
LLNL-CONF-769889

Opera: Similarity Analysis on Data
Access Patterns of OpenMP Tasks to
Optimize Task Affinity

J. Ren, C. Liao, D. Li

March 18, 2019

24TH INTERNATIONAL WORKSHOP ON HIGH-LEVEL
PARALLEL PROGRAMMING MODELS AND SUPPORTIVE
ENVIRONMENTS
Rio De Janeiro, Brazil
May 20, 2019 through May 24, 2019

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Opera: Similarity Analysis on Data Access Patterns of OpenMP Tasks to
Optimize Task Affinity

Jie Ren
University of California, Merced

jren6@ucmerced.edu

Chunhua Liao
Lawrence Livermore National Laboratory

liao6@llnl.gov

Dong Li
University of California, Merced

dli35@ucmerced.edu

Abstract—OpenMP supports task-based parallelism, but
task scheduling is oblivious to data locality, which leads to
inconsistent performance. In this paper, we present Opera,
an OpenMP task scheduler which leverages memory access
information profiled offline to guide runtime task scheduling.
The evaluation results show that Opera improves performance
by up to 40% (21.2% on average), comparing with using three
schedulers in the Nanos++ runtime library.

I. INTRODUCTION

Nowadays task programming models are widely used
in applications [1]. OpenMP task is one of the task pro-
gramming models that decompose a program into a set
of tasks and distribute them among processing elements.
The OpenMP tasking model supports parallelization of both
irregular and unstructured algorithms [2], which provide ex-
pressiveness, flexibility, and huge potential for performance
and scalability. With the OpenMP tasking model, users
explicitly specify independent tasks by using OpenMP task
constructs. Meanwhile, the OpenMP tasking model provides
flexibility in task scheduling, by allowing users to specify
scheduling point, scheduling policy and whether a task is
tied to thread [1]. The OpenMP runtime library takes full
responsibility of scheduling the tasks for locality and load
balancing.

Similar to other OpenMP constructs, task constructs may
involve shared data, either through explicit data-sharing
clauses or implicit inheritance rules from parent tasks. In this
paper we refer task-to-data affinity as task affinity, which
hints to execute task as close as possible to the location
of data. In addition, modern high-performance computing
nodes have complex memory subsystem hierarchies includ-
ing private and shared caches. For example, Intel Knights
Landing (KNL) many-core processors organize CPU cores
into tiles. Each tile in KNL consists of two CPU cores
sharing 1MB L2 cache [3]. Maximizing data reuse in shared

This work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344. Work on offline analysis was supported by the
U.S. Department Of Energy, Advanced Scientific Computing Research’s
SciDAC Program, and the results on runtime scheduling were funded
through the LLNL-LDRD Program under Project No. 18-ERD-006. LLNL-
CONF-769889.

cache among OpenMP tasks is essential for improving data
locality and performance.

However, it is not trivial to enable task affinity because
of the following reasons. First, collecting data access infor-
mation and quantifying task affinity at runtime can cause
high overhead. Second, maintaining data access information
for all tasks at runtime is not memory efficient. Third, the
data access information collected offline can be different
from that collected at runtime. Hence, using offline analysis
results to direct runtime task scheduling can be misleading.

To address the above problems, we propose an approach
for the OpenMP tasking model Runtime scheduler to im-
prove OpenMP task Affinity, Opera. Previous efforts [4]
improve the task affinity by introducing new clauses. Dif-
ferent from the previous efforts, Opera leverages offline
profiling to obtain invariant data access patterns of OpenMP
tasks, and introduces adaptive runtime task scheduling to
optimize thread affinity using the data access patterns.
Opera does not introduce new clauses. We summarize our
contributions in this work as follows:

• We develop a PIN-based profiling tool to collect mem-
ory access information for each task. Moreover, we
present an approach to analyzing the interaction be-
tween tasks and the cache hierarchy.

• We design Opera, a runtime task scheduler leveraging
data access pattern profiled offline.

• Using the Barcelona OpenMP Tasks Suite, our evalua-
tion results show that Opera improves performance by
up to 40% (21.2% on average), comparing with using
three schedulers in the Nanos++ runtime library.

II. DESIGN AND IMPLEMENTATION

To enable affinity-aware runtime OpenMP task schedul-
ing, we introduce Opera, a runtime scheduler which con-
tains two stages in its workflow. Figure 1 illustrates the two
stages and major components in each stage. The first stage is
an offline profiling phase, which collects cache block level
memory access information for each task and calculates the
similarity for tasks. The result of this stage is a task affinity
table. The second state is runtime scheduling. In this stage
Opera leverages the task affinity table generated in the first
stage to map the task with the highest similarity into threads

Offline Profile

applications

PIN

Reuse distance analysis tool

Record
memory

references

analysis of
memory
access Calculate data access

similarity between tasks

task
affinity
table

Task affinity table generation

Generate unique and
portable task ids

Runtime Scheduling

Schedule tasks with max similarity
to cores sharing L2 cache

Figure 1. The general workflow of using Opera.

running on cores with shared cache. We describe the details
of the design and implementation of Opera as follows.

A. Offline Profiling

With the task data access information, tasks can be
reasonable scheduled. However, it is difficult to get such
information at runtime since fine-grained cache block level
data access pattern analysis can cause large overhead. There-
fore we propose an offline profiling stage to alleviate runtime
overhead.

The process of profiling includes (1) memory access in-
formation collection for each task, (2) task ID generation, (3)
memory access similarity calculation, and (4) task affinity
table generation. We explain each in details as follows.

Memory access information collection for tasks. We
developed a PIN-based memory access analysis tool which
can be used to record every cache block address a task
accessed. The tool provides data access traces for user spec-
ified code regions. All tasks’ memory access information
can be recorded by running the tool once. Based on the
information the tool collects, we have the knowledge about
which tasks access same cache blocks.

Task ID generation. One challenge of using offline pro-
filing to guide runtime scheduling is that we need portable
and consistent task IDs between two stages. The number of
tasks generated and the order in which they are generated
might be different between profiling and production runs.
Therefore, Opera needs to generate task IDs to ensure
there is no mismatch between profiling results and runtime
scheduling.

Task ID generation has two requirements: (1) The task IDs
should be unique and portable; (2) The task ID generation is
lightweight with only negligible performance overhead. To
achieve above requirements, Opera leverages existing task
information provided by Nanos++ runtime and introduces
limited processing to generate the task IDs.

An OpenMP task can be uniquely identified by using two
pieces of information: the code and the corresponding input

Table I
DATA NEEDED FOR TASK ID GENERATION

Data Description
var id The order of memory allocation of data

objects at runtime
var addr The virtual address of the variable
var size The size of variable
call path info Task call path information, Provided by

Nanos++
input addr Input problem virtual address, Provided

by Nanos++
input size Input problem size, Provided by

Nanos++
offset offset <var size & input addr =

var addr + offset

data. Nanos++ runtime provides information about the call
path of each task and input variables’ virtual addresses and
sizes. However, since the virtual addresses are not portable
across different runs, Nanos++ runtime doesn’t provide
enough information for generating the unique and portable
task IDs. Instead of directly using the virtual addresses of the
input variables, Opera maps virtual addresses to variables
with offsets.

Table I summarizes the information used by Opera
for task ID generation. Opera maintains a data object
information table and only updates the table when memory
allocation happens. The data object information table con-
tains var id, var addr and var size. var id is generated
based on the order of memory allocation of data objects at
runtime. For each task Opera consults the OpenMP runtime
to obtain call path info, input addr and input size.
It then combines the information from the data object to
calculates offset. Leveraging call path info, var id and
offset of the task, Opera can generate unique and portable
IDs for all tasks.

Quantifying the similarity of memory accesses between

Cache Cache

Core CoreCoreCore

Ready Queue

……

task i

task i+1

……

Current task

idling idling task j idling

Previous task

requires two tasks with affinity requires one task with affinity with task j

Figure 2. An example of runtime scheduling.

tasks. With the task memory access information we can
evaluate the similarity between tasks in terms of memory
accesses. In practices, there are several metrics to evaluate
the similarity between two sets in different views. We use
Jaccard similarity coefficient [5] due to its efficiency and
simplicity. Jaccard similarity coefficient can be efficiently
calculated as the proximity of the two data sets without
the use of data redundancy. Jaccard similarity coefficient
is suitable for Opera since the task memory footprint is
relatively small, which means memory access for each task
is limited. The Jaccard similarity coefficient has a floating
point value between 0 and 1.0. Jaccard similarity coefficient
as 1.0 stands for max similarity while 0 means there is no
similarity at all.

Task affinity table generation. Opera generates a
task affinity table to guide runtime scheduling. The table
records the similarity coefficient between two tasks. To
speedup the generation of the task affinity table, Opera only
calculates the similarity coefficient for the tasks which might
be executed together. Furthermore, Opera only analyzes
the tasks’ similarity coefficient for leaf tasks without child
tasks in recursive applications. The second optimization is
based on the observation that the tasks without child task
are usually the most computation intensive tasks in recursive
applications and the parent tasks are often used to generate
child tasks with little memory access.

Note that the task affinity table is precomputed during the
offline profiling stage to reduce runtime overhead.

B. Runtime Scheduling

After the task affinity table is generated, Opera can
schedule tasks with the highest similarity coefficient to be
executed together in order to improve the task affinity. The
runtime library of OpenMP tasking model manages a task
ready queue. When creating a task with no dependency or
when a task becomes ready after all its dependences has
been fulfilled, the task is placed in this ready queue. The
scheduler picks up a task in task ready queue and assigns it
to an idle thread for execution. Nanos++ runtime provides
the flexibility for a scheduler to use different algorithms
to pick up tasks in the task ready queue. Opera runtime
scheduler is based on the breadth-first scheduling algorithm
using a single global ready queue with FIFO scheduling.

An example. Figure 2 illustrates how Opera schedules

tasks so two threads with good affinity can use the same
shared cache. The scheduling algorithm can be easily ex-
tended for multiple threads share the same cache. Note that
the total number of threads can be an arbitrary value that
is greater than two. We refer the sibling thread of thread i
as the thread which shares cache with thread i. There are
two cases when Opera tries to assign tasks into threads as
shown in figure 2: (1) two threads with share cache are both
idle at the scheduling point; (2) only one thread is idle while
its sibling thread is busy.

Figure 3 shows the pseudo code of the algorithm used
by Opera runtime scheduler. Opera runtime scheduler
periodically checks for an idle thread. We assume the thread
i and thread j use the same shared cache. When an idle
thread i is found, Opera checks if the sibling thread of the
thread i (the thread j) is idle (line 20). If the thread j is also
idle, Opera looks up the task affinity table to find the first
pair of ready tasks (t1 and t2) with the max affinity value. It
then assigns the two tasks into the threads i and j separately
(line 26-32). If the thread j is busy, Opera first reads the
task (t2) the thread j is working on (line 23). Then Opera
inquires the task affinity table and gets task (t1) with the
max affinity value with t2 (line 26). Finally t1 is assigned
to the idle thread i (line 32).

1 TaskPool ∗ readQueue ;
2

3 /∗ Look up t h e t a s k a f f i n i t y t a b l e t o f i n d
4 t h e t a s k wi th t h e h i g h e s t s i m i l a r i t y c o e f f i c i e n t
5 wi th t a s k t a s k 1 ∗ /
6 vo id g e t T a s k (TASK∗ t a s k 1 , TASK∗ t a s k 2)
7 {
8 i f (t a s k 1 == NULL)
9 t a s k 1 = readQueue . ge tF i r s tWD () ;

10 t a s k 2 = t a s k 1 . g e t S i m i l a r i t y T a s k () ;
11 }
12

13 /∗ Opera c a l l s t h i s f u n c t i o n when i t f i n d s
14 an i d l e t h r e a d ∗ /
15 vo id a t I d l e (B a s i c t h r e a d ∗ t h r e a d)
16 {
17 TASK ∗ t 1 =NULL, ∗ t 2 =NULL;
18 B a s i c t h r e a d ∗ s i b l i n g = t h r e a d . g e t S i b l i n g () ;
19 / / c he ck s i f t h e s i b l i n g t h r e a d i s i d l e
20 i f (s i b l i n g i s n o t i d l e)
21 { / / f i n d t h e t a s k t 2
22 / / which s i b l i n g t h r e a d i s working on
23 t 2 = s i b l i n g . ge tWorkingTask () ;
24 }
25

26 g e t T a s k (t2 , t 1) ;
27 / / a s s i g n t h e t a s k i n t o t h e t h r e a d
28 i f (s i b l i n g i s i d l e)
29 {
30 s i b l i n g . a s s i g n (t 2) ;
31 }
32 t h r e a d . a s s i g n (t 1) ;
33 }

Figure 3. Opera runtime scheduler algorithm.

C. Implementation

Target Platform. In our prototype implementation of
Opera, we target the Knights Landing (KNL) many-core
processors in Cori, a supercomputer at NERSC [6]. We
focus on data reuse in the L2 shared cache in KNL and
assign two tasks into threads which use the shared cache.
We configure KNL’s main memory as quadrant mode. This
means the processor is divided into four virtual quadrants
and exposed to the OS as a single NUMA domain. Therefore
we exclude the NUMA effect. In a parallel region, threads
are assigned to hardware threads. To ensure that the threads
use the shared L2 cache, we use an OpenMP environment
variable to bind to specific processors.

Nanos++ RTL APIs. Opera is developed as an al-
ternative scheduler in Nanos++ runtime [7]. Leveraging the
task related APIs (e.g. task assigning) provided by Nanos++,
Opera inquires the task affinity table and assigns tasks into
the threads which has better chance to reuse data in the
shared cache.

III. EVALUATION

A. Benchmarks

We use the OpenMP task kernels in Barcelona OpenMP
Tasks Suite (BOTS) [8] to evaluate Opera. BOTS contains
eight OpenMP task-based kernels covering various domains.
Meanwhile, there are kernels with or without nested tasks.
The evaluation using BOTS can make a comprehensive
understanding about task affinity improvement with Opera
for the OpenMP tasking model. Both small and medium
input data sets are used for the kernels. Their memory
footprints are about 1GB and 4GB respectively. Table II
shows more details on the kernels we use.

Table II
BENCHMARK INFORMATION

Kernels Domain Memory footprint
Alignment Dynamic programming 1.2GB(small), 4.7GB(medium)
FFT Spectral method 1.5GB(small), 3GB(medium)
Floorplan Optimization 7GB(small), 7GB(medium)
Health Simulation 25MB(small), 4GB(medium)
NQueens Search 3MB(small), 3MB(medium)
Sort Integer sorting 500MB(small), 2GB(medium)
SparseLU Sparse linear algebra 60MB(small), 120MB(medium)
Strassen Dense linear algebra 1GB(small), 4GB(medium)

B. Experimental Environment

We use a KNL-based compute node on the Cori cluster
at NERSC with the default KNL configuration. More KNL
configuration details are introduced in section II-C

C. Results

We evaluate the execution time for each kernel with
Opera scheduler and compare the result with three
Nanos++ runtime existing schedulers. We summarized the
features of each scheduler’s algorithm as follows.

0.0

0.6

1.2

1.8

2.4

Alignment FFT Floorplan Health NQueens Sort SparseLU Strassen

No
rm

ili
ze

d
ex

ec
ut

io
n

tim
e

Breadth First Distributed Breadth First Work First Opera

Figure 4. Normalized execution time with small input set.

0.0

0.6

1.2

1.8

2.4

Alignment FFT Floorplan Health NQueens Sort SparseLU Strassen

No
rm

ili
ze

d
ex

ec
ut

io
n

tim
e

Breadth First Distributed Breadth First Work First Opera

Figure 5. Normalized execution time with medium input set.

• Breadth First scheduler. This scheduler implements a
single global task ready queue. The task ready queue
is ordered following a FIFO algorithm. Breadth First
scheduler is the default scheduler.

• Distributed Breadth First scheduler. This scheduler is
implemented with multiple local thread queues. Each
thread inserts its created tasks into its own ready queue
following a FIFO algorithm.

• Work First scheduler. This scheduler is also imple-
mented with local thread queues. Each thread inserts
its created tasks into its own ready queue following a
depth first algorithm.

• Opera scheduler. This scheduler implements a single
global task ready queue. The pop out order for tasks in
ready queues follows the task affinity relations.

Figures 4 and 5 shows the normalized execution time for
each kernel with different schedulers in small and medium
input set respectively. The baseline is the Breadth First
scheduler. None of the scheduler provided by Nanos++ RTL
considers the task affinity during the task scheduling.

The evaluation result shows that Opera obtains the best
performance in 6 cases over total 8 cases. Compared to the
default scheduler (Breath First), Opera reduces the average
execution time by 17.5% and 21.2% for two different
data set sizes, respectively. Opera outperforms all other
schedulers for the normalized average execution time.

IV. FUTURE WORK

The current implementation of Opera focuses on proving
the idea that considering task affinity during task scheduling
can improve the runtime performance. However, the offline
profiling can still be the bottleneck of the design. The offline

profiling is expensive by using PIN-based memory access
analysis tool. We will explore the method to efficiently
profile memory access by predicting large input problems
with small input problems and bring the offline solution
online.

V. CONCLUSION

Leveraging the memory access similarity analysis for
individual tasks, we propose Opera, an approach combining
both offline profiling and runtime task scheduling to improve
data reuse on the shared cache. Our evaluation results shows
that Opera improves performance by up to 40% (21.2%
on average), comparing with using three schedulers in the
Nanos++ runtime library.

REFERENCES

[1] E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Mas-
saioli, X. Teruel, P. Unnikrishnan, and G. Zhang, “The design
of openmp tasks,” IEEE Trans. Parallel Distrib. Syst., 2009.

[2] OpenMP Architecture Review Board: OpenMP Application
Program Interface, Version 3.0. [Online]. Available: http:
//www.openmp.org/

[3] Knights Landing (KNL): 2nd Generation Intel R© Xeon Phi
TM

Processor. [Online]. Available: https://www.alcf.anl.gov/files/
HC27.25.710-Knights-Landing-Sodani-Intel.pdf

[4] C. Terboven, J. Hahnfeld, X. Teruel, S. Mateo, A. Duran,
M. Klemm, S. L. Olivier, and B. R. de Supinski, “Approaches
for task affinity in openmp,” in OpenMP: Memory, Devices,
and Tasks, N. Maruyama, B. R. de Supinski, and M. Wahib,
Eds., 2016.

[5] S.-S. Choi, S.-H. Cha, and C. C. Tappert, “A survey of
binary similarity and distance measures,” Journal of Systemics,
Cybernetics and Informatics, 2010.

[6] Cori Intel Xeon Phi (KNL) Nodes. [Online].
Available: http://www.nersc.gov/users/computational-systems/
cori/configuration/cori-intel-xeon-phi-nodes/

[7] Barcelona Supercomputing Center, “Nanos ++,” https://pm.bsc.
es/nanox.

[8] Barcelona OpenMP Tasks Suite. [Online]. Available: https:
//github.com/bsc-pm/bots

