogens.

Table 3 shows a summary of these statistics for the different graphs described in the following sections.

| Graph H m | B [ a | H |
Bool. Shared Pathogen 26 | 27.1% | 0.831 | 2.315
Bool. Collaboration 11 | 15.1% | 0.689 | 1.972
Bool. Composite 8.4 | 21.4% | 0.801 | 2.236
Weighted Shared Pathogen || 20.4 | 26.6% | 0.928 | 1.167
Weighted Collaboration 6.2 | 19.6% | 0.786 | 1.564
Weighted Composite 5.8 | 23.6% | 0.873 | 1.343

Table 3. Comparison of graph level average statistics.

4.2.1 Boolean Graph Analysis

To obtain a community structure of research institutions from PubMed that can compare with the baseline
community structure identified in DTRA’s database, we first construct a boolean shared pathogen (BSP) graph.
That is, a network of nodes (institutions) is connected by edges with weight g;; = 1 if institutions ¢ and j share
at least one pathogen. Otherwise, g;; = 0 (i.e. nodes i and j are unconnected). From this graph, we apply
the Louvain community detection algorithm to identify research communities based on shared pathogens within
the graph. From the BSP graph depicted in Fig. 4, we see two large well-connected communities dominating
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Figure 4. The boolean shared pathogen (BSP) graph visual- Table 4. Description of the community and graph
ized using Gephi’s Fruchterman Reingold layout. Commu- level statistics for the BSP graph.

nity labels denote top pathogen(s), P, with the coverage, «,

in parentheses.

the graph; statistics of the communities are provided in Table. 4. Characterization of the pathogens in the
communities reveals that the average coverage coefficient @ = 0.831, suggesting that communities in the BSP
graph contain a high coverage of institutions that publish on the top pathogen P of the community. This result
makes intuitive sense, since the BSP graph is identifying similarity based a shared pathogen. Recall that the
pathogen similarity graph constructed from DTRA’s database consisted of well-connected nodes without any
notable community structure. Similarly, the BSP graph constructed from the PubMed data contains a high-level
community structure of well-connected institutions that share a predominant pathogen: 11-Purple has a coverage
of a = 0.863 (influenza a) and 21-Green has a coverage of & = 1.000 (botulinium), providing a relatively distinct
separation of institutions that favor influenza research and those that favor botulinum research. However, while
this graph illustrates which institutions publish on similar pathogens and what those pathogens are, it does not
reveal research community structure based on social collaboration.

To identify collaborative research communities in our PubMed dataset, we create a boolean collaboration
(BC) graph. That is, a network of nodes (institutions) connected by edges with weight g;; = 1 if institutions
¢ and j have co-published at least one paper and g;; = 0 otherwise; see Fig. 5. From this graph, we apply the
Louvain community detection algorithm to identify highly collaborative research communities within the graph.*
The statistics of the communities from the boolean collaboration network are provided in Table 5.

Table 5 shows that, on average, the communities cannot be well characterized by a single defining pathogen,
as indicated by an average coverage coefficient, @ = 0.689. This trend is especially true of the three largest
communities, 29-Purple, 17-Green, and 22-Cyan, whose coverage coefficient « falls below the graph average.
Furthermore, for 17-Green and 22-Cyan, there exists no pathogen shared by a majority of the community’s
institutions. However, for the remaining smaller communities, at least half of their institutions share the most
prevalent pathogen P in that community. This is not surprising, however, as the remaining communities con-
sist mainly of either isolated or largely isolated research pairs and small communities. Within these smaller
communities, it is easier to create a clear characterization of the pathogens present.

The decrease in & between the BSP and BC graphs makes intuitive sense since the BC graph is not directly
identifying similarity based a shared pathogen. However, the fact that the average entropy over the communities’
pathogen distribution also decreases from H = 2.315 in the BSP graph to H = 1.972 in the BC graph is perhaps
more surprising. The decreased entropy indicates an increase in research focus even though we are not directly
using any information on pathogen similarity for the BC graph. This result can be understood by noting that

41t should be noted that this dataset selected only South Korean institutions that had published on a specific list of
pathogens. As such, while there are 29 disconnected institutions, they may have published with institutions outside of
South Korea. Alternatively, they may have published with institutions within our dataset, but on topics not covered.
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in the BSP graph, an edge is drawn between any two facilities that share at least one pathogen, independent
of the number of pathogens that are not shared. These pathogens that are not accounted for when identifying
communities in the BSP graph decrease the focus of a community’s pathogen distribution. Thus, when not
accounting for the BSP similarity, the entropy H of the graph decreases and the research focus increases.

In order to combine the similarities in the BC graph with the similarities in the BSP graph, we fuse the two
graphs such that a network of nodes (institutions) is now connected by edges with weight g;; = 1 if institutions
i and j have co-published at least one paper and share at least one pathogen. Otherwise, g;; = 0. This graph is
shown in Fig. 6. The resulting composite boolean collaboration and boolean shared pathogen (BC-BSP) graph
structurally resembles the BC graph. However, a direct comparison of the two graphs reveals a more refined
community structure in the BC-BSP graph. In particular, the main community of green nodes in Fig. 5 is no
longer present in the composite fused graph accounting for BSP. This is because the abstract, title or keywords
of the publication that the nodes published on did not share a pathogen, and thus were removed by the shared
pathogen processor filter. The result is nodes being clustered into a greater number of smaller communities, as
can be seen by the reduction in the average community size from 7 = 11 to n = 8.4.

At the community level, we see that fusing the BSP graph into the BC graph increases the coverage coefficient
from a = 0.689 for the BC graph to a = 0.801 for the BC-BSP graph, implying that certain nodes which did
not share the predominant pathogen P migrated into new communities based on a common shared pathogen.
However, we also see a general increase in entropy from H = 1.972 to H = 2.236 in these emerging communities.
That is to say, by incorporating information about shared pathogens into the collaboration graph, we have
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produced a collaboration network that has an increased ability to characterize communities based on a commonly
shared pathogen, however at the expense of decreasing the focus of the research facilities in each community.

One factor that may be complicating our analysis could be the unintended consequences of employing boolean
graphs in application. In particular, boolean edges will weigh all collaborations equally, and likewise all numbers
of shared pathogens equally. In the next subsection, we will describe our efforts to further refine our analysis by
integrating a sense of weighted similarity into our networks.

4.2.2 Weighted Graph Analysis

As with the boolean graph analysis, we first create a weighted shared pathogen (WSP) graph, where edges
between institutions ¢ and j are now weighted according to Eq. 1. The resulting graph is shown in Fig. 7. In
general, edge weights reflect the number of pathogens shared between two institutions, relative to the combined
pathogens present at either institution. Thus institutions that share a large number of pathogens relative to
their total combined pathogens will have a higher edge weight, and thus will be more likely to be clustered when
using community detection; conversely, edges between two communities that share few pathogens, but have many
unshared pathogens, will have weaker edge weights, causing these institutions to be less likely to be clustered.

Similarities between the BSP graph depicted in Fig. 5 and the WSP graph in Fig. 7 are recognizable, al-
though a few differences are apparent. Two dominant, tightly connected communities are visible in both graphs.
However, the large anomalous cluster connecting the two dominant communities now shows much more overlap
(compare 5-Cyan in the BSP graph with 15-Green in the WSP graph). Additionally, a fifth community (14-
Orange) has emerged on the periphery of the WSP graph. Table 7 provides community and graph-level statistics
for WSP graph. A summary comparison with the BSP graph in Table 3 reveals an increase in the average
coverage coefficient (& = 0.928 compared to 0.831) and a decrease in the average entropy of the communities
(H = 1.167 compared to 2.315). These results suggest that the WSP graph increases the focus and coverage of
a research community.

Next we construct a weighted collaboration (WC) graph, with edge weights computed according to Eq. 2.
The graph is shown in Fig. 8 and statistically summarized in Table 8. Analogous to the WSP graph, higher edge
weights reflect a larger number of shared publications, relative to the total size of their shared corpus. The WC
graph demonstrates the benefit of using weighted edges for collaboration networks. The 31-Cyan community, for
instance, consists of eleven institutions whose only collaboration is on a single conference proceeding. This tightly
connected component is immediately isolated from its neighbors and is sequestered into its own community that
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could then be largely ignored by an analyst. Table 3 provides a summary comparison of the WC with the BC
graph, where we can see that the WC graph provides several preferable community characteristics, including: a
higher average percentage of previously identified institutions per community (3 = 19.6% compared to 15.1%),
a higher coverage coefficient (v = 0.786 compared to 0.689), and a lower entropy/higher focus ( H = 1.564

compared to 1.972).

Now that we have produced and analyzed both the WC and WSP graphs, we show the results of fusing the two
using Eq. 3, resulting in a WC-WSP graph with a more fine-grained characterization of research communities. The
graph generated by this fusion can be seen in figure 9. This graph largely maintains the structure from the original
weighted collaboration graph with a few key differences. Namely, the tightly clustered and potentially problematic
31-Cyan cluster has been removed as it did not share pathogens with its peer institutions. Additionally, the graph
has created more, smaller, communities that can be found scattered throughout the graph. The combination of
these two have a noticeable impact on the computed graph level statistics in Table 9.



In particular, a comparison of the WC-WSP graph with the WC graph reveals that the composite WC-WSP
graph provides a higher average coverage coefficient (@ = 0.873 compared to 0.786), as well as a smaller average
community size (7 = 5.8 compared to 6.2) and a lower average entropy (H = 1.343 compared to 1.564).This
result implies that the fusion of the WSP graph with the WC graph has boosted the average coverage of the
communities’ most prevalent pathogen, and increased the focus of each institution when compared to the WC
graph. Therefore, the application of graph fusion can provide a finer grained analysis over a collaboration network

without perturbing the underlying network structure.

4.2.3 Composite Graph Analysis

| Graph || [ | B ‘ a | H |
Bool. Composite 8.4 21.4% 0.801 2.236
Weighted Composite 5.8 23.6% 0.873 | 1.343

| % Change [ -30.1% | +10.3% | +8.9% [ -39.9% |

Table 10. Comparison of composite boolean and weighted graphs.

Finally, we compare the composite boolean and weighted graphs, summarized in Table 10. It is apparent that
the weighted composite graph decreases both the average community size 7 and the average intra-community
entropy H, leading to smaller, more focused institutions than the boolean collaboration graph. Furthermore, it
provides increases to both the relative population of previously identified institutions within a community and
the coverage coefficient &, meaning a better characterization of the communities with a higher presence of known
institutions.

5. CONCLUSIONS AND FUTURE WORK

In conclusion, we applied text, graph, and social analytics on bibliometric data to discover and characterize
research communities in South Korea. This work is framed in the context of a hypothetical pathogen outbreak
during the 2018 Winter Olympics in South Korea, during which decision makers need to identify local facilities
that are properly equipped to aid and support the crisis response. DTRA and Sandia National Laboratories have
partnered to develop analytics for semi-automated, analyst-driven characterization of research facilities, hospitals,
and diagnostic laboratories based on patterns and relationships identified within scientific communities. More
specifically, we developed a graph fusion pipeline for generating, combining, and analyzing different similarity
graphs based on open-source PubMed data. Our results show that an approach that fuses a collaboration
graph with a shared research focus allows for a finer grained analysis of communities in a collaboration network,
while still preserving the underlying network structure. Furthermore, more sophisticated similarity measures,
such as weighted edges based on Jaccard similarities, reduce the noise introduced by simple boolean similarity
measures. Future work will include exploring other combinations of fundamental boolean operators, such as
shared pathogens but NOT shared collaboration, and other user-defined similarity measures, such as similarities
of facility descriptions based on topical modeling algorithms such as latent dirichlet allocation (LDA).*%:13

While the use of PubMed and ability to perform facility disambiguation to identify all of the possible biological
facilities is valuable by itself, the graph approach has the potential to provide important context for identifying
which facilities have the most impact for responders and planners. We plan to continue to evaluate this new
method and use this information to summarize facility holdings around regions of concern.
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