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Utilizing Spil<ing Neuromorphic Hardware
• Traditional Deep Neural Networks operate

best on high-powered GPU platforms
• Cutting edge spiking neuromorphic platforms

promise great improvements in performance
per Watt

• Threshold activation functions create
fundamental training issues

• Whetstone provides a drop-in mechanism for
tailoring a DNN to a spiking hardware
platform (or other binary threshold activation
platforms)

• Activation functions converge to a threshold
activation during training
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Model Modifications Ensure Minimum Accuracy Loss
• Modest performance losses across several datasets (MNIST, Fashion

MNIST, Cifar10, Cifar100) on unmodified network models
• Spiking Neural Networks are typically more brittle than traditional deep

neural networks
• This suggests design considerations for best performance

• Redundancy in output encodings offers a voting-scheme-type
decision process

• Large convolutional filters improve training stability and
network performance for some topologies

• Choice of optimizer is critical for consistent convergence
• With these basic modifications, spiking accuracy can be competitive
• We require no post-hoc analysis or additional time cost (1 DNN layer = 1

SNN layer)
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1 Compartmented Design Leverages Existing Proven Techniques
• Modifications for the network topology are limited to the activation

function and output layer
• Many standard, effective techniques translate immediately to the spiking

neural network
.
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• Batch normalization greatly improves convergence to spiking activations
• Majority of accuracy degradation occurs during the

sharpening of the first layer
• Batch normalization helps mitigate this loss
• Useful for even smaller networks

• Activation sharpening is optimizer agnostic However, certain
optimizers are better suited. Moving average modulation improves
repeatability.

• Adaptive sharpener allows easy convergence to spiking thresholds
• Automated, controls-based mechanism
• Implemented as a callback
• More consistent than hand-tuning

Redundant Output Encodings
1

0.95-

-
(9 0.9 -
cL

CZ0.85

O.
(/)

0.8

0.75

1-hot

2-hot

4-hot

8-hot

e:•¡•• ,:e e:: e::1.•

:: 1 ; • • 8 g Y. • II a nt • e S= ! e ! • :!eet.

10 20 30

Epoch
40 50

Optimizers and Learning Rate

0.2-

<0 0 0 0 (1/ <0 <0 <0 Cli V- Cb
0 0 O' 'f) Of) 0 0 0 0 (1/ 0 0 0
0 0 0 0 0 '' V- Cb 0 0 0 0 0 0 0 0
0 0 O ' O O O ' O O. O. O.
0. 0. 

O. O. 
O.

RMSprop Adam adadelta nadam adagrad adamax

0.9 -

0.9

0.75

Fashion MNIST without Batch Normalization

Test Accuracy
Spiking Test Accuracy

0 10 20 30 40 50

Epoch

Fashion MNIST with Batch Normalization

60 70

Test Accuracy

Spiking Test Accuracy

0.7  
0 10 20 30 40

Epoch
50 60

EnablingWide and asy-to-Implement Adoption
• Neuromorphic hardware platforms are appealing for a wide variety of

low-power, embedded applications
• Sophistication and expertise required to make use of these platforms

creates a high barrier of entry
• Whetstone enables deep learning experts to easily incorporate spiking

hardware architectures
• Networks are portable and hardware-agnostic
• Some benefits of the convergent activation method:

• Low barrier of entry, built on standard libraries (Keras,
Tensorflow, CUDA, etc.)

• No post-hoc analysis, no added time complexity
• Only simple integrate-and-fire neurons are required
• Compatible with standard techniques like dropout and batch

normalization
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