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Motivation

o Uncertainty quantification (UQ) in computational predictions of
physical systems is useful for

o Hypothesis testing, model comparison, and validation
O Decision support
o Estimation of model error
o Optimal experimental design
O Optimization under uncertainty (OUU)

o Challenges for UQ in systems of practical interest arise from:

o High dimensionality
o Model complexity and computational cost
• Optimization under uncertainty

• Scramjet application

o Challenging computational problem
o Relevant engineered system of practical interest
o Limited data available from ground and flight testing - high uncertainty
o Challenging design under uncertainty problem
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Project Goal

o Advance the state of the art in UQ methods and software, targeting
challenges with

o High dimensionality
o Model complexity and computational cost
• Optimization under uncertainty

o Demonstrate these capabilities, with effective handling of these
challenges, in Large Eddy Simulation (LES) of a laboratory scale
Scramjet combustor

o NASA Langley Hypersonic International Flight Research and
Experimentation (HIFiRE) configuration
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Approach

o Employ RAPTOR LES code for Scramjet flow computations

• 3D hypersonic multiphase turbulent combustion
✓ Adapt as needed for UQ purposes
o Evolve from simpler jet-in-crossflow problem to full Scramjet flow

o High Dimensionality - identify important uncertain parameters

o Global sensitivity analysis, PC regularization, compressive sensing
o Adaptive selection of computational sparse quadrature samples
✓ Adaptive basis and low-dimensional manifold samplin
o Multi-level Multi-fidelity (MLMF) methods

o Model complexity

o Employ statistical embedded model-error constructions
o Account for uncertainty due to discretization error given coarse meshes
o MLMF methods minimize #requisite fine-mesh high-fidelity runs

* Optimization under uncertainty

o DAKOTA library for MLMF & UQ/statistics evaluation
o SNOWPAC library for stochastic optimization
o Develop software workflows coupling DAKOTA, SNOWPAC, & RAPTOR
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o The application code, RAPTOR, is central to all activities

o Inverse UQ estimates uncertain inputs, and model and mesh error

o Mesh and model error sources of uncertainty feeding to forward UQ.

o Forward UQ provides estimation of uncertainty in model outputs

o Optimization under uncertainty couples all the above

RAPTOR

Mesh & Model Error

Forwa d UQ

v

Inverse UQ

Optimization Under Uncertainty
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LES Code Highlights
What weve done

HIFiRE Scramjet

Multiscale-multiphysics application of
Large Eddy Simulation (LES)

HDCR
4Ii

• Provided benchmark LES calculations of the
Hypersonic Intemational Flight Research Experiment
(HIFIRE) to support development of UQ

• Case of interest corresponds to the geometry and
conditions of ground based experiments performed
in the HIFiRE Direct Connect Rig (HDCR)

• A hierarchy of unit cases (including high-fidelity LES
of the HDCR) has facilitated UQ tasks and provided
optimal workflow between team members

• Unit cases are designed to emulate key QoIs while
making comprehensive parametric studies possible

State of
the Art LES
("P2" Case)
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RAPTOR I
with Dak

/O has been instru
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interface

Cavity Height

Inlet:

• Stagnation Pressure

• Stagnation Temperature
• Mach Number

• Turbulence Intensity
• Turbulence Length Scale
• Boundary Layer Thickness

Primary Injector:

• Equivalence Ratio

• Stagnation Temperature
• Mach Number
• Turbulence Intensity
• Turbulence Length Scale
• Axial Position
• Injection Angle

Secondary Injector:

• Equivalence Ratio

• Stagnation Temperature
• Mach Number
• Turbulence Intensity
• Turbulence Length Scale

Performance Metrics:

• Thermal Efficiency
• Phi-Burn (>= 0.7)
• Location of Leading Shock
• Bulk Loss in Stagnation Pressure
• Magnitude of Pressure Oscillations
• Combustion Chamber M > 1 (Scram Mode)
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Instantaneous low Structure - 2D d32
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Scramjet Mean Flow Structure - z-inj-cut - 3D d16
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Scramjet Mean Flow Structure - z-O-cut - 3D d16
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Scramjet RMS Flow Structure - z-i j-cut - 3D d16
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Scramjet R S Flow Structure - z-0- ut - 3D d16
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Scramjet Skin conditions - 3D d16

T [K]

3 00 2 .8e + 03

T me:m [KJ

670

T rms [K]

200

5

2.7e+03

600

700

1111111111111=1,
.

P mean [bar]

0 8 1 1.2

1.4

SNL Najrn Scrarnjet1.10 13 / 24



Instantaneous Flow Structure - z-i j-cut - 3D d16
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Scramjet Flow Structure and Dynamics
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Scramjet Flow Structur and Dynamics
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Computational CI nsiderations

G, 3D d08 : Ax 0.4 mm, At 47 ns

• Reair 380,000 and Mai, 2.5

• Meshes and CPU cost:

Grid Spacing Total Cells in 2D Grids Total Cells in 3D Grids

dp/8 64,500 (20 CPU-Hrs/FTT) 4,128,000 (10,240 CPU-Hrs/F1-1)

dp/16 258,000 (160 CPU-Hrs/FTT) 33,024,000 (163,840 CPU-Hrs/Rfl )

dp/32 1,032,000 (1,280 CPU-Hrs/FTT) 264,192,000 (2,621,440 CPU-Hrs/F1-1)

dp/64 4,128,000 (10,240 CPU-Hrs/FIT) 2,113,536,000 (41,943,040 CPU-Hrs/1. I I)

CPU hours given for 1 flow-through-time (FIT) in P2 geometry.

• Global chemistry model:

CH4 + 1 02 CO + 2 H20

C2H4 + 2 02 2 CO + 2 H20

2 CO + 02 = CO2
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Our UQ visi d Forward U0

• Intrinsic dimensionality for smooth observables from physical
systems is generally low

co Employ a suite of methods and robust software for discovering
underlying low-dimensional sparse representation
• Global sensitivity analysis
o Polynomial Chaos (PC) surrogates
• Compressive sensing - -norm regression
o Greedy basis growth
• Multilevel Multifidelity (MLMF) strategy for computational samples

fa Forward UQ; adaptive sparse quadrature; reduced parameter space

o Develop new methods for basis adaptation
• Discover optimal basis rotation for low-order representations

o Develop new methods for discovery of low-dimensional manifolds
• Data analysis; discover manifold structure in computational results
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Our UQ vision -

o Designate complex model as "truth"

o Designate simple model of interest as "model"

• Represent the discrepancy between model predictions and truth as
a statistical model, embedded in the governing equations

o Embed in model components where approximations have been made

o Estimate parameters of model error representation using Bayesian
inference, given truth data

• Goal is to ensure that predictions with the calibrated model exhibit a
degree of uncertainty that is representative of the discrepancy from
the truth

o Analysis of model-error embedding in different submodels allows
diagnostic exploration after the component where model
misspecification is most responsible for discrepancy in predictions
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Our UQ vision - Mesh Error

o Large-scale models of physical systems are often run at
coarse-mesh resolution due to computational feasibility constraints

- Results are a function of the mesh
- Mesh error is not ''small"
- Models are calibrated for a given mesh - e.g. climate

models

e Mesh discretization error needs to be estimated and incorporated as
part of the uncertainty in predictions

o We are developing and evaluating two approaches for estimation of
mesh error

- Random field modeling
- Variational multiscale method
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Our UQ vision - Bayesian Inference

o Uncertain model parameters need to be estimated using a
combination of

o Expert knowledge
✓ Experimental HIFiRE data

o Rely on Bayesian inference, addressing:
o High-dimensionality
o Computational cost

o Use Markov chain Monte Carlo (MCMC)

o Employ polynomial chaos model surrogates, built from
GSA/ForwardUO, instead of RAPTOR, in the Likelihood function

co Advance the state of the art in Likelihood Informed Subspace (LIS)
methods to non-intrusively identify relevant, hopefully
low-dimensional, parameter subspaces where data is informative
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Our UQ vision - odel Complexity

o Make use of computations over a range of

- mesh resolution
- model fidelity

to provide information on uncertain predictive Qols

o Rely on multi-level multi-fidelity (MLMF) UQ methods

o Incorporate MLMF strategies wherever possible

- Global sensitivity analysis
- Sparse quadrature and forward UQ/surrogate construction
- Optimization under uncertainty (OUU)

o Explore connections between MLMF, model error, and mesh error
methods
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Our UQ vision - Optimization Under U

o Optimization under uncertainty is required for ensuring that optimal
designs are robust to uncertainty/variability in parameters and/or
operating conditions

o Uncertainty raises the need for risk-aware optimization targets

o Uncertainty increases the difficulty of the optimization problem

- Increases dimensionality: design + uncertain params
- Integration over uncertain parameters for each design point

• Statistical Qols from large-scale models are typically noisy

- Spatiotemporal averaging with finite sample size

o Employ surrogates, constructed from model runs, as needed

co Rely on MLMF and Trust Region Model Mgmt (TRMM) methods

o Couple DAKOTA with SNOWPAC stochastic optimization library
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