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Abstract

Rhodococcus opacus PD630 metabolizes aromatic substrates and naturally produces branched-
chain lipids, which are advantageous traits for lignin valorization. To provide insights into its
lignocellulose hydrolysate utilization, we performed '3C pathway tracing, '*C-pulse-tracing,
transcriptional profiling, biomass compositional analysis, and metabolite profiling in conjunction
with 13C-metabolic flux analysis ('*C-MFA) of phenol metabolism. We found that 1) phenol is
metabolized mainly through the ortho—cleavage pathway; 2) phenol-utilization requires a highly
active TCA cycle; 3) NADPH is generated mainly via NADPH-dependent isocitrate
dehydrogenase; 4) active cataplerotic fluxes increase plasticity in the TCA cycle; 5)
gluconeogenesis occurs partially through the reversed Entner—Doudoroff pathway (EDP). We also
found that phenol-fed R. opacus PD630 generally has lower sugar phosphate concentrations (e.g.,
fructose 1,6-bisphosphatase) compared to metabolite pools in '*C-glucose-fed Escherichia coli
(set as internal standards), while its TCA metabolites (e.g., malate, succinate, and a-ketoglutarate)
accumulate intracellularly with measurable succinate secretion. In addition, we found that phenol
utilization was inhibited by benzoate, while catabolite repressions by other tested carbon substrates
(e.g., glucose and acetate) were absent in R. opacus PD630. Three adaptively-evolved strains
display very different growth rates when fed with phenol as a sole carbon source, but they maintain
a conserved flux network. These findings improve our understanding of R. opacus’ metabolism

for future lignin valorization.

Key words: '*C-MFA, 13C pulse-tracing, Entner—Doudoroff pathway, Gluconeogenesis, Lignin
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Introduction

Engineering bacterial cells to utilize lignocellulosic biomass as a feedstock could offer cost-
competitive production of renewable fuels, chemicals, and materials (Ragauskas et al., 2006).
Lignocellulosic biomass is composed mainly of cellulose, hemicellulose, and lignin.
Lignocellulosic carbohydrates, cellulose and hemicellulose, can be deconstructed into fermentable
sugars for biological conversion into a range of bioproducts. Lignocellulose is a recalcitrant
feedstock for biological conversion, in part due to its up to 40% lignin content (Gani and Naruse,
2007). Pretreatments are employed prior to carbohydrate deconstruction to increase sugar and thus
product yield. However, lignin degradation during pretreatment often produces aromatic
compounds that strongly inhibit the growth of most bacteria (Beckham et al., 2016). Moreover,
conventional fermentative biorefineries treat lignin as by-product, and burn it for low-value
electricity or process heat (Ragauskas et al., 2014). Techno-economic analyses have reported that
the use of lignin for co-product generation is a key to profitable lignocellulose valorization
(Valdivia et al., 2016). Lignin cannot be rapidly broken down by biological methods (Boerjan et
al., 2003; Studer et al., 2011). Thus, an approach for lignin utilization has been proposed that
combines the rapid depolymerization kinetics of chemical processing with the metabolic funneling
and selective abilities of microbial systems (Linger et al., 2014; Wheeldon et al., 2017). Recently,
research groups are attempting to develop microbial hosts with improved tolerance to aromatic
compounds for fermentation of lignocellulose-derived sugars and lignin-derived aromatic
compounds (Abdelaziz et al., 2016; Ragauskas et al., 2014; Janusz et al. 2017). In particular,
lignin-rich streams have been utilized to generate lipid-based biofuels (i.e., waste-to-fuel

applications) (Le et al., 2017; Yaguchi et al., 2017).
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Rhodococcus opacus PD630 (hereafter R. opacus) is a Gram-positive actinobacterium. It is
natively able to utilize sugars, aromatics, furans, and organic acids (Holder et al., 2011; Kurosawa
etal., 2015). Isolated from a gas works plant, this strain is capable of accumulating triacylglycerol
(TAG), the precursor for biodiesel up to 80% of its dry cell weight (Alvarez et al., 1996). Studies
of its mechanisms of aromatic tolerance and TAG accumulation have found promising results for
its use in the conversion of lignin-derived aromatic substrates (DeLorenzo et al., 2017; Henson et
al., 2018a; Henson et al., 2018b; Yoneda et al., 2016). R. opacus has been extensively studied for
its growth kinetics and transcriptional activities, yet key knowledge gaps from genotype to
phenotype still remain. Specifically, there is little knowledge about the distribution of the
metabolic fluxes in this biofuel producer when consuming aromatic substrates. Functional
characterization of the central metabolic network is necessary to develop this nonmodel platform
for metabolic engineering applications, particularly to facilitate genome-scale modeling for

rational strain design.

In this work, we have characterized phenol-fed cultures of R. opacus based on integrated omics
analyses. *C-Metabolic Flux Analysis ('*C-MFA) can measure in vivo reaction rates of central
metabolism and confirm global gene regulation patterns inferred from transcriptomic data
(Chubukov et al., 2013). In the past, '*C-MFA mostly focused on cellular metabolisms fed with
sugars, organic acids, and COz (photosynthesis). To our knowledge, this work is the first report of
a full MFA completed in any organism using phenol as the sole carbon source. Additionally, we
performed '3C-pathway tracing, metabolite analysis, flux balance analysis, and biomass
composition analysis. The flux-based insights were further connected to recently reported

transcriptional profiles and proteomics data. We also examined how adaptive laboratory evolution
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affects the central flux network. These systems analyses provide a deeper understanding of R.

opacus metabolism of lignin-derived substrates at different layers of cellular processes.

Materials and Methods

Chemicals, strains, and growth conditions. 1-3C phenol, 2,6-'3C phenol, and U-!3C phenol were
purchased from Cambridge Isotope Laboratories Inc. (Tewksbury, MA, USA). All other chemicals
were purchased from Sigma-Aldrich (St. Louis, MO, USA). All cells were grown in minimal
media, previously described as media B (DeLorenzo et al., 2017). Unless otherwise noted, the sole
carbon source was 0.5 g/L phenol, and the nitrogen source was 1 g/L. ammonium sulfate. For all
cultures, a single colony of R. opacus from a tryptic soy broth plate was inoculated into 2 mL
minimal medium, which was used as a seed culture for 10 mL cultures. Isotopomer measurements
were conducted when cell cultures reached an optical density at 600 nm (ODgoo) of 0.2-0.5,

corresponding to exponential growth.

Analysis of proteinogenic amino acid labeling. 10 mL labeled biomass from 2,6-'3C phenol or
1-13C phenol growing cultures (biological duplicates, n=2) were centrifuged down then hydrolyzed
at 100 °C for 24 hours. The resulting amino acids were analyzed by GC-MS via the TBDMS (N-
(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide) method as described previously (You et al.,
2012). In brief, the [m-57]* and [m-159]* fragments for amino acids were mainly used for '*C-
MFA, while the [m-15]*, [m-85]*, and f(302)* fragments were also analyzed to provide additional

labeling information. The m+0, m+1, m+2, etc. data corresponds to the fraction of fragments that
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were unlabeled, singly labeled, doubly labeled, etc. Labeling data were corrected for naturally-

occurring isotopes.

Dynamic labeling (pulse-tracing), free metabolite extraction, and LC-MS analysis. For phenol
dynamic labeling experiments, 20 mL unlabeled phenol cultures were grown to ODggo ~ 0.2 and
then pulsed with 2 mL of a 5.25 g/l U-'3C phenol stock solution for a final labeled phenol
concentration of ~0.5 g/L. The cultures were quenched at 5 seconds, 1 minute, and 1 hour using
the Fast-Cooling procedure (Hollinshead et al. 2016; Abernathy et al., 2017). To study the effect
of benzoate on phenol utilization, 40 mL cultures with 0.5 g/L fully labeled phenol were grown to
ODsoo ~ 0.35, and then the labeled cultures were mixed with 4 mL of 4 g/L unlabeled benzoate.

After the benzoate pulse, the cultures were quenched at 20 seconds, 1 minute, and 3 hours.

At each metabolite quenching time, 10 mL of culture was poured into ice cold carbon-free
media B, and then placed into a liquid nitrogen bath. The samples were stirred briefly and then
centrifuged (8000 g) at 0 °C for 5 minutes. The pellets were stored at -80 °C until metabolite
extraction. To determine labeling in free metabolites, cell pellets were resuspended in 1 mL of 7:3
methanol:chloroform, and shaken at 250 rpm at 4 °C for 6 hours with hourly vortexing. The
methanol layer was separated by the addition of 500 pL. water followed by centrifugation after
which the aqueous layer was collected. This separation process was repeated twice. The collected
samples were frozen at -80 °C, then lyophilized at -50 °C. The samples were reconstituted with
water and analyzed using an Ion Pairing LC-MS method at the Donald Danforth Plant Science
Center (Creve Coeur, MO, USA) (Abernathy et al., 2017). To measure metabolite pool size, an
isotope ratio approach was used (Bennett et al., 2008; Abernathy et al., 2017). More specifically,

E. coli was grown on U-'3C glucose to produce fully-labeled internal standards for each metabolite,
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while R. opacus culture was grown on unlabeled substrates. The cultures were quenched and mixed
together at a 1:1 biomass content ratio for metabolite extraction and LC-MS measurements. The

relative metabolite pool size was calculated based on '3C ratios.

Flux calculations. Steady-state flux analysis calculations were done using the software INCA
(Isotopomer Network Compartmental Analysis) (Young, 2014). The basis of the R. opacus flux
model is the KEGG genome annotation, including the f—ketoadipate pathway, the TCA cycle, the
anaplerotic reactions, glycolysis, and the EDP. Carbon mappings for both ortho and meta pathways
are shown in Supplemental Figure 1. The R. opacus central flux network is largely similar to the
model bacterial species E. coli with major differences in the inclusion of phenol — acetyl-CoA +
succinyl-CoA, a modified biomass equation (Crown et al., 2015), and the reversibility of glycolysis
and the EDP to allow for gluconeogenesis. Labeling data of key proteinogenic amino acids,
biomass growth, and substrate consumption rate were used for flux calculation. Based on
measurements errors from parallel labeling experiments, 90% confidence intervals of fluxes were
calculated via INCA’s parameter continuation function (See supplementary Excel file for

metabolic reactions, flux constraints, amino acid labeling fitting, and statistical analysis).

Flux balance analysis (FBA) of the central metabolic network was done using INCA to
further compare actual metabolic fluxes with optimal flux topologies. In addition to maximizing
biomass or fatty acid productions, three other objective functions were also tested with fixed
biomass growth rate: maximizing NAD(P)H, ATP, or minimizing sum of fluxes (i.e., enzyme
usage). The FBA results were compared to '3C-MFA by the sum of squared residuals between

optimal flux and measured flux in central pathways.
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Biomass composition analyses and substrate/product concentration measurements. Cell
cultures were grown to exponential phase, pelleted, washed with sterile water and then lyophilized.
Amino acid composition analysis was performed by the Molecular Structure Facility, University
of California (Davis, CA, USA). Fatty acid composition analysis was performed by Microbial ID
(Newark, DE, USA). Overflow metabolites were analyzed using enzyme kits from R-Biopharm
(Germany). Phenol and benzoate in the culture supernatant were derivatized using methyl
chloroformate (Madsen et al., 2016) and quantified using a custom GC-MS-FID system (gas
chromatography-mass spectrometry-flame ionization detector). Briefly, the culture supernatant
was centrifuged at 16,000 g for 5 min, and 200 pL of the culture supernatant was mixed with 40
pL of 5.0% (w/w) sodium hydroxide solution, 200 pL of methanol, and 50 pL of pyridine. Methyl
chloroformate (50 pL) was added to the mixture in two 25 pL aliquots. Next, 400 pL of chloroform
containing a decane internal standard was added to the sample, followed by the addition of 400 pL.
of 50 mM sodium bicarbonate solution to induce phase separation of the aqueous and organic
layers. Samples were vortexed between each step to ensure complete mixing. After phase
separation, the organic phase was transferred to a GC vial with a 350 pL glass insert (Agilent), and
samples were analyzed using an Agilent 7890A GC coupled to both an Agilent 5975C mass
spectrometer containing a triple-axis detector and an Agilent G3461A FID detector with a
methanizer (Activated Research Company; Eden Prarie, MN, USA). The Agilent 7890A GC was
equipped with a Restek fused silica RTX-50 capillary column (30 m by 0.25 mm, 0.5 um film
thickness), and helium was used as the carrier gas. 1 puL of the organic phase was injected with a
splitting ratio of 10:1 using the autosampler. For GC runs, the inlet was maintained at 250 °C, and

the oven was held for 2 min at 40 °C, heated to 300 °C using a 5 °C/min ramp, and held at 300 °C
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for 5 min. All data was exported and analyzed using the Agilent ChemStation Software, and peak
intensities were normalized to the decane internal standard. Phenol and benzoate were identified

based on retention time and concentrations were determined using external standard curves.

RNA-seq analysis. Raw transcriptomic sequences were downloaded from the Sequence Read
Archive (SRA) accession number SRP131196 (Henson et al., 2018a). Sequences were quality
trimmed using Trimmomatic (Bolger et al., 2014) before mapping to the Chinese Academy of
Science reference genome of R. opacus (ASM59954v1) (Chen et al.,, 2014) using Bowtie2
(Langmead and Salzberg, 2012). The resulting SAM files were converted to the BAM format and
indexed using SAMtools (Li et al., 2009). Expression counts were then calculated using
featureCounts (Liao et al., 2014) and normalized using DESeq2 (Love et al., 2014). Supplemental

Table 1 summarizes RNA-seq data of R. opacus strains growing with glucose and phenol.

Results and Discussion

Cell growth and biomass composition. The glucose metabolism of R. opacus has been studied
previously (Hollinshead et al., 2015). Here, we investigated the growth rates of R. opacus on
acetate, phenol, phenol with glucose, and glucose (Table 1). The fastest growth rate (0.24 hr'!) for
wild type R. opacus was observed when glucose was provided as the sole carbon source. Growth
on phenol was, as expected, slower (0.17 hr!, P=0.013; two-tailed Student’s f test), likely owing
to a combination of its toxic effects and less efficient phenol degradation processes. When phenol
is provided in combination with glucose, these disadvantages are largely mitigated — the rapidity
with which glucose can be processed apparently compensated for the kinetic disadvantages of

9
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phenol metabolism (e.g., requirement of gluconeogenesis), which allowed the cultures to grow
nearly as quickly as the glucose-only case (P=0.46). Moreover, the co-utilization of both substrates
produced more biomass at the end of the cultivations (P<0.01). Interestingly, acetate-fed cultures
showed similar growth performance to phenol-fed cultures (P=0.65). The TCA cycle is the
entering point of the central flux network for both acetate and phenol, but phenol utilization
requires more conversion steps than acetate consumption. Therefore, the similar growth rates
indicate that the f—ketoadipate pathway in R. opacus is as efficient as the acetate conversion route

(acetate—>acetyl-CoA).

Table 1. A summary of the growth rate, corresponding doubling times (tp), and maximum
optical density of R. opacus on four different carbon substrates. All data presented is the
average of biological triplicates + standard deviation.

Carbon Substrate Growth Rate (hr") tp (hr) Maximum ODgpo
2.0 g/L Acetate 0.16 £0.02 4.30 1.08 £ 0.001
0.5 g/L Phenol 0.17 £0.02 4.10 0.82 £0.02
0.3 g/L Phenol + 1.0 g/L Glucose 0.24 £0.01 2.96 1.53 +£0.01
1.0 g/L Glucose 0.25+£0.02 2.81 1.20 £ 0.02

A biomass composition analysis was conducted on cultures grown in phenol, glucose, and a
phenol-glucose mixture. The data from the phenol culture was used to modify the biomass equation
in the metabolic flux model. Figure 1A shows the proteinogenic amino acid composition of R.
opacus from three tested samples, where glutamate/glutamine and alanine were most abundant.
Proteinogenic amino acid synthesis in R. opacus undergoes minimal changes when grown on

different carbon sources. R. opacus is known to store high concentrations of lipids in late growth

10
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phases, and reportedly can accumulate lipids up to 80% of its dry cell weight under low-nitrogen
stress (Alvarez et al., 1996; Henson et al., 2018a). In the exponential growth phase when nitrogen
is still available, ~0.3 g lipid per gram dry cell weight was accumulated in biomass samples. We
further probed the fatty acid profiles of R. opacus when fed the three previously-described carbon
sources with sufficient nitrogen (Figure 1B). In general, the most abundant fatty acid (in the form
of acyl groups of lipids) is palmitic acid (16:0), accounting for approximately 30% of total lipid
fatty acids. Compared to the model bacterium E. coli, R. opacus contains higher proportions of
long-chain fatty acids (Supplemental Figure 2). Specifically, 47% of fatty acids in R. opacus
were found to contain 17 carbons or more, whereas only 12% of fatty acids in E. coli have over 16
carbons (Neidhardt et al., 1990). Additionally, R. opacus natively produces C15 fatty acids and
branched-chain fatty acids (BCFAs) containing 16, 17, and 18 carbon atoms. Unlike most Gram-
positive bacteria and some engineered Gram-negative strains which only produce terminal BCFAs
(Bentley et al., 2016; Jiang et al., 2015; Kaneda, 1966), R. opacus’ BCFAs have internal branches,
which are expected to produce biofuels with better cold-flow properties than terminally-branched
fuels (Pond and Langworthy, 1987). The carbon source affected the abundance of some fatty acids.

Notably, ~20% of the total fatty acids in phenol-fed culture were C18 BCFAs.

11
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Figure 1. The distribution of amino acids (A) and fatty acids (B) in R. opacus with three
different carbon sources. Asx = aspartate/asparagine and Glx = glutamate/glutamine; fatty acids
are denoted as carbon chain length: number of unsaturated bonds, with a B indicating branching.
Error bars are estimates of technical uncertainty.

Phenol degradation via the fB-ketoadipate pathway. The enzymatic pathways to degrade
aromatic substrates can be grouped into categories based on the position of bond cleavage (Fuchs
et al., 2011). The KEGG annotation for R. opacus contains every gene for the meta cleavage of
catechol, while one of the genes in the ortho pathway, 3-oxoadipate CoA-transferase, is
unannotated. Both pathways begin with a two-component flavoprotein monooxygenase, phenol
hydroxylase, which oxidizes the phenol ring to form catechol (Figure 2). Saa et al. studied this
enzyme in Rhodococcus erythropolis and found that it can accept electrons from both NADH and
NADPH to cleave O> molecules. However, phenol hydroxylase’s affinity for NADH was
measured to be 5-10 times greater than its affinity for NADPH (Saa et al., 2010). This may be an
evolutionary adaptation to avoid competition for NADPH between phenol consumption and
biomass formation. The ortho and meta pathways diverge with the ortho branch employing
catechol-1,2-dioxygenase and the meta branch using catechol-2,3-dioxygenase. The intermediates
in the ortho pathway include cis-cis muconic acid and B-ketoadipate, and its end products are

acetyl-CoA and succinyl-CoA. In contrast, the meta pathway’s intermediates include 2-

12
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hydroxymuconic semialdehyde, and its final products are pyruvate, formate, and acetyl-CoA
(Sridevi et al., 2012). Meta-cleavage has been found in Pseudomonas species to degrade phenol
and phenol derivatives (Kukor and Olsen, 1991). To determine which route is used by R. opacus,
we used 1-'3C phenol labeling (Figure 2). The symmetry of catechol results in two different
alanine labeling patterns for each branch. In the ortho pathway, 50% of labeled carbon will end up
as the 4" position carbon of succinyl-CoA and the remaining 50% will occupy the 1% position of
acetyl-CoA. In the TCA cycle, succinyl-CoA is converted to succinate, another symmetric
molecule. The reactions of cataplerosis, e.g., the phosphoenolpyruvate (PEP) carboxykinase-
catalyzed reaction, release the 4™ position carbon as CO», and convert the remaining 3-carbon
fragment to pyruvate. The expected labeling pattern for pyruvate derived from the ortho branch is
therefore 25% first-position labeled and 75% unlabeled. In contrast, the meta-cleavage will create
pyruvate molecules with an even split between those labeled in the first and the second positions.
Alanine’s sole precursor is pyruvate, and thus pyruvate’s labeling can be determined by measuring
alanine. Our analysis showed that ~23% of alanine was labeled only at the 1% position, and ~77%
of alanine was unlabeled. This provides strong evidence that the ortho pathway is the exclusive
route for phenol degradation. The labeling result is consistent with our previous gene knockout
analyses (Henson et al., 2018a). Specifically, when muconate cycloisomerase, an ortho pathway
enzyme, was disrupted, R. opacus was no longer able to grow on phenol. Additionally, proteomic

data from this species has shown that several enzymes in the ortho pathway were abundant during

aromatic metabolism (Xie et al., 2019). The missing ortho pathway reaction (3-oxoadipate — 3-

oxoadipyl CoA) could be catalyzed by succinyl-CoA:3-ketoacid-CoA transferase
(PD630_RS25340 + PD630_RS25345) (Yoneda et al., 2016). We also found that the presence of

low concentration formate (0.5 g/L.) was inhibitory to cell growth, implying that the meta pathway
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with byproduct formate is unlikely to be beneficial for growth. It is worth noting that the genes
coding the ortho pathway enzymes are found in two distinct clusters on the chromosome, while
the genes for the meta pathway are scattered across the genome and two endogenous plasmids. All
these analyses prove the value of '3C tracing to delineate functional pathways and to fill the

annotation gaps.
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OH OH
Inﬂ." 02 OH 0z
| “m"* ! A N COOH
- catechol 1,2 dicxypenase catechol 2,3 dioxypenase oy [h]
ciscis-muconate catechol 2-hydroxymuconate semialdehyde
succinvl-CoA acetvl-CoA acetyl-CoA  formate pyruvate
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Figure 2. 1-13C phenol catabolism in R. opacus is through the ortho-cleavage. GC-MS data of
alanine gives labeling data for pyruvate. The [M-57]* and [M-85]* fragments were used to
determine the labeling of each carbon of pyruvate. The labeling of pyruvate closely matches the
expected labeling for phenol catabolism through the ortho branch. A detailed tracing is shown in
Supplemental Figure 1.
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R. opacus flux map. *C-MFA was performed to comprehensively investigate R. opacus’ phenol
metabolism (Figure 3A). The metabolic model had 71 reactions and 33 independent parameters,
and was constrained by 174 independent mass isotopomer measurements, resulting in 141 degrees
of freedom. Amino acid labeling data with 0.75 mol % measurement error from parallel tracer
experiments (1-'*C Phenol and 2,6-'3C Phenol) was used to generate the flux map. The SSR (sum
of square residuals) for the presented fit was 119.4, which is inside the 90% confidence bounds for
the SSR [114.6 169.7]. Experimentally, the rate of phenol uptake (i.e., the amount of phenol
entering the central metabolism per cell mass within a given time) at exponential phase was
measured to be 2.3 mmol/hr/g dry cell weight (Supplemental Figure 3). 3C-MFA shows that per
100 mmol of phenol consumed ~2 mmol extracellular overflow metabolites (i.e., succinate), ~370
mmol CO2, and ~220 mmol C of biomass (~4.7 g) are produced, resulting in a ~50% yield of

biomass from phenol (Figure 3A).

The TCA cycle of R. opacus in phenol culture has very high fluxes to sustain aerobic
growth. The citrate entrance node has a relative flux over 100, which is much higher than reported
fluxes in glucose-fed E. coli (Crown et al., 2015). The direct infusion of succinyl-CoA from phenol
degradation drives high fluxes through succinyl-CoA ligase, succinate dehydrogenase, and
fumarate hydratase in the TCA cycle and causes succinate overflow (Supplemental Figure 4). In
the supernatant, o-ketoglutarate could also be detected while acetate secretion was not observed.
The overflow of the TCA cycle works to balance excessive succinyl-CoA flux from phenol
degradation. In contrast, excessive acetyl-CoA (i.e, not forming citrate in the TCA cycle) enters
into biomass pools (lipid and amino acids). Further, the glyoxylate shunt is measurable, offering
an alternative route for acetyl-CoA consumption. On the other hand, several anaplerotic reactions

are also active to direct flux outside the TCA cycle (note: the confidence intervals of these fluxes
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are relatively wide due to limited labeling resolution). For instance, the malic enzyme is active to
pump the TCA fluxes for pyruvate synthesis. Moreover, both 3C-MFA and gene expression data
identified the GTP-dependent PEP carboxykinase (PD630_RS08140) as the driving force for
gluconeogenesis (OAC—PEP) and flux towards the upper pathways (the EDP and the pentose
phosphate pathways). Interestingly, the model shows that the EDP, operating in reverse, can serve
as a secondary route to the upper pathways. Fluxes in the upper pathways of phenol-fed cultures

are small and primarily used for biomass synthesis.

To offer a deeper understanding of R. opacus flux network optimality, the '*C-MFA model
was compared to flux balance analysis using five different objective functions (Supplemental
Figure 5) (Schuetz et al., 2007). Based on the SSRs between the MFA fluxes and FBA fluxes, the
metabolism of R. opacus is most closely optimized to maximize the production of energy
molecules rather than the production of biomass or fatty acids or the minimization of enzyme use
(Supplemental Figure 6). The high TCA cycle fluxes elucidated by '*C-MFA facilitate NADH,
and subsequently ATP production. The elevated priority of energy molecules is the tradeoff against
biomass growth with stress inducing aromatic substrates. Moreover, R. opacus flux topology does
not gear towards minimal usage of enzymes, allowing for metabolic flexibility to utilize

unconventional substrates.
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Figure 3. Flux and transcriptional analyses of R. opacus strains. (A) R. opacus PD630’s flux
map when phenol is the sole carbon source. The flux values are relative flux distributions based
on 100 mmol of phenol consumed by the cell to generate 100 mmol of influx toward both acetyl-
CoA and succinyl-CoA. Arrow color corresponds to the relative gene expression levels of the
enzyme that catalyzes the reaction (yellow/orange=low and green/blue=high). Arrow size
corresponds to relative flux. White arrows are fluxes to biomass formation. The dashed red arrow
is flux out of the cell. (B) The major sources and sinks of NADH, NADPH, and ATP in R.
opacus’s phenol metabolism (note: pyruvate dehydrogenase reaction was lumped with the EMP
pathway). (C) The transcript levels from wild type and an adapted strain (PVHG6) R. opacus
grown on glucose or phenol were compared for the following metabolisms: TCA cycle, anaplerotic
pathways, the glyoxylate shunt, the EDP, the EMP pathway, the pentose phosphate pathway,
transhydrogenation, and phenol consumption (Henson et al., 2018a).

Cofactor balance and energy metabolism. Phenol metabolism carries very low fluxes through
the oxidative pentose phosphate pathway, which is the major NADPH source for common glucose-
utilizing microbes (such as E. coli). Instead, significant TCA fluxes are responsible for generating

large amounts of NADH, NADPH, and ATP (Figure 3B). Unlike NADPH, which is primarily
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consumed in the formation of biomass, NADH is used for the oxidation of phenol to catechol and
the production of ATP. R. opacus can use NAD-dependent malic enzyme (PD630_RS12555, EC
1.1.1.38), but lacks NADP-dependent malic enzyme (EC 1.1.1.40). Consequently, most NADPH
generation occurs in the TCA cycle by NADPH-dependent isocitrate dehydrogenase
(PD630_RS13780), which explains the necessity to maintain high flux through the TCA cycle. A
search of R. opacus’s genome identified NAD(P) transhydrogenase subunit alpha
(PD630_RS39815). The transhydrogenase might further fine-tune the cofactor balance. On the
other hand, ATP can be generated directly by the TCA cycle (as GTP) and indirectly through
oxidative phosphorylation. ATP is needed mainly for biomass formation (in particular for lipid
synthesis) and other cellular processes (e.g., cell maintenance, substrate active transport, and
gluconeogenesis). Additionally, we calculated the intracellular energy charge based on LC-MS

measurements to determine the relative concentrations of ATP, ADP, and AMP (Energy Charge

__ [ATP]+2[ADP]
~ [ATP |+[ADP |+[AMP]

) (Supplemental Figure 7). Phenol-fed cultures have an energy

charge of ~0.9, indicating that the concentration of ATP is much greater than that of ADP and
AMP combined. Glucose-fed cultures have a comparable energy charge (~0.85). An explanation
for this similarity is that, during aerobic growth, the NADH synthesized from either substrate can
be effectively used via oxidative phosphorylation to generate ATP (Figure 3B). These results
along with FBA results demonstrate that R. opacus has sufficient energy carrying molecules to

support the production of high energy biofuels from different feedstocks.

RNA-seq analysis of flux network. RNA-seq was used to compare transcriptional regulation

between conditions (Figure 3, Supplemental Table 1). It is important to note that while
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transcriptomics can illuminate how genes are regulated, it does not strictly correlate to enzyme
activities or flux values due to variations in translational rate and allosteric regulation. Using data
generated in the previous report, we compared the transcription levels of central pathway enzymes
in glucose- and phenol-fed cultures of wild type R. opacus and R. opacus PVHG6, a mutant strain
which was adaptively evolved for improved growth on a mixture of aromatic compounds (Figure
3C) (Henson et al., 2018a). When consuming glucose, R. opacus expressed phenol hydroxylase at
low levels, while its key enzymes for glycolysis are mostly highly expressed. During phenol
utilization, R. opacus’ isocitrate lyase (PD630_RS29445) was highly expressed, but the glyoxylate
shunt flux was low.

Gluconeogenesis, which is required when phenol is the sole carbon source, is typically thought to
occur through the EMP pathway operating in reverse. However, the 3C-MFA model suggests that
the EDP enzymes (in the reverse direction) also play a role in R. opacus. Transcriptomic data was
used to investigate this finding. Despite its low transcription levels in glucose cultures, the EDP
was found to be the main route for glucose consumption in R. opacus (Hollinshead et al., 2015).
The EDP has comparable transcription levels in phenol-fed cultures and glucose cultures, and this
suggests that it is active in the reverse direction when phenol is the carbon source. When running
in reverse, the EMP pathway uses most of the same enzymes as it does when it runs forward, with
the exception of conversion between FBP to F6P and pyruvate to phosphoenolpyruvate (PEP). In
the glycolytic direction, F6P is converted to FBP by 6-phosphofructokinase (PD630_RS14990);
in the gluconeogenic direction, FBP — F6P occurs via fructose-1,6-bisphosphatase
(PD630_RS11880). Interestingly, the number of transcripts of fructose-1,6-bisphosphatase is
lower in phenol cultures than in glucose cultures (Supplemental Table 1), implying fructose-1,6-

bisphosphatase activity is reduced during phenol metabolism. Additionally, the gene encoding

19



399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

pyruvate dikinase (PD630_RS11565, pyruvate — PEP) has very low expression levels during
phenol metabolism. Therefore, the anaplerotic reaction via phosphoenolpyruvate carboxykinase
(PD630_RS08140, oxaloacetate — PEP) is indispensable for supporting gluconeogenic fluxes.
Intriguingly, the aromatic mixture adapted strain, PVHG6, was found to express pyruvate dikinase
and succinyl-CoA ligase at higher rates than the wild type in phenol culture, which may facilitate

aromatic utilization and tolerance.

Pulse-Trace labeling and metabolite pool measurement. The gluconeogenesis pathways were
further investigated with a '3C-pulse experiment (Figure 4A, 4B, Supplemental Figure 8).
Conceptually, metabolites with the highest flux are expected to incorporate '*C carbon most
rapidly. The labeling order of glycolysis metabolites observed in phenol-fed cultures is the reverse
of that in glucose-fed metabolism: phosphoenolpyruvate (PEP) was labeled first followed closely
by 3-phosphoglycerate (3PG). Fructose-bis-phosphate (FBP) was found to be labeled significantly
faster than fructose-6-phosphate (F6P) (P=0.03). This may be due to a combination of the
thermodynamic barrier between FBP and F6P (i.e., reaction Gibbs free energy favors flux from
F6P to FBP), the small pool size of FBP (Figure 4C), and the low transcription levels of fructose-

1,6-bisphosphatase (Figure 3C, Supplemental Table 1).

The intracellular metabolite concentrations, or pool sizes, were measured for R. opacus
cultures grown on glucose and phenol at stationary and exponential time points (Figure 4C). Cells
growing exponentially on phenol have very high quantities of TCA cycle intermediates. However,
their intracellular concentrations of fructose-bis-phosphate (FBP), dihydroxyacetone phosphate
(DHAP), and glyceraldehyde-3-phosphate (GAP) are at minimum 10-fold lower than those of E.

coli. This offers thermodynamic evidence for high TCA cycle fluxes paired with low reverse EDP
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422  and gluconeogenic fluxes. Compared to glucose-fed E.coli, phenol-fed R. opacus has relatively
423  low citrate concentrations. This may be the result of a highly active isocitrate dehydrogenase, an
424  enzyme needed for both aKG and NADPH production. Also, R. opacus has relatively high
425  concentrations of a-ketoglutarate (aKG), especially during exponential growth. An explanation is
426  that succinyl-CoA/succinate accumulation from phenol degradation inhibits a-ketoglutarate
427  dehydrogenase (aKG — succinyl-CoA), leading to excess amounts of aKG (note: both succinate
428 and aKG were detected in the supernatant). Therefore, succinyl-CoA is likely a bottleneck node

429  causing metabolite overflow during phenol metabolism.
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Figure 4. Dynamic labeling and metabolite pool size measurement. (A) Pulse-trace labeling
data from cultures that were quenched within one minute after '*C phenol was added. Asterisk (*)
indicates that the difference between F6P and FBP values is statistically significant (P < 0.05, one
mean, two-tailed Student's t-test). (B) A simplified metabolic map of the ED and EMP pathways
annotated with 1 being the fastest labeled metabolite and 7 being the slowest. (C) Intracellular
metabolite concentrations relative to those in glucose-fed E. coli (used as internal standards).

Phenol co-utilization with other substrates. Industrial applications of R. opacus will require
growth on lignin hydrolysates, which contain a heterogeneous mixture of compounds (Beckham
et al., 2016). Notably, R. opacus can consume aromatic compounds simultaneously with glucose
without exhibiting catabolite repression (Hollinshead et al., 2015). However, it was found that R.
opacus consumes some aromatic compounds sequentially, rather than concurrently (Henson et al.,
2018a). Here we further investigated co-metabolism of phenol with competing substrates (glucose,
acetate, succinate, and benzoate) (Figure SA, 5B, 5C). Our findings for phenol-glucose cultures
are consistent with the previous report, finding no interaction between the two substrates. A
separate study observed that phenol degradation enzyme transcripts in Rhodococcus erythropolis
CCM2595 were downregulated in the presence of succinate (Szokol et al., 2014). Yet, when
phenol and succinate were co-fed in our experiment, phenol was dominantly used (>90% of carbon
originated from phenol). Since phenol metabolism produces excessive succinate, R. opacus may
repress the utilization of external succinate in order to preferentially consume the toxic compound.
Similarly, R. opacus can co-utilize phenol and acetate, and phenol is preferred (~70% of
proteinogenic carbon originated from phenol). On the other hand, benzoate was found to be
utilized faster than phenol (Figure 5B, 5C).

Three experiments were performed to elucidate the interaction of phenol and benzoate. In
the first experiment, amino acid labeling was used to quantify the relative uptake rate between

benzoate and phenol (Figure 5B). We found that the ratio of benzoate/phenol uptake rate
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(calculated via '*C labeling data) during early growth phase showed a linear relation to the
concentration ratio of the two substrates in the media (Supplemental Figure 9). When cells grew
in media containing equal moles of fully labeled phenol and unlabeled benzoate, the proteinogenic
amino acids contained ~90% '°C carbon from benzoate. This result indicates that the wild type
strain consumes both substrates, but its benzoate utilization is much faster than its phenol
utilization. The second experiment examined how the concentrations of benzoate and phenol in
the media decreased over time (Figure SC). We validated that benzoate serves as the main carbon
source when both benzoate and phenol are present: phenol was consumed slowly in the presence
of benzoate, and its consumption increased once benzoate was nearly exhausted. Lastly, a benzoate
pulse was given into fully-labeled phenol-fed, exponentially growing cultures to investigate the
rate at which unlabeled benzoate enters into the central metabolism of R. opacus (Figure SD). To
consider contribution of CO; fixation to the unlabeled carbon percentage (Hollinshead et al.,
2015), we included no-pulse controls with which the benzoate-pulsed cultures were compared
(using one mean, two-tailed Student’s t-test). When the phenol growing R. opacus was quenched
within 20 seconds of a benzoate pulse, little amount of carbon from benzoate had entered the
central metabolism (e.g., P values = 0.11 for aKG). In contrast, at 10 minutes, a significant amount
of carbon had been incorporated into central metabolites from the added benzoate (P < 0.05 for
aKG, PEP, and G6P), which indicate phenol catabolism in R. opacus could be quickly shifted to
benzoate utilization without long lag phase.

The downstream products of phenol are acetyl-CoA and succinyl-CoA. To investigate how
these two substrates interact, we grew R. opacus in media containing fully labeled acetate and
unlabeled succinate (1 g/L each) (Figure SE). We hypothesized that acetate would be preferred

over succinate since succinate is not fully consumed in phenol metabolism. GC-MS measurements
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482  showed that R. opacus prefers acetate, as the carbon in its amino acids was mostly derived from
483  acetate (~70%). This observation further confirmed that the metabolite nodes succinate/succinyl-

484  CoA might be the rate limiting steps during phenol metabolism, leading to flux congestion.
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488  Figure 5. Mixotrophic phenol metabolism. (A) The contribution of phenol-derived carbon to
489  amino acids in the presence of 0.5 g/L. U-'3C phenol and 1 g/L of unlabeled glucose, acetate, or
490  succinate. Samples were taken at early exponential growth (ODso0=0.4~0.5) when both substrates
491  remained in the media. (B) The contribution of phenol to the production of amino acids in the
492  presence of 0.5 g/L U-3C phenol and decreasing concentrations of unlabeled benzoate. Samples
493  were taken at early exponential growth phase (ODgpo=0.25~0.3) when both substrates remained in
494  the media. The bars correspond to the relative uptake rate of phenol compared to that of benzoate.

24



495
496
497
498
499
500
501
502

503

504

505
506
507
508

509

510

511

512

513

514

515

(C) The supernatant concentrations of phenol and benzoate over time when the starting
concentration of U-'3C phenol was 0.5 g/L and the starting concentration of benzoate was varied.
(D) The contribution of benzoate-derived carbon to central metabolites at 20 seconds, 10 minutes,
and 3 hours after a benzoate pulse into phenol-fed cultures. Asterisk (*) indicates that the
difference between labeling is statistically significant (P < 0.05, one mean, two-tailed Student's t-
test) (E) The contribution of acetate to amino acids in the presence of 1 g/L U-'3C acetate and 1
g/L. unlabeled succinate. Figures SA, 5B, 5C, and 5D represent data from biological duplicates.
Figure 5E represents data from technical triplicates.
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Figure 6. The amino acid labeling pattern of wild type R. opacus and three mutant strains
when grown on 1-'3C phenol (From left to right: wild type, phenol-adapted strain P1, benzoate-
adapted strain B2, and aromatic-mixture-adapted strain PVHG6; m+n = unlabeled mass m plus n
labeled carbons).

Mutant flux network after adaptive evolution. In a previous report, R. opacus was adaptively
evolved to tolerate high concentrations of various aromatic compounds, including phenol,
benzoate, vanillate, 4-hydroxybenzoate, and guaiacol (Henson et al., 2018a). Three mutant strains
(P1, B2, and PVHG6) were obtained via adaptive evolution on increasing concentrations of phenol
(P), benzoate (B), or a mixture of phenol, vanillate, 4-hydroxybenzoate, and guaiacol (PVHG),

respectively. These mutant strains were found to have distinct mutations and different growth
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profiles when provided with a mixture of phenol, vanillate, 4-hydroxybenzoate, guaiacol, and
benzoate as a carbon source. To determine whether these mutations altered flux through central
pathways, these evolved strains were grown on 0.5 g/L of 1-13C phenol, and the resulting amino
acid labeling patterns were compared to that of the wild type strain (Figure 6). Adapted stains, P1
and PVHG6 showed similar growth rates on phenol as that of the wild type (P=0.70 and P=0.11,
respectively) (Supplemental Table 2). The benzoate-adapted strain showed reduced growth on
phenol compared to the wild type strain, only reaching an ODgoo value of 0.2 after 50 hours
(P=3.7x107), and a maximum growth rate of 0.10 hr'! (P=0.01). This supports previous findings
that while adaptive evolution can help improve specific microbial traits, its untargeted nature can
result in unexpected negative consequences or tradeoffs in other traits (Yi and Dean, 2016).
Despite the growth defect in the benzoate-adapted strain, all three adapted strains produced amino
acid labeling similar to the wild type, where the variances in labeling data were generally less than
2% (suggesting the invariability of relative flux distributions for biomass synthesis). This provides
strong evidence that substrate adaptive evolution did not rewire the central flux network, which is

a testament to the rigidity of fluxes during adaptive evolutions (Long et al., 2017).

Conclusion and Perspectives

Recently, non-model organisms are gaining attention for addressing challenges in bio-
manufacturing from renewable feedstock (Czajka et al., 2017). Researchers leverage innate
metabolic strengths of non-model species, including their tolerance and utilization abilities for
toxic lignin-derived aromatics. However, rational strain engineering, which is routinely done for
model organisms, cannot be done until the complex metabolic networks of these microbes are
better understood. In this work, we analyzed the aromatic metabolism in R. opacus, one of the
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promising non-model organisms for lignin bioconversion, using a concerted systems biology
approach. Importantly, this is the first reported '*C-metabolic flux analysis completed in any
organism using phenol as the sole carbon source. This study also shows that '3C tracing is a
powerful tool to precisely elucidate these functional pathways with annotation gaps and to
determine the time-scale of metabolic responses. Moreover, we established key links between the
transcriptome, metabolome, and fluxome of this organism, and uncovered or confirmed some of
its mechanisms for aromatic utilization.

By detailing R. opacus’ metabolic network, this work offers guidelines for developing this
species as a bio-manufacturing host. First, phenol-fed R. opacus shows strong fluxes through its
TCA cycle. Thus, this host is ideal for producing chemicals derived from TCA cycle intermediates
(e.g., acetyl-CoA and a-ketoglutarate). In contrast, its fluxes from phenol through gluconeogenesis
are small, making it undesirable to redirect sugar phosphate metabolites as precursors for bio-
manufacturing. Second, we investigated the carbon source utilization hierarchy of R. opacus.
Interestingly, this strain utilizes glucose and phenol simultaneously without catabolite repression,
preferentially consumes a toxic aromatic compound (phenol) over succinate and acetate, and uses
benzoate faster than phenol. Since lignocellulosic degradation products are mixtures of
compounds, R. opacus’s co-utilization patterns will help to develop predictive metabolic models
as well as guide future metabolic engineering efforts toward more-efficient conversion of
lignocellulose to biofuels and biochemicals. Combining our findings from this work with our
previous reports (Hollinshead et al., 2015; Henson et al., 2018a; Henson et al., 2018b, Yoneda et
al., 2016), we are developing a genome-scale metabolic model that enables prediction of metabolic
fluxes for diverse carbon sources. Quantitative flux profiles obtained through '3C-MFA provide

an accurate description of internal metabolism that is invaluable when deciding future metabolic
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engineering approaches. For example, these flux profiles can be used in conjunction with methods
like ROOM or MOMA to predict the effect of knockouts on metabolism and to offer computer
aided strain design (Martin et al., 2015; Ando and Martin, 2018). Third, '*C analysis of the
adaptively-evolved strains shows that their genetic differences do not lead to different flux
networks. Recently, reliable genetic parts and engineering tools have been developed for R.
opacus, allowing for gene expression control and genome modification in this strain (Delorenzo
etal., 2017; Delorenzo et al., 2018). Future work will investigate how model-guided perturbations
of its metabolism (e.g., knockouts and overexpression), as opposed to adaptive evolution, affects
R. opacus’s flux network. With the '3C-MFA model and detailed information regarding R. opacus’
metabolic network provided from this work, future metabolic engineering efforts will be

prediction-driven, speeding up its development as a bio-manufacturing host.

Data Availability

1. Supplemental tables and figures

2. Flux model construction and isotopomer data
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3PG = 3-phosphoglycerate
6PG = 6-phosphogluconic acid
AcCoA = acetyl-CoA
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aKG = a-ketoglutarate

Asx = aspartate and asparagine

Cit = citrate

DHAP = dihydroxyacetone phosphate

E4P = erythrose-4-phosphate

Fum = fumarate

F6P = fructose-6-phosphate

FBP = fructose-1,6-phosphate

GI1P = glucose-1-phosphate

G1,3P = glycerate-1,3-phosphate

G2P = glycerate-2-phosphate

G6P = glucose-6-phosphate

GAP = glyceraldehyde-3-phosphate

Glx = glutamate and glutamine

ICit= isocitrate

KDPG = 2-dehydro-3-deoxy-phosphogluconate
Mal = malate

OAC = oxaloacetate

PEP = phosphoenolpyruvate

Pyr = pyruvate

R5P = ribose-5-phosphate

Ru5P = ribulose-5-phosphate

Suc = succinate

SucCoA = succinyl-CoA

TA-C3 = 3-carbon fragment transferred by transaldolase
TK-C2 = 2-carbon fragment transferred by transketolase

X5P=xylose-5-phosphate
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Table and Figure Captions

Table 1. A summary of the growth rate, corresponding doubling times (tp), and maximum
optical density of R. opacus on four different carbon substrates. All data presented is the
average of biological triplicates + standard deviation.

Figure 1. The distribution of amino acids (A) and fatty acids (B) in R. opacus with three
different carbon sources. Asx = aspartate/asparagine and Glx = glutamate/glutamine; fatty acids
are denoted as carbon chain length: number of unsaturated bonds, with a B indicating branching.
Error bars are estimates of technical uncertainty.

Figure 2. 1-3C phenol catabolism in R. opacus is through the ortho-cleavage. GC-MS data of
alanine gives labeling data for pyruvate. The [M-57]* and [M-85]* fragments were used to
determine the labeling of each carbon of pyruvate. The labeling of pyruvate closely matches the
expected labeling for phenol catabolism through the ortho branch. A detailed tracing is shown in
Supplemental Figure 1.

Figure 3. Flux and transcriptional analyses of R. opacus strains. (A) R. opacus PD630’s flux
map when phenol is the sole carbon source. The flux values are relative flux distributions based
on 100 mmol of phenol consumed by the cell to generate 100 mmol of influx toward both acetyl-
CoA and succinyl-CoA. Arrow color corresponds to the relative gene expression levels of the
enzyme that catalyzes the reaction (yellow/orange=low and green/blue=high). Arrow size
corresponds to relative flux. White arrows are fluxes to biomass formation. The dashed red arrow
is flux out of the cell. (B) The major sources and sinks of NADH, NADPH, and ATP in R.
opacus’s phenol metabolism (note: pyruvate dehydrogenase reaction was lumped with the EMP
pathway). (C) The transcript levels from wild type and an adapted strain (PVHG6) R. opacus
grown on glucose or phenol were compared for the following metabolisms: TCA cycle, anaplerotic
pathways, the glyoxylate shunt, the EDP, the EMP pathway, the pentose phosphate pathway,
transhydrogenation, and phenol consumption (Henson et al., 2018a).

Figure 4. Dynamic labeling and metabolite pool size measurement. (A) Pulse-trace labeling
data from cultures that were quenched within one minute after '*C phenol was added. Asterisk (*)
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indicates that the difference between F6P and FBP values is statistically significant (P < 0.05, one
mean, two-tailed Student's t-test). (B) A simplified metabolic map of the ED and EMP pathways
annotated with 1 being the fastest labeled metabolite and 7 being the slowest. (C) Intracellular
metabolite concentrations relative to those in glucose-fed E. coli (used as internal standards).

Figure 5. Mixotrophic phenol metabolism. (A) The contribution of phenol-derived carbon to
amino acids in the presence of 0.5 g/L. U-'3C phenol and 1 g/L of unlabeled glucose, acetate, or
succinate. Samples were taken at early exponential growth (ODeoo=0.4~0.5) when both substrates
remained in the media. (B) The contribution of phenol to the production of amino acids in the
presence of 0.5 g/L. U-'3C phenol and decreasing concentrations of unlabeled benzoate. Samples
were taken at early exponential growth phase (ODgoo=0.25~0.3) when both substrates remained in
the media. The bars correspond to the relative uptake rate of phenol compared to that of benzoate.
(C) The supernatant concentrations of phenol and benzoate over time when the starting
concentration of U-'3C phenol was 0.5 g/L and the starting concentration of benzoate was varied.
(D) The contribution of benzoate-derived carbon to central metabolites at 20 seconds, 10 minutes,
and 3 hours after a benzoate pulse into phenol-fed cultures. Asterisk (*) indicates that the
difference between labeling is statistically significant (P < 0.05, one mean, two-tailed Student's t-
test) (E) The contribution of acetate to amino acids in the presence of 1 g/ U-'*C acetate and 1
g/L unlabeled succinate. Figures SA, 5B, 5C, and 5D represent data from biological duplicates.
Figure SE represents data from technical triplicates.

Figure 6. The amino acid labeling pattern of wild type R. opacus and three mutant strains
when grown on 1-13C phenol (From left to right: wild type, phenol-adapted strain P1, benzoate-
adapted strain B2, and aromatic-mixture-adapted strain PVHG6; m+n = unlabeled mass m plus n
labeled carbons).
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