

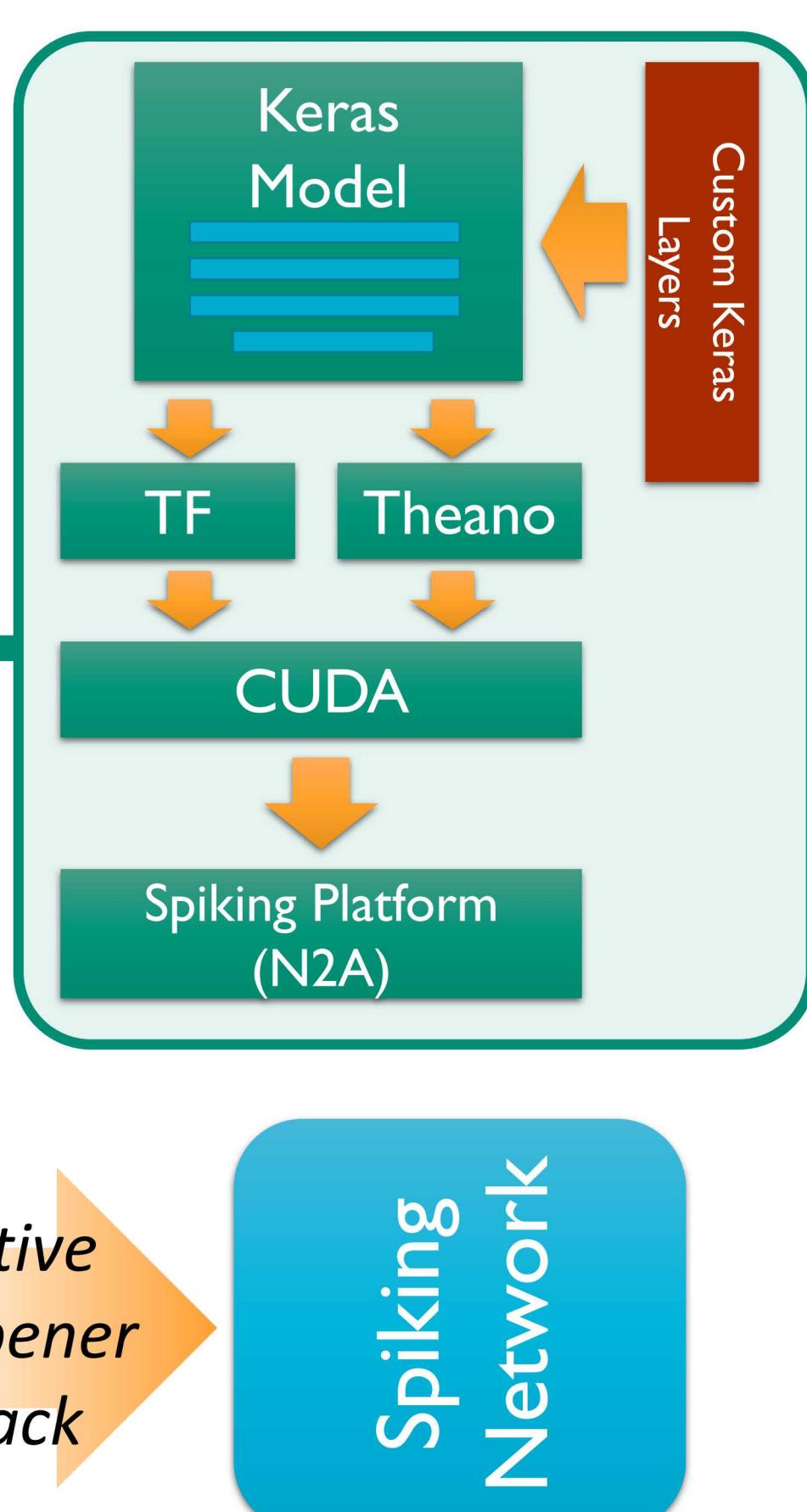
Whetstone: An accessible, platform-independent method for training spiking deep neural networks for neuromorphic processors

William Severa*, Ryan Dellana, Craig M. Vineyard and James B. Aimone

Sandia National Laboratories, Albuquerque, NM

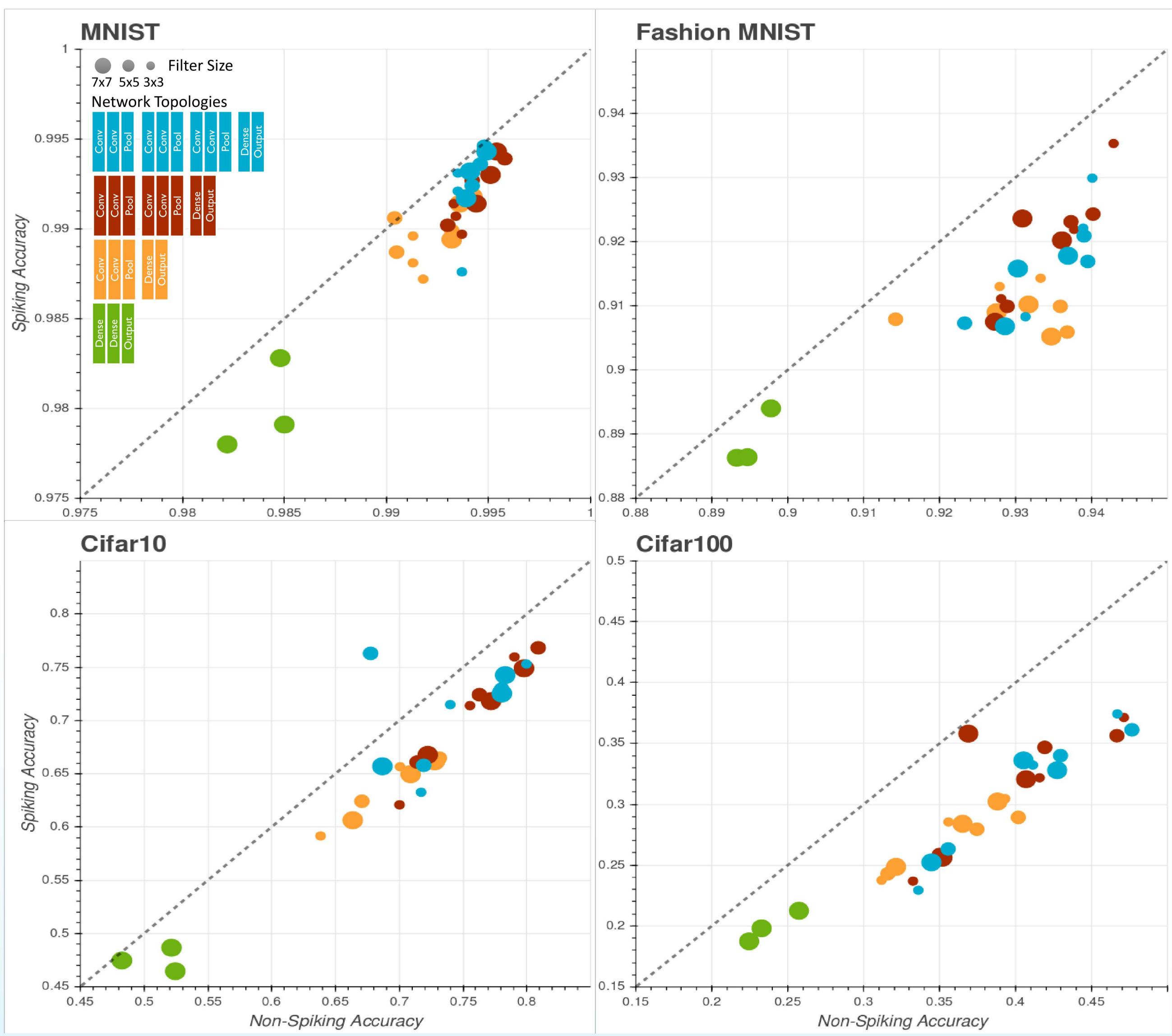
Utilizing Spiking Neuromorphic Hardware

- Traditional Deep Neural Networks operate best on high-powered GPU platforms
 - Cutting edge spiking neuromorphic platforms promise great improvements in performance per Watt
 - Threshold activation functions create fundamental training issues
 - Whetstone provides a drop-in mechanism for tailoring a DNN to a spiking hardware platform (or other binary threshold activation platforms)
 - Activation functions converge to a threshold activation *during training*



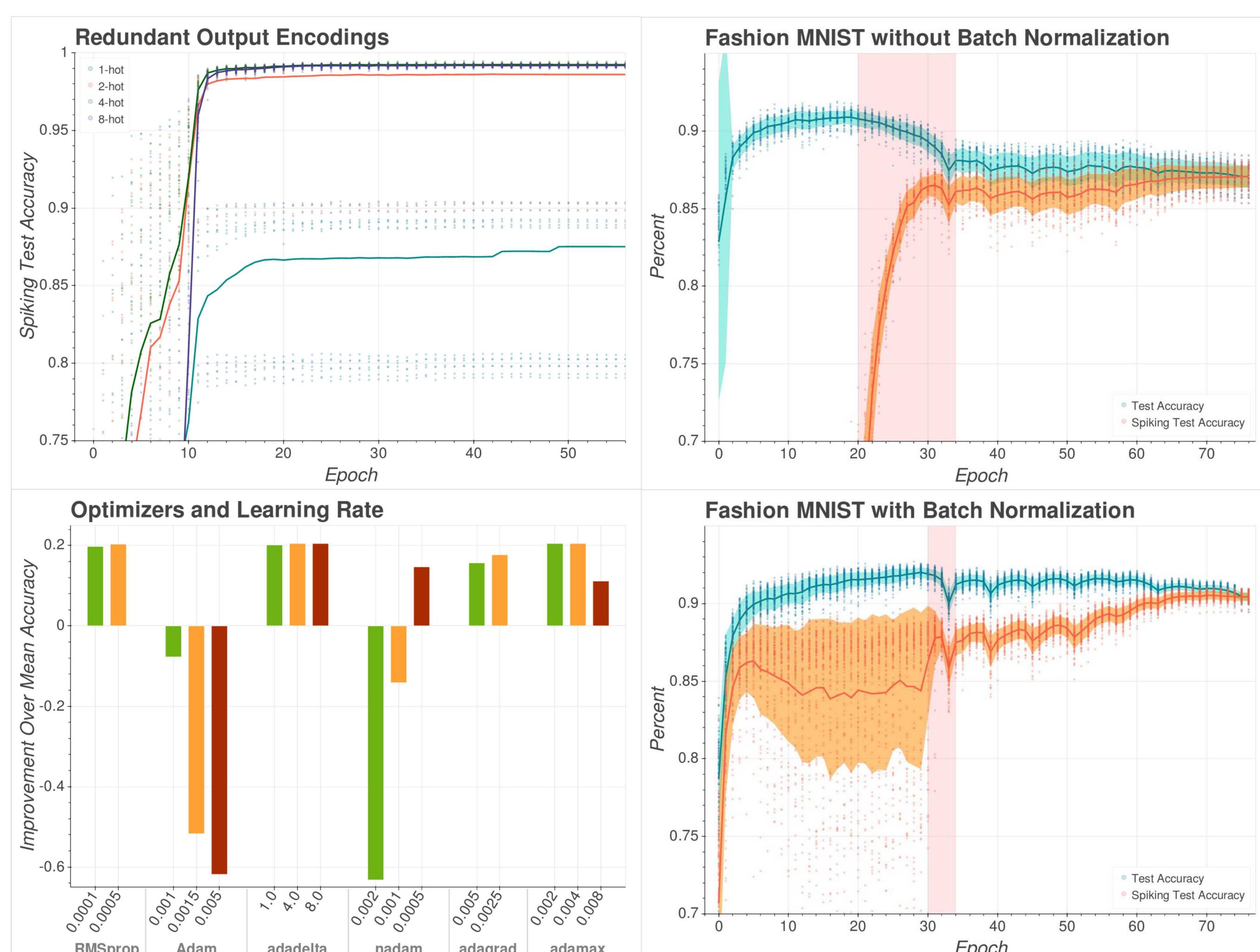
Model Modifications Ensure Minimum Accuracy Loss

- Modest performance losses across several datasets (MNIST, Fashion MNIST, Cifar10, Cifar100) on *unmodified network models*
 - Spiking Neural Networks are typically more brittle than traditional deep neural networks
 - This suggests design considerations for best performance
 - Redundancy in output encodings offers a voting-scheme-type decision process
 - Large convolutional filters improve training stability and network performance for some topologies
 - Choice of optimizer is critical for consistent convergence
 - With these basic modifications, spiking accuracy can be competitive
 - We require no post-hoc analysis or additional time cost (1 DNN layer = 1 SNN layer)



Compartmented Design Leverages Existing Proven Techniques

- Modifications for the network topology are limited to the activation function and output layer
 - Many standard, effective techniques translate immediately to the spiking neural network
 - Dropout
 - Max Pooling
 - Batch Normalization
 - Batch normalization greatly improves convergence to spiking activations
 - Majority of accuracy degradation occurs during the sharpening of the first layer
 - Batch normalization helps mitigate this loss
 - Useful for even smaller networks
 - Activation sharpening is optimizer agnostic → However, certain optimizers are better suited. Moving average modulation improves repeatability.
 - Adaptive sharpener allows easy convergence to spiking thresholds
 - Automated, controls-based mechanism
 - Implemented as a callback
 - More consistent than hand-tuning



Enabling Wide and Easy-to-Implement Adoption

- Neuromorphic hardware platforms are appealing for a wide variety of low-power, embedded applications
 - Sophistication and expertise required to make use of these platforms creates a high barrier of entry
 - Whetstone enables deep learning experts to easily incorporate spiking hardware architectures
 - Networks are portable and hardware-agnostic
 - Some benefits of the convergent activation method:
 - Low barrier of entry, built on standard libraries (Keras, Tensorflow, CUDA, etc.)
 - No post-hoc analysis, no added time complexity
 - Only simple integrate-and-fire neurons are required
 - Compatible with standard techniques like dropout and batch normalization

*POC: wmsever@sandia.gov