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While most solids expand when heated, some materials show the opposite behavior:
negative thermal expansion (NTE) [1]. In polymers and biomolecules, NTE originates
from the entropic elasticity of an ideal, freely-jointed chain [2, 3]. The origin of NTE
in solids has been widely believed to be different [4-7]. Our neutron scattering study
of a simple cubic NTE material, ScF3, overturns this consensus. We observe that the
correlation in the positions of the neighboring fluorine atoms rapidly fades on warm-
ing, indicating an uncorrelated thermal motion constrained by the rigid Sc-F bonds.
This leads us to a quantitative theory of NTE in terms of entropic elasticity of a floppy
network crystal, which is in remarkable agreement with experimental results. We thus

reveal the formidable universality of the NTE phenomenon in soft and hard matter.

One sentence summary: Experiments reveal that negative thermal expansion behav-

ior of a crystalline solid is similar to that of polymers and rubber.
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I. INTRODUCTION

Near zero, or negative thermal expansion is well known in metallic alloys of the invar (Fe ¢4Nig 36)

family, where it is closely related to electronic magnetism [8]]. These alloys are widely used in ap-
plications requiring dimensional stability of metallic parts, e.g. in precision instruments, watches,
and engines. Until recently, much less attention was paid to insulating NTE ceramics, which hold
promise for numerous applications in electronics, optics and medicine [4-7]]. Somewhat surpris-
ingly, thanks to the specific crystal lattice geometry, NTE in these materials can have the same

physical origin as a more common, positive thermal expansion: atomic thermal motion.

Interest in such systems was renewed with the observation of large isotropic NTE in zirconium
tungstate, ZrW,QOg, and then in the structurally related AM;0g, AM>07 and A;M30;5 phases (A
=Z7r, Hf, Sc, Y, ... and M =W, V, Mo, P, ...) and their solid solutions [4, 9], which opened
avenues for designing ceramic materials with tailored thermal expansion [4-7]. These compounds
have complex crystal structures, which can be viewed as three-dimensional (3D) networks of AXg
octahedra and MX, tetrahedra (X = O) that share the corner X atoms and, most importantly,
contain nearly straight, two-fold-coordinated M-X-M and M-X-A linkages (the so-called open

framework structures [4]).

NTE in such a structure can be explained by the transverse thermal motion of anion atoms, X,
in the presence of the strong M-X bond, which has small, or negligible thermal expansion: the so-
called “guitar string effect” [4},110,!11]. As the amplitude of the anion transverse vibration increases
with temperature, the metal atoms in M-X-M linkages are pulled closer together, thus causing the
net contraction of the structure. While this simple picture does not consider the correlated motion
of nearby X anions caused by their interactions in the lattice, in what follows we show that it

provides an adequate description of NTE in ScF3 [12].

An appealing model for including anion correlation considers vibrations that preserve the struc-
ture of the MX,, polyhedra, which thus move as rigid bodies, without deforming the anion-anion
bonds [4, [13-16]. The relative importance of such rigid unit modes (RUM) has been rationalized
by arguing that vibrations distorting the high symmetry of the polyhedron must have a high energy
cost and therefore contribute relatively little to NTE [7]]. A priori, such an ad-hoc assumption is not
required for the NTE effect and its relevance has been a matter of debate [4, 7, [13-23]]. In a struc-
ture that is under-constrained, RUM correspond to zero-energy floppy phonon modes [7,13]. In a

fully constrained structure, such as a cubic network of corner-sharing octahedra in ScF; (Fig. [Th),



vibrations that do not distort polyhedra are only present on special low-dimensional manifolds oc-
cupying zero volume fraction of the system’s phase space [/, 13]. Nevertheless, it has been argued
that phonons in the vicinity of these manifolds, quasi-RUM, which involve only small distortions
of the polyhedra have special importance for NTE. In fact, ScF3; was suggested to be a perfect
example of an NTE system where the tension effect is enabled by RUM (Fig.[Ip) [7].

II. RESULTS

Pair distribution function (PDF) analysis [23] 24] of neutron total scattering is a powerful and
direct experimental method for studying average local atomic structures and their relevance for
NTE [7,124]. The PDF, g(r), which is obtained from the measured scattering intensity, S(Q), gives
the probability distribution of inter-atomic distances weighted by the scattering lengths of the con-
stituent atoms and thus is uniquely sensitive to local structural patterns. Figure [Ik-e presents the
PDF of ScF3; measured on NPDF (c,d) and NOMAD (e) neutron diffractometers at temperatures
from 2 K to 1099 K. These measurements are complementary and show good agreement in the
temperature range where they overlap.

An inspection of g(r) curves reveals several remarkable features, of which the most important
is the distinct behavior of Sc-F and F-F pair distributions. NTE of the average crystal structure
is manifested by the systematic negative shift to smaller  of PDF peaks from atomic pairs with
large separation, 7, with increasing temperature. It is most clearly seen in Fig. [Id. The nearest
F-F (=~ 2.8 A) peak shows similar NTE behavior. On the other hand, the nearest-neighbor Sc-F
(~ 2 A) peak shifts on heating to slightly larger r, consistent with the conventional positive thermal
expansion (PTE) [10, 25]. This peak broadens only moderately with temperature, by about 20%
at 450 K (this accounts for the decrease of peak maximum in Fig. [I)), indicating a very stiff Sc-F
bond. In contrast, the width of the nearest F-F peak increases markedly, revealing rapid loss of
F-F correlation with increasing thermal motion. Even more dramatic is the behavior of further-
neighbor F-F distributions. The corresponding peaks (marked by dashed lines in Fig. [Ik,e) are
only present at T < 300 K and entirely disappear at higher temperatures, suggesting complete loss
of positional correlation between further-neighbor F atoms. Such a liquid-like F-F PDF pattern
indicates randomly phased transverse local motion of F atoms and is inconsistent with the RUM
model where a large number of F-F distances are constrained by the rigid unit geometry [7, 21,

22, 120].
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FIG. 1. Crystal structure and pair distribution function in ScF3. a The Pm3m cubic perovskite crys-
tal structure of ScF3. Disk-shaped ellipsoids at the vertices of Sc-centered octahedra illustrate large and
anisotropic thermal displacements (TD) of fluorine atoms refined at 500 K. b The traditional, ball-and-stick
representation of the structure, which illustrates the octahedral tilts within the putative rigid unit motion
(RUM) model. ¢ Pair distribution function, g(r), in 15 K to 450 K temperature range obtained from neu-
tron total scattering measurement on ScF3 powder sample at NPDF using the wave vector range up to
Qmaz = 27A7'. d The color map representation of the temperature evolution of g(r) emphasizes the
negative shift of peaks with increasing temperature, which is most evident at large 7. e PDF measured on
the same sample at NOMAD diffractometer for temperatures from 2 K to 1100 K (bottom to top). Here,
each curve is an average of g(r) obtained using the wave vector ranges with @4, varying from 23 A~1
to 32 A~! by increments of 1 A~!. For visibility, data at each temperature above 2 K are shifted upwards
by 1. The vertical lines in panels ¢ and e mark nominal distances corresponding to Sc-F (dash-dotted), F-F

(dashed) and Sc-Sc (overlapping with lattice repeats, solid) atom pairs in ScF3 structure.



We quantify the observed behaviors by fitting the first several PDF peaks, which are well re-
solved and can be uniquely associated with distance distributions of particular atomic pairs, to
Gaussian distributions (Fig. 2a-c). The results of this analysis are summarized in Figure [2d-f.
While the Sc-F bond shows PTE of ~ 5 ppm at 1000 K, both Sc-Sc, rs._s. = a (LRD, lattice
repeat distance), and the nearest F-F, rr_ -, distances exhibit NTE about twice larger in magnitude
(Fig.2ld). The large error bars on 7_p reflect dramatic broadening of the F-F peak with temper-
ature. While the full width at half maximum (FWHM) of Sc-F and Sc-Sc (LRD) peaks increase
by less than 50% at 1000 K, the width of the nearest F-F distribution shows nearly an order-of-
magnitude larger change, increasing to nearly 1 A (Fig. ). This indicates an uncertainty of the
nearest F-F distance that is comparable to the rr_p distance itself, clearly invalidating the RUM

model assumption of quasi-rigid ScFg octahedra.

The loss of F-F pair correlation is further revealed by the temperature dependence of the inten-
sity of the LRD (= 4A) peak (Fig. . It contains partial contributions from both nearest-neighbor
Sc-Sc and next-nearest-neighbor F-F pairs, in proportion og. : 30 ~ 1.6, where og. and oy are
coherent scattering cross-sections of Sc and F, respectively. A PDF peak presents the probabil-
ity distribution of inter-atomic distance and therefore its integral intensity must be temperature-
independent. This roughly holds for Sc-F peak. A small systematic drift of its intensity, which is
likely caused by T-dependent background, is within the error bar of the average value. In contrast,
the LRD peak rapidly loses a substantial part of its intensity above ~ 300 K, where F-F correla-
tions disappear. The decrease is consistent with the loss of the entire ~ 40% partial contribution
of F-F pairs, which above ~ 300 K contribute to broad background rather than to the narrow LRD
peak described by the fit.

Motivated by these observations, we use a simple model for the probability distribution of the
nearest F-F distance, which is presented in Figure [3] It assumes un-correlated thermal motion of
individual F atoms, which is subject to a single constraint of the rigid Sc-F bond. If Sc atoms were
fixed at the nodes of ScF; lattice, the constraint would result in F atoms following ring trajectories
with the Sc-F bond sweeping a cone. The resulting rr_p probability distribution would be that
of a distance between two points randomly positioned on the two nearest rings. This model has
no adjustable parameters because the radius of the rings, r, (the average transverse deviation of
F), and rg._s. = a are obtained from the Rietveld refinement of the coherent Bragg scattering
contained in our data (Fig. @b,c). The model can also be set up using Sc-F and Sc-Sc distances

obtained from PDF peaks in Fig.[2] although the accuracy of this refinement is lower. While larger
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FIG. 2. Pair probability distribution for the nearest neighbor Sc-F, F-F and Sc-Sc (lattice repeat
distance) pairs. PDF data for Sc-F (a), F-F (b) and Sc-Sc (¢, left peak) for the same selected temperatures
and with the same color coding as in Fig. 1e (symbols) with Gaussian fits (solid lines). The first two peaks,
which correspond to nearest-neighbor Sc-F and F-F pairs can be isolated and were fitted individually with
accounting for small intensity overlap, which was either subtracted from the data (a), or added to the fit (b):
a small overlapping intensity contribution of the F-F (= 2.8A) peak to the Sc-F (=~ 2 A) peak is seen in
panel b; this contribution has been computed from the model (see text) and subtracted from the data in panel
a. Due to an overlap of the lattice repeat distance (LRD, ~ 4A) peak with the next-nearest Sc-F and next-
next-nearest F-F peaks, all three were fitted together to a sum of Gaussians, within the data range [3.75A,
5.25A]. d The temperature dependence of the bond lengths obtained from the Gaussian peak position in a - ¢
shows normal thermal expansion of the Sc-F bond and the contraction of the lattice repeat and the F-F bond.
e The full width at half maximum (FWHM) of the PDF peaks, reflective of the atomic thermal motion; the
broadening of the F-F peak is clearly anomalous. Solid lines in d, e show fits to quadratic polynominal
serving as guides for the eye; dashed lines in d are our prediction from entropic elasticity theory for Sc-F
and Sc-Sc distances. f The integral intensities of the PDF peaks count the participating atoms and nominally
should be T-independent; the anomalous loss of the lattice repeat (Sc-Sc) peak intensity indicates loss of the
coherent fluorine contribution. Circles are obtained from the NOMAD and squares from the NPDF data.
The error bars show one standard deviation accounting for the systematic error; the truncation error in a - ¢

was estimated by averaging PDFs obtained from the data truncated at different Q,,q., from 23 to 32 A~



systematic error in this approach impacts some of the analysis below ~ 200 K where changes are
weak, above this temperature such analysis gives results in close agreement with Figs. 3 and {.

Surprisingly, when broadened by convolution with the Gaussian of the same width as Sc-F peak
at 2 K to account for experimental resolution (truncation), our over-simplified model provides
adequate description of the measured F-F distribution for all temperatures where NTE is observed
(dashed lines in Figs. and ). In this model, the peak maximum follows lattice NTE, in
agreement with Fig. 2d. The model can be further improved if instead of rings (or conventional
Gaussian TD ellipsoids, Fig. 3b), F atoms are randomly positioned on a torus-shaped Gaussian
distribution peaked at the same major diameter, 27, and with the minor diameter representing
the F part of the Sc-F peak FWHM (Fig. [3c). This improved model conjectured by Sleight [4]
indeed provides slightly better agreement with the data (Fig. [3p), as quantified by the reduced
mean square deviation, y?, presented in Fig. . The x? analysis is a standard way to evaluate
the goodness of fit: where y? ~ 1, the data is indistinguishable from the model. With N ~ 11
effectively independent data points used in our comparison, x> < 3 places the model within 3¢
interval, or above 99.5% likelihood level. The model begins to fail above ~ 700 K, where >
increases to ~ 10, but NTE fades, too. Below ~ 200 K the broadening of the F-F peak is small
and x? < 1, which means that within the experimental error our model cannot be distinguished

from other models, such as RUM.

III. DISCUSSION

The essential implication of our analysis is that thermal motion of even the nearest F atoms is
uncorrelated rather than in RUM (Fig. [3d,e). The spread of the F-F PDF peak with temperature
simply follows from the increase in size of the manifold (circle, or torus) populated by each F
atom in the course of its thermal motion. Underlying this model is the phenomenon of energy
scales separation, where two very different energies govern longitudinal and transverse motion
of the F ion. Then, in some temperature range transverse modes can be thermally excited and
the corresponding degrees of freedom be equipartitioned, while longitudinal vibrations are still
frozen out. In this case, Sc-F bonds are rigid, while F transverse vibrations are uncorrelated.
Inspection of the vibrational spectra measured in ScFs [20, 21, 23] indeed reveals two major
phonon groups, which give rise to maxima in the density of states below hw; ~ 22 meV and

above hw; ~ 62 meV. These correspond to transverse and longitudinal vibrations, respectively.
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FIG. 3. Model for the fluorine motion and pair distance distribution. a PDF for the nearest neighbor
F-F bond (symbols, same as in Fig. 2b). The dashed lines show a simplified model for the F-F probability
distribution, where positions of the fluorine atoms are randomly distributed on the circles whose radius
is determined by the measured thermal displacement parameter obtained from Rietveld refinement. The
model was broadened by convolution with the Gaussian of the same width as Sc-F peak at 2 K to account
for Sc zero-point motion and truncation effects. The solid lines show an improved model, where circles are
replaced by the torus-shaped Gaussian distributions peaked at the same major radius and with the width,
represented by the minor radius, which is equal to 1/4/2 of the Sc-F peak width. The model adequately
captures the evolution of the F-F peak position with temperature (Fig.[2ld). b The ScFs structure illustrating
our model with the tori populated by F thermal motion under the constraint of a rigid Sc-F bond; ¢ the
traditional representation of the same structure using atomic TD ellipsoids. Both are shown for parameters
refined at 500 K. d In our model, the entropic motion of F atoms distorts the fluorine octahedra thereby
erasing F-F positional correlation, in agreement with the experiment. e Opposite to what is observed, rigid
octahedra in the RUM model preserve the nearest neighbor F-F bond and also partially preserve the next

nearest neighbor F-F correlation, which contributes to the LRD peak.

Such separation of energy scales implies that transverse degrees of freedom are thermally excited
and equipartitioned at 7" > hw;/kp ~ 260 K (kp is Boltzmann constant), while longitudinal
rigidity of Sc-F bond persists up to at least 7' ~ fuv;/kp =~ 710 K. This is exactly the temperature

range where NTE is observed and where our model provides very good description of the PDF

data (Fig. H).



The exceptional longitudinal rigidity of the Sc-F bond, which underlies the NTE mechanism in
ScF3 is rooted in covalence, where the hybridization of Sc and F electronic orbitals that lie deep
inside the valence band is responsible for the large energy cost of changing the Sc-F distance [26—
30]. Such Lewis-type dative bonding where paired electrons delocalize between ions to lower their
kinetic energy has recently been described as a “charge transfer bond” [28]. Although it has long
been known that ScF3 is anomalous among supposedly ionic metal trifluorides, MF3 (M = Al, Sc,
Fe, In, ...,) [31], only relatively recently has the exceptional strength of the Sc-F bond been traced
to the covalent nature of the valence molecular orbitals (MO). The comparative analysis of the
X-ray photoemission spectra (XPS) and the density functional theory (DFT) electronic structure
calculations [29] for the (ScFg)3~ cluster has indicated a large contribution to the Sc-F bonding
energy of a specific (5a;) d — p MO at ~ —5 eV. A modest hybridization (|5a;) ~ 0.83|F2p) +
0.16]Sc3d)) does not lead to sizeable charge transfer, such that Sc®™ and F~ appear to be close to
their nominal ionic oxidation states. We performed DFT electronic structure calculations in ScFj3,
which further support these findings, indicating slightly hybrid valence bands below ~ —4 eV and
strong anisotropy of the effective potential of F ions [26, 30].

These observations immediately suggest a simple theoretical description of the NTE effect,
where each Sc-F bond is treated as a rigid monomer link and the entire ScF; crystal structure as
a floppy network of such freely jointed monomers, a direct 3D analogue of the celebrated model
of polymer chains [2} 3] (Fig. ,d). Without electrostatic interactions, the network is under-
constrained (floppy): the number of constraints imposed by rigid Sc-F links is 6 per unit cell, while
the number of degrees of freedom is 12. In particular, the motion of the Sc ion is constrained by
rigid bonds in all 3 directions while each of the F ions has two zero-energy displacement modes
corresponding to motion orthogonal to the Sc-F bond. In the absence of external tension the system
has no rigidity and would collapse. In ScF3, net Coulomb repulsion between charged ions provides
tension (negative pressure), which stabilizes the system and balances its entropic elasticity [26].

We thus separate interactions in the system into a sum of the nearest-neighbor pair potentials,
which include the cumulative effect of electrostatic Coulomb attraction, core repulsion, and co-
valent bonding, and in the simplest approximation are treated as rigid links, and the remaining
Coulomb potential of non-nearest-neighbor ions. The resulting effective Hamiltonian for the fluo-

rine transverse motion is [26]]

H:K+3N(6_M)62— et u?

Amegr — Amegrd 2
(]

(1
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FIG. 4. The rigid-bond entropic elasticity model and NTE in ScF3. a Reduced chi-squared (x?) quan-
tifying the accuracy of the entropic model presented in Fig. [3|in describing our NOMAD (triangles) and
NPDF (squares) data. Symbols connected by the dashed line show x? for the simplified model with circles
in place of tori, which is consistently slightly higher. b The atomic TD parameters, and c the lattice repeat,
a(T)/a(2K), obtained from the Rietveld refinement of our neutron powder diffraction data, which are used
to model the F-F probability distribution. Note that our model has no adjustable parameters: all numbers
needed for the simulated F-F probability distribution (the lattice repeat and the F and Sc TD) are obtained
from an independent analysis. Where x? ~ 1, the model is indistinguishable from the data. Above ~ 600
K, the model begins to fail, with y? reaching ~ 10 above 800 K. This is consistent with the failure of its
basic assumption of the longitudinally rigid Sc-F bond, which is not unexpected at such high temperatures
where the population of the Sc-F longitudinal (= 62 meV) phonon vibrations becomes significant [20]. At
the same time, the NTE effect fades away (c¢) indicating that its entropic origin is adequately captured by
our model. It is also noteworthy that at these high temperatures the Fluorine transverse TD approaches 10%

of the nearest neighbor distance (b and Fig. |Zb), which is close to the Lindemann melting criterion [[1].
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where K is kinetic energy, M = 2.98 is the Madelung constant for ScFj lattice, » = a/2 is half
of the lattice repeat, /N is the number of sites, e is electron charge, €, is vacuum permittivity,
u;, 1s transverse displacement of the F ion at lattice site ¢, and ¥ ~ 1.8 was obtained by lattice
summation of Coulomb interactions, similarly to the Madelung constant [26]. On account of

the rigid link constraint, Hamiltonian (1)) describes the F floppy modes as independent Einstein

(6-M—3)

o3 ~ 21.6 meV. This value compares very
TEQT M E

type oscillators with the frequency, hwy = he
favorably with the phonon dispersions measured in ScF3, where low-energy peaks in the density
of states are observed below Aw; ~ 22 meV.

Although the Einstein approximation is expected to perform poorly at low temperatures, where
the exact phonon dispersions are important for determining the bulk thermodynamic properties
such as heat capacity, or thermal expansion, it works well at k71" > %hwo, where the equipartition
theorem sets the thermal average of an oscillator Hamiltonian to k57" per degree of freedom. In this
regime, heat capacity obeys the Dulong-Petit law, which is equally well described by both Einstein
and Debye models. We thus expect our description, Eq. (1), to be applicable for T > 130 K.

Since each of the F floppy modes has a Hamiltonian of an oscillator with frequency wy, the value

of (u?) = (u?) can be found with the full account for quantum effects and for an arbitrary

u?)
27‘(2)

temperature [26]. We thus obtain the NTE effect, % ~ ~ o, where rois r at T' = 0 and

a = —% ~ —10.1 - 107% K~!, in an impressive agreement with the experimental value
[12] (Fig.Hk).

An account for the finite rigidity of the Sc-F bond is done by replacing the rigid link constraint
with an interaction potential, Vi, (ry) ~ Vi (ro) + fo(rs — 70) + %k:(rb — 19)?. Here, 1, is the bond
length, fy is the tension force that Sc-F linkage provides to compensate the negative electrostatic
pressure, and k is the effective harmonic spring constant [26]]. From the measured frequency of
the longitudinal Sc-F phonon mode, hw; ~ 62 meV, we estimate, k;rg ~ 26 eV, in good agreement
with our DFT results [26]. The minimization of the resulting free energy, which includes the
entropic term, electrostatics, and bond potential, V' (ry),

(6 —M)e*  je* (ry —1?)

F=3N |=kpTn(rj —r?) + Amegr  Amegrd 2

+2Vi(r)] 2)

with respect to both r and ry, yields the equilibrium values r = r(T"), 1, = 7,(7"). We thus obtain

the relation % — % ~ o', which means that the net entropic tension effect is split between

PTE of the Sc-F bond and NTE of the lattice. It further yields the relation, % = —[=", where

To

[ ~ 0.36, which determines the relative split between the two effects, % = %T ~2.7-1075T
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and 7";0”) = ﬁT ~ —7.4- 1077 [26]]. These predictions are shown by dashed lines in Figs. -
and [, which demonstrate remarkable agreement of our simple theory with experiment. We note
that in our estimates we neglected the covalent reduction of the ionic charge on F and Sc ions,
which would increase the predicted NTE effect by ~ 20%. This provides a ballpark estimate
for the accuracy of our predictions. The leading effect of the presence of defects, such as F
vacancies, or dipolar defects, which consists in a proportional change of the negative electrostatic
pressure and, correspondingly, the bond tension, can also be included in the effective charge. The
corresponding correction to the NTE behavior is well within our estimated accuracy.

We conclude that floppy vibration modes associated with the transverse fluorine displacement
in an under-constrained network crystal structure of ScF; give rise to both negative thermal ex-
pansion of the lattice and positive expansion of Sc-F bond. The latter effect is distinct from the
conventional positive thermal expansion based on cubic anharmonism of Sc-F bond potential,
Vi(rp) [l]. Instead, it originates from entropic elasticity via floppy modes and is already present

for the harmonic Sc-F bond. RUM-like correlated vibration modes, which are important for un-

derstanding the stability of the cubic crystal structure, appear not to be essential for NTE.

IV. CONCLUSION

In ZrW,0Og, the RUM model was challenged by X-ray absorption fine structure (XAFS) studies
[17] but later was argued to be consistent with neutron PDF measurements [/, [15, 16]. However,
for a complex material with more than 3 different atom types PDF analysis has a degree of un-
certainty because the measured PDF is a sum of PDFs from all atomic pairs where some features
may overlap, meaning that it is difficult to identify individual peaks with specific atomic pairs [7]].
This problem is absent in ScF3, which has simple cubic structure with only two atom types. In
agreement with the earlier molecular dynamics (MD) simulations [20], our present results do not
support the presence of RUM, indicating that the only rigid unit is the Sc-F bond. This makes the
ScFj3 structure an under-constrained 3D analog of a freely jointed polymer chain.

Our results are directly applicable to other materials with ScF; structure, such as ReOs, where
NTE is observed at < 200 K, or AlF3, where NTE is not observed because it only adopts cubic
structure above 739 K where conventional, positive expansion dominates [32]. The general design
rule for inorganic NTE materials is thus the presence of a floppy network formed by nearly straight

C-A-C linkages where an under-constrained light anion, A, such as Oxygen, or Fluorine, in a ster-
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ically open position, is strongly bound to nearby cations, C [4]. This floppy network architecture
does not imply any specific geometry of the crystal structure, such as corner-sharing octahedra
network in ScFs. This is exemplified by ZrW,Og and related materials, where, when looking at
a crystal structure unobscured by the coordination polyhedra one can easily identify a network of
nearly straight W-O-Zr and W-O-W linkages with an under-constrained and sterically open oxy-
gen position. While the geometry of the resulting network and ionic positions is complex (though
not as complex as in polymers), NTE in this structure can still be described using our approach,
albeit requiring more cumbersome calculations of electrostatics.

Based on our experimental observations, we developed a simple theoretical description of the
NTE effect in ScFs, which is rooted in entropic elasticity of an underconstrained floppy network,
similar in spirit to the celebrated Flory-deGennes theory of polymer elasticity [2, 3)]. Our approach
presents a paradigm shift, where instead of focusing on peculiar energetics of low-energy lattice
vibrations, such as RUM [} 47, [10, [12H14), 33-35]], these vibrations are approximated by Ein-
stein local phonon modes and the focus is on their entropic contribution to free energy. Not only
our results provide clear understanding of the entropic elasticity origin of the NTE effect in the
practically important class of materials and temperature range, including at and above room tem-
perature, they also provide an accurate, quantitative, textbook description of NTE, thus opening

new avenues for predictive modeling of this effect in solids.

V. MATERIALS AND METHODS

Neutron scattering measurements for temperatures from 2 K to 1266 K were carried out at
NOMAD, a time-of-flight total scattering diffractrometer at the Spallation Neutron Source, Oak
Ridge National Laboratory, using the polychromatic neutron beam. Additional measurements for
temperatures from 15 K to 450 K were performed using a similar setup at NPDF total scattering
diffractrometer at the Manuel Lujan Neutron Scattering Center, Los Alamos National Laboratory.
For these measurements, finely pulverized polycrystalline sample (grain size < 50um) of cubic
ScF; crystals (99.99% purity) was loaded into extruded vanadium containers with outer diameter
of 1 cm and height of 4 cm. The same sample was used in Ref. [20]. For NOMAD measurements,
the setup utilized an Orange cryostat for measurements between 2 K and 300 K and an ILL furnace

for measurements between 300 K and 1266 K. For the NPDF experiment, the sample was placed
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in a closed-cycle cryofurnace. The data at each temperature were collected for 15 to 30 minutes
(NOMAD) and 120 minutes (NPDF) after the temperature equilibration. The Rietveld analysis
of Bragg scattering in the obtained neutron powder diffraction data provided accurate information
about the average atomic positions and the thermal mean square displacements of atoms in the
crystal lattice (Figure [)).

The atomic pair distribution function (PDF) analysis based on total scattering approach yields
local structural information on different length-scales [24], allowing refinement of the mutual po-
sitions of nuclei in different atomic pairs. The reduced PDF, G(r), is obtained from the measured
total scattering structure factor, S(Q), via a Fourier sine transform, G(r) = 4nr(p(r) — po) =
2 [ Q(S(Q) — 1) sin(Qr)dQ. Here, py is the scattering cross-section weighted atomic number
density of the material and p(r) is the atomic PDF, which we analyze. It is related to the Radial
Distribution Function (RDF), R(r) = 47r?p(r) = rG(r) + 47r?p,, which has the useful property
that the quantity R(r)dr gives the effective number of atoms in an annulus of thickness dr at a
distance r from the given atom and its integral counts the number of atoms. Both RDF and PDF
were considered in this study. In our modeling, we analyze the atomic PDF, p(r) = R(r)/(47wr?),
which determines the probability for a pair of atoms to be at a distance r (Figs. [TH3)).

In practice, the S(Q) total scattering data are measured only within a limited range of wave
vectors, (). The upper limit of integration in the Fourier transform determining the experimental
p(r) has to be chosen at some finite value, @,,q., which includes the data where the measurement
accuracy is acceptable. Different ()., lead to different weighting of the noisier data at large ().
The truncation of the Fourier transform also introduces systematic error in p(r) in the form of
the finite width of the PDF peaks and an oscillating “background” baseline (”truncation wiggles™)
[23, 24]], which depend on @),,.,. In order to evaluate these systematic errors, we analyzed data
computed using different (),,,,. The nominal () range covered in our study is [0.5, 35] A-'. The
data were extrapolated to () = 0 and Fourier transformed using the wave vector ranges, [0, Qnaz),
for Qnq varied from 23 A=! to 32 A~! by increments of I A=, The g(r) data shown in the Figures
here, with the exception of Fig.[Ik,d, were obtained by averaging the data from each ()., range.
The error bars account both for the average statistical uncertainty and for the systematic truncation
error. The latter is evaluated as the standard deviation of the data obtained using different (),
Thus obtained g(r) data were modeled using custom made Python scripts.

The model for F-F pair probability distribution was constructed as follows. Considering the

Sc-F longitudinal rigidity, the average transverse deviation, 7, of the F atoms from the Sc-Sc
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bond axis and the lattice repeat parameter, a, were retrieved from Rietveld refinement of the Bragg
diffraction contained in the corresponding data set. These parameters can also be obtained from
the analysis of PDF peaks; using the Pythagorean Theorem, 72 = r%__ . — (a/2)?, where rg._r is
the average Sc-F bond length and « is the lattice repeat parameter measured as the fitted position of
the Sc-F and Sc-Sc PDF peaks, respectively. This approach provides generally similar, albeit less
accurate model description because it is less accurate in determining both the lattice repeat and the
transverse F displacement. We therefore opted for using the Rietveld refined parameters for our
model. The data for 47 temperatures were used. The nearest-neighbor F-F distance distribution
was modeled by placing evenly-spaced points on perpendicular rings of radius 7, and center sep-
aration %5 The distances between each pair of points (not on the same ring) was calculated, and
a histogram was created from the compiled set of distances. This histogram was then convoluted
with a Gaussian distribution of standard deviation equal to that of the Sc-F peak to account for
truncation error and uncertainty in Sc atomic position. A second model was then created with
rings replaced by Gaussian distributions peaked at these rings, which can be represented by tori of
equal major diameter and separation as the rings and with the minor diameter, equal to the Gauss-
sian full width at half maximum (FWHM), being equal to FWHM/ V2 of the Sc-F peak, thus
accounting for F atomic position uncertainty instead of convolution. The remaining procedure is

identical to that of the first model.
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