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@ Uncertainty quantification (UQ) in computational predictions of
physical systems is useful for

Hypothesis testing, model comparison, and validation

Decision support

Estimation of model error

Optimal experimental design

Optimization under uncertainty (OUU)

@ Challenges for UQ in systems of practical interest arise from:
o High dimensionality
o Model complexity and computational cost
e Optimization under uncertainty

@ Scramijet application

o Challenging computational problem

o Relevant engineered system of practical interest

e Limited data available from ground and flight testing - high uncertainty
o Challenging design under uncertainty problem
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Project Goals

@ Advance the state of the art in UQ methods and software, targeting
challenges with
e High dimensionality
@ Model complexity and computational cost
e Optimization under uncertainty
@ Demonstrate these capabilities, with effective handling of these
challenges, in Large Eddy Simulation (LES) of a laboratory scale
Scramijet combustor
o NASA Langley Hypersonic International Flight Research and
Experimentation (HIFIiRE) configuration
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Approach

@ Employ RAPTOR LES code for Scramjet flow computations
o 3D hypersonic multiphase turbulent combustion
o Adapt as needed for UQ purposes
e Evolve from simpler jet-in-crossflow problem to full Scramijet flow
@ High Dimensionality - identify important uncertain parameters
o Global sensitivity analysis, PC regularization, compressive sensing
Adaptive selection of computational sparse quadrature samples

]
o Adaptive basis and low-dimensional manifold samplin
o Multi-level Multi-fidelity (MLMF) methods

@ Model complexity

e Employ statistical embedded model-error constructions
@ Account for uncertainty due to discretization error given coarse meshes
e MLMF methods minimize #requisite fine-mesh high-fidelity runs

@ Optimization under uncertainty

o DAKOTA library for MLMF & UQ/statistics evaluation
o SNOWPAC library for stochastic optimization
e Develop software workflows coupling DAKOTA, SNOWPAC, & RAPTOR
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Integrated Project Structure

The application code, RAPTOR, is central to all activities

Inverse UQ estimates uncertain inputs, and model and mesh error
Mesh and model error sources of uncertainty feeding to forward UQ.
Forward UQ provides estimation of uncertainty in model outputs
Optimization under uncertainty couples all the above

RAPTOR

Mesh & Model Error

|
‘ Forward UQ Inverse UQ ’

‘ Optimization Under Uncertainty ‘
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LES Code Highlights - HIFIRE Scramijet

What weve done

Multiscale-multiphysics application of + Provided benchmark LES calculations of the
Large Eddy Simulation (LES) Hypersonic International Flight Research Experiment
(HIFIRE) to support development of UQ

« Case of interest corresponds to the geometry and
conditions of ground based experiments performed
in the HIFIRE Direct Connect Rig (HDCR)

« A hierarchy of unit cases (including high-fidelity LES
of the HDCR) has facilitated UQ tasks and provided
optimal workflow between team members

« Unit cases are designed to emulate key Qols while
making comprehensive parametric studies possible

the Art LES
("P2" Case)
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RAPTOR 1I/0O has been instrumented to interface

with Dakota and SNOWPAC

Cavity Height <|:

Inlet: Primary Injector: Secondary Injector:
« Stagnation Pressure « Equivalence Ratio « Equivalence Ratio

« Stagnation Temperature - Stagnation Temperature « Stagnation Temperature
* Mach Number * Mach Number * Mach Number

« Turbulence Intensity « Turbulence Intensity * Turbulence Intensity

« Turbulence Length Scale * Turbulence Length Scale « Turbulence Length Scale
« Boundary Layer Thickness  + Axial Position

* Injection Angle Performance Metrics:
» Thermal Efficiency

* Phi-Burn (>= 0.7)

* Location of Leading Shock [«
« Bulk Loss in Stagnation Pressure

» Magnitude of Pressure Oscillations

« Combustion Chamber M > 1 (Scram Mode)
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Instantaneous Flow Structure — 2D d32
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Scramjet Mean Flow Structure — z-inj-cut - 3D d16
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Scramjet Mean Flow Structure — z-O-cut - 3D d16
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Scramjet RMS Flow Structure — z-inj-cut - 3D d16
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Scramjet RMS Flow Structure — z-O-cut - 3D d16
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Scramijet Skin conditions - 3D d16
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Instantaneous Flow Structure — z-inj-cut - 3D d16
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Instantaneous Flow Structure — z-O-cut - 3D d16
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Temperature, K
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o Time step: 150000
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Computational Considerations

@ 3Dd08: Az ~ 0.4 mm, At ~ 47 ns
@ Re,; ~380,000and M,;, ~2.5
@ Meshes and CPU cost:

Grid Spacing Total Cells in 2D Grids Total Cells in 3D Grids
d,/8 64,500 (20 CPU-Hrs/FTT) 4,128,000 (10,240 CPU-Hrs/FTT)
d,/16 258,000 (160 CPU-Hrs/FTT) 33,024,000 (163,840 CPU-Hrs/FTT)

d,/32 1,032,000 (1,280 CPU-Hrs/FTT)| 264,192,000 (2,621,440 CPU-Hrs/FTT)
d,/64 4,128,000 (10,240 CPU-Hrs/FTT) |2,113,536,000 (41,943,040 CPU-Hrs/FTT)
CPU hours given for 1 flow-through-time (FTT) in P2 geometry.

@ Global chemistry model:
CH,+20, —CO+2H,0
CH,+20, —2CO+2H,0
2CO+0, =CO,
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Our UQ vision - High Dimensionality and Forward UQ

@ Intrinsic dimensionality for smooth observables from physical
systems is generally low

@ Employ a suite of methods and robust software for discovering
underlying low-dimensional sparse representation
o Global sensitivity analysis
Polynomial Chaos (PC) surrogates
Compressive sensing - £, -norm regression
Greedy basis growth
Multilevel Multifidelity (MLMF) strategy for computational samples

© © 6 ¢

@ Forward UQ; adaptive sparse quadrature; reduced parameter space
@ Develop new methods for basis adaptation
e Discover optimal basis rotation for low-order representations
@ Develop new methods for discovery of low-dimensional manifolds
e Data analysis; discover manifold structure in computational results
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Our UQ vision - Model Error

@ Designate complex model as “truth”
@ Designate simple model of interest as “model”

@ Represent the discrepancy between model predictions and truth as
a statistical model, embedded in the governing equations

e Embed in model components where approximations have been made

@ Estimate parameters of model error representation using Bayesian
inference, given truth data

@ Goalis to ensure that predictions with the calibrated model exhibit a
degree of uncertainty that is representative of the discrepancy from
the truth

@ Analysis of model-error embedding in different submodels allows
diagnostic exploration after the component where model
misspecification is most responsible for discrepancy in predictions
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Our UQ vision - Mesh Error

@ Large-scale models of physical systems are often run at
coarse-mesh resolution due to computational feasibility constraints
- Results are a function of the mesh
- Mesh error is not “small”
- Models are calibrated for a given mesh - e.g. climate
models
@ Mesh discretization error needs to be estimated and incorporated as
part of the uncertainty in predictions

@ We are developing and evaluating two approaches for estimation of
mesh error

- Random field modeling
- Variational multiscale method
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Our UQ vision - Bayesian Inference

@ Uncertain model parameters need to be estimated using a
combination of

e Expert knowledge
o Experimental HIFIRE data

@ Rely on Bayesian inference, addressing:
e High-dimensionality
o Computational cost
@ Use Markov chain Monte Carlo (MCMC(C)
@ Employ polynomial chaos model surrogates, built from
GSA/ForwardUQ, instead of RAPTOR, in the Likelihood function

@ Advance the state of the art in Likelihood Informed Subspace (LIS)
methods to non-intrusively identify relevant, hopefully
low-dimensional, parameter subspaces where data is informative
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Our UQ vision - Model Complexity

@ Make use of computations over a range of

- mesh resolution
- model fidelity

to provide information on uncertain predictive Qols
@ Rely on multi-level multi-fidelity (MLMF) UQ methods
@ Incorporate MLMF strategies wherever possible

- Global sensitivity analysis
- Sparse quadrature and forward UQ/surrogate construction
- Optimization under uncertainty (OUU)

@ Explore connections between MLMF, model error, and mesh error
methods
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Our UQ vision - Optimization Under Uncertainty (OUU)

@ Optimization under uncertainty is required for ensuring that optimal
designs are robust to uncertainty/variability in parameters and/or
operating conditions

Uncertainty raises the need for risk-aware optimization targets

Uncertainty increases the difficulty of the optimization problem

- Increases dimensionality: design + uncertain params
- Integration over uncertain parameters for each design point

Statistical Qols from large-scale models are typically noisy
- Spatiotemporal averaging with finite sample size

Employ surrogates, constructed from model runs, as needed
Rely on MLMF and Trust Region Model Mgmt (TRMM) methods
Couple DAKOTA with SNOWPAC stochastic optimization library
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