
LLNL-CONF-774899

Extending OpenMP
Metadirective Semantics for
Runtime Adaptation

Y. Yan, A. Wang, C. Liao, T. Scogland, B. de
Supinski

May 21, 2019

The International Workshop on OpenMP (IWOMP)
Auckland, New Zealand
September 11, 2019 through September 13, 2019

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Extending OpenMP Metadirective Semantics for
Runtime Adaptation

Yonghong Yan1, Anjia Wang1, Chunhua Liao2,
Thomas R.W. Scogland2, and Bronis R. de Supinski2

1 University of South Carolina
Columbia, SC 29208, USA

yanyh@cse.sc.edu,anjia@email.sc.edu
2 Lawrence Livermore National Laboratory

Livermore, CA 94550, USA
{liao6,scogland1,bronis}@llnl.gov

Abstract. OpenMP 5.0 introduces the metadirective to support selec-
tion from a set of directive variants based on the OpenMP context,
which is composed of traits from active OpenMP constructs, devices,
implementations or user-defined conditions. OpenMP 5.0 restricts the
selection to be determined at compile time, which requires that all traits
must be compile-time constants. Our analysis of real applications indi-
cates that this restriction has its limitation, and we explore extension of
user-defined contexts to support variant selection at runtime. We use the
Smith-Waterman algorithm as an example to show the need for adaptive
selection of parallelism and devices at runtime, and present a prototype
implemented in the ROSE compiler. Given a large range of input sizes,
our experiments demonstrate that one of the adaptive versions of Smith-
Waterman always chooses the parallelism and device that delivers the
best performance, with improvements between 20% and 200% compared
to non-adaptive versions that use the other approaches.

Keywords: OpenMP 5.0 · Metadirective · Dynamic context.

1 Introduction

OpenMP 5.0 [5] introduces the concept of OpenMP contexts and defines traits
to describe them by specifying the active construct, execution devices, and func-
tionality of an implementation. OpenMP 5.0 further introduces the metadirective
and declare variant to support directive selection based on the enclosing OpenMP
context as well as user-defined conditions. This feature enables programmers to
use a single directive to support multiple variants tailored for different contexts
derived from the hardware configuration, software configuration or user defined
conditions. With context traits that are available to the compiler when per-
forming OpenMP transformations, a user can much more easily optimize their
application for specific architectures, possibly resolving to multiple different di-
rectives in the same compilation in different call chains or different contexts.

2 Y. Yan et al.

OpenMP 5.0 restricts context traits to be fully resolvable at compile time.
Thus, the ability to optimize OpenMP applications based on their inputs and
runtime behavior is severely constrained, even with user-defined conditions. The
semantics of context selection are naturally applicable to support both compile
time and runtime directive selection. Given a low overhead runtime selection
mechanism, the extension for enabling runtime adaptation would improve per-
formance of an application based on system architecture and input character-
istics. Applications that would benefit from this feature include those that use
traits based on problem size, loop count, and the number of threads. For ex-
ample, most math kernel libraries parallelize and optimize matrix multiplication
based on input matrix sizes.

In this paper, we extend the semantics of user-defined contexts to support
runtime directive selection. We use the Smith-Waterman algorithm as an exam-
ple to demonstrate that the extensions enable runtime adaptive selection of tar-
get devices, depending on the size of the input. We develop a prototype compiler
implementation in the ROSE compiler and evaluate the performance benefits of
this extension. Our experiments demonstrate that one of the adaptive versions
of Smith-Waterman always chooses the parallelism and device that delivers the
best performance for a large range of input sizes, with improvements between
20% and 200% over the non-adaptive versions.

The remainder of this paper is organized as follows. Section 2 presents the
current syntax and semantics of OpenMP context and metadiretive in the latest
standard. A motivating example is given in Section 3 to demonstrate the need to
support dynamic selection of directives at runtime based on user defined condi-
tions. Section 4 introduces our extension to allow dynamic user-defined context.
We discuss a prototype compiler implementation for the dynamic extension in
Section 5. Section 6 evaluates performance of our prototype that automates
adaptation of the Smith-Waterman algorithm. Finally, we mention related work
in Section 7 and conclude our paper in Section 8.

2 Variant Directives and Metadirective in OpenMP 5.0

Variant directives is one of the major features introduced in OpenMP 5.0 to fa-
cilitate programmers to improve performance portability by adapting OpenMP
pragmas and user code at compile time. The standard specifies the traits that de-
scribe active OpenMP constructs, execution devices, and functionality provided
by an implementation, context selectors based on the traits and user-defined con-
ditions, and the metadirective and declare directive directives for users to program
the same code region with variant directives. A metadirective is an executable
directive that conditionally resolves to another directive at compile time by se-
lecting from multiple directive variants based on traits that define an OpenMP
condition or context. The declare variant directive has similar functionality as
the metadirective but selects a function variant at the call-site based on con-
text or user-defined conditions. The mechanism provided by the two directives
for selecting variants is more convenient to use than the C/C++ preprocessing

Extending OpenMP Metadirective Semantics for Runtime Adaptation 3

since it directly supports variant selection in OpenMP and allows an OpenMP
compiler to analyze and determine the final directive from variants and context.

In this paper, we use metadirective to explore the runtime adaptation feature
since it applies to structured user code region (instead of a function call as in
declare variant), which poses more adaptation needs based on the program inputs.
The metadirective syntax for C and C++ is:

#pragma omp metadirective [clause[[,]clause]...]new-line

The clause in a metadirective can be either
when(context-selector-specification:[directive-variant]) or default (directive-variant).

The expressiveness of a metadirective to enable conditional selection of a
directive variant at compile time is due to the flexibility of its context selector
specification. The context selector defines an OpenMP context, which includes
a set of traits related to active constructs, execution devices, functionality of
an implementation and user defined conditions. Implementations can also define
further traits in the device and implementation sets.

1 context_selector_spec : trait_set_selector

2 | context_selector_spec trait_set_selector;

3 trait_set_selector : trait_set_name ’=’ ’{’ trait_selector_list ’}’;

4 trait_set_name : CONSTRUCT | DEVICE | IMPLEMENTATION | USER;

5 trait_selector_list : trait_selector

6 | trait_selector_list trait_selector;

7 trait_selector : construct_selector

8 | device_selector

9 | implementation_selector

10 | condition_selector;

11 condition_selector : CONDITION ’(’ trait_score const_expression ’)’;

12 device_selector : context_kind | context_isa | context_arch;

13 context_kind : KIND ’(’ trait_score context_kind_name ’)’;

14 context_kind_name : HOST | NOHOST | ANY | CPU | GPU | FPGA;

15 context_isa : ISA ’(’ trait_score const_expression ’);

16 context_arch : ARCH ’(’ trait_score const_expression ’)’;

17 implementation_selector : VENDOR ’(’ trait_score context_vendor_name ’)’

18 | EXTENSION ’(’ trait_score const_expression ’)’

19 | const_expression ’(’ trait_score ’)’;

20 | const_expression;

21 context_vendor_name : AMD | ARM | BSC | CRAY | FUJITSU | GNU | IBM |

22 INTEL | LLVM | PGI | TI | UNKNOWN;

23 construct_selector : parallel_selector;

24 parallel_selector : PARALLEL | PARALLEL ’(’ parallel_parameter ’)’;

25 parallel_parameter : trait_score parallel_clause_optseq;

26 trait_score : | SCORE ’(’ const_expression ’)’ ’:’;

27 const_expression : EXPR_STRING;

Fig. 1: Context Selector Grammar

4 Y. Yan et al.

Figure 1 shows the grammar for context selectors in Backus-Naur Form. A
context selector contains one or more trait set selectors. Each trait set selector
may contain one or more trait selectors. Each trait selector may contain one or
more trait properties. All traits must be resolved to constant values at compile
time, as indicated by condition const expression at line 12. The upper case tokens
throughout the grammar are enum names that the lexer returns.

Figure 2(b) shows an example that uses a metadirective to specify a variant
to use for NVIDIA PTX devices, and a variant that is applied in all other cases
by default. Figure 2(a) shows the code using C/C++ macro to achieve the same
goal. In 2(b), a trait selector named arch from the device trait set specifies the
context selector. If the trait’s property is resolved to be nvptx at compile-time
then the directive variant that has one thread team and the loop construct is
applied. Otherwise, a target parallel loop directive is applied. Using metadirective
has two major benefits. One is that compiler could be aware of more context in-
formation. In 2(a), the preprocessor will prune one of the conditional statement
before passing the source code to compiler. However, in 2(b), compiler has all
the information of branches. The other advantage is that the redundant code is
optimized. The two lines of for loop only appear once while using metadirective.

1 int v1[N], v2[N], v3[N];

2 #if defined(nvptx)

3 #pragma omp target teams distribute

parallel loop map(to:v1,v2)

map(from:v3)

4 for (int i= 0; i< N; i++)

5 v3[i] = v1[i] * v2[i];

6 #else

7 #pragma omp target parallel loop

map(to:v1,v2) map(from:v3)

8 for (int i= 0; i< N; i++)

9 v3[i] = v1[i] * v2[i];

10 #endif

(a) Original code

1 int v1[N], v2[N], v3[N];

2 #pragma omp target map(to:v1,v2)

map(from:v3)

3 #pragma omp metadirective

4 when(device={arch(nvptx)}:

target teams distribute

parallel loop)

5 default(target parallel

loop)

6 for (int i= 0; i< N; i++)

7 v3[i] = v1[i] * v2[i];

(b) Using metadirective

Fig. 2: An Example using metadirective

3 A Motivating Example

While the metadirective can be used to specify multiple variants in a program,
it requires the corresponding traits to be resolved at compile time, which limits
customization of the user code at runtime. In this section, we use the Smith-

Extending OpenMP Metadirective Semantics for Runtime Adaptation 5

Waterman algorithm to demonstrate the need for customization and dynamic
adaptation.

Fig. 3: Wavefront Computation Pattern of the Smith-Waterman Algorithm

The Smith-Waterman algorithm performs local sequence alignment [8] to find
the optimal occurrence of a sub-sequence within a DNA or RNA sequence. The
algorithm compares segments of all possible lengths and optimizes the similarity
measure. Similarity is represented by a score matrix H. The update of the score
is derived from one-to-one comparisons between all components in two sequences
from which the optimal alignment result is recorded. Figure 3 shows the scoring
step of the algorithm. Arrows in the figure denote data dependency between
points of the computation. The scoring process is a wavefront computation pat-
tern. Figure 4 shows a typical OpenMP implementation of the scoring wavefront
pattern by parallelizing the computation that iterates on a wavefront line. The
implementation of the algorithm has O(M*N) time complexity in which M and
N are the lengths of the two sequences that are being aligned. The space com-
plexity is also O(M*N) since the program must store two string sequences and
two matrices, one for scoring and the other for backtracking.

1 long long int nDiag = M + N - 3;

2 for (i = 1; i <= nDiag; ++i) {

3 long long int nEle, si, sj;

4 nEle = nElement(i); calcFirstDiagElement(i, &si, &sj);

5 #pramga omp parallel for shared (nEle, si, sj, H, P, maxPos) private(j)

6 for (j = 0; j < nEle; ++j)

7 similarityScore(si-j, sj+j, H, P, &maxPos);

8 }

Fig. 4: An OpenMP Implementation of the Smith-Waterman Algorithm

6 Y. Yan et al.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Ti
m
e	
(S
ec
on
ds
)

N

Performance	Comparison	 (M	=	2,000,	N	=	400	- 60,000)

CPU	Sequential

OMP-CPU-56T

GPU	Total

Fig. 6: Smith-Waterman Execution Times (Fixed M, Varying N)

1 long long int nDiag = M + N - 3;

2 #pragma omp target enter data map(to:a[0:m],...) map(to:H[0:asz],...)

3 for (i = 1; i <= nDiag; ++i) {

4 long long int nEle, si, sj;

5 nEle = nElement(i); calcFirstDiagElement(i, &si, &sj);

6 #pragma omp target teams distribute parallel for map (...)

7 for (j = 0; j < nEle; ++j)

8 similarityScore(si-j, sj+j, H, P, &maxPos);

9 }

10 #pragma omp target exit data map(from:H[0:asz],...)

Fig. 5: An OpenMP implementation using offloading on GPUs

One can add OpenMP device constructs to create a version for GPUs, shown
in Figure 5. In our early evaluation, we compare the performance of three baseline
versions of the algorithm: CPU sequential, OpenMP parallel with 56 threads,
and OpenMP offloading on a NVIDIA V100 GPU. Figure 6 shows that the
performance of three versions varies dramatically with regards to the length of
one sequence (N), indicated by the cross points of the three plotted lines. Thus
an algorithm that adapts between the three versions based on the lengths of the
input sequences would perform best overall.

We consider two adaptive versions. First, we optimize the program such that
it automatically selects one of the three versions, i.e. CPU sequential, or CPU
parallel or GPU based on the lengths of the sequences, which can be represented
by the outer loop count nDiag. A typical use case of this approach could be that
a user wants to align a large number of sequences of varying lengths (N) with
a sequence of fixed length (M). From Figure 6, the best choice among the three

Extending OpenMP Metadirective Semantics for Runtime Adaptation 7

Fig. 7: The relationship between the outerloop index and inner loop count

versions clearly depends on the evaluation of the length of N against a threshold.
Since all the three versions exhibit good weak scaling, the two thresholds are the
value of N at which the performance crossover occurs. These two thresholds
separate the three versions according to the problem size.

For the second version, we observe that when computing the scoring matrix,
the inner loop count varies between outer loop iterations. One can optimize the
inner loop such that it uses one of the three versions based on the inner loop
count. Figure 7 shows the relationship between the outer loop index, the inner
loop count and the two hypothetical thresholds for inner loop count (INNER-
MEDIUM and INNERLARGE) for determining which parallelism approach to
use for the inner loop.

In either approach, the dynamic nature of the outer loop count (nDiag),
inner loop count (nEle) and their impact on performance would benefit from
metadirective’s support of runtime selection of different code variants.

4 Extension of the Metadirective Semantics and its
Application to Smith-Waterman

We present an initial exploration of extending metadirective by relaxing its re-
striction of compile-time only selection. We allow runtime evaluation of user-
defined conditions. Our future work includes exploration of semantic extensions
of other selectors to allow for combined compile-time and the runtime selec-
tion of variants. We anticipate that those extensions may require new clauses to
facilitate low overhead selection.

4.1 Adaptation Based on the Outer Loop Count

Figure 8 shows the first version which uses the metadirective to adapt the al-
gorithm based on the outer loop count (nDiag) to control the switch between

8 Y. Yan et al.

1 long long int nDiag = M + N - 3;

2 //Copy the data if GPU will be used

3 #pragma omp metadirective \

4 when(user={condition(nDiag >= OUTERLARGE)}: \

5 target enter data map(to:a[0:m],...) map(to:H[0:asz],...))

6 for (i = 1; i <= nDiag; ++i) {

7 long long int nEle, si, sj;

8 nEle = nElement(i); calcFirstDiagElement(i, &si, &sj);

9

10 #pragma omp metadirective \

11 when (user={condition(nDiag < OUTERMEDIUM)}:) /*serial*/ \

12 when (user={condition(nDiag < OUTERLARGE)} : \

13 parallel for private(j) shared (nEle, ...)) /*CPU parallel*/ \

14 /*nDiag>=OUTERLARGE, GPU offloading*/ \

15 default (target teams distribute parallel for ...)

16 for (j = 0; j < nEle; ++j)

17 similarityScore(si-j, sj+j, H, P, &maxPos);

18 }

19 //Copy data back to CPU if GPU is used

20 #pragma omp metadirective \

21 when (user={condition(nDiag >= OUTERLARGE)}: \

22 target exit data map(from:H[0:asz],...)

Fig. 8: Selection via metadirective Based on the Outer Loop Count(nDiag)

the three versions. OpenMP 5.0 provides a scoring mechanism for the directive
variants to guide the compiler’s selection among them. In our prototype, the
variants and their conditions are evaluated in the order that they appear in
the metadirective construct. The first variant for which its condition is true is
chosen and the following variants are ignored by the runtime. These semantics
are familiar to programmers since standard programming languages use them to
evaluate the conditions of if-else and switch-case statements.

To identify the two thresholds (OUTERMEDIUM and OUTERLARGE) in this
version, we can profile each of the three versions, using a small data set. Since
they all have good weak scaling, as demonstrated in Figure 6, we can easily
extrapolate the performance to find the crossover points of the three versions,
which represent the two thresholds.

4.2 Adaptation Based on the Inner Loop Count

Figure 9 shows the version of using metadirective and INNERMEDIUM and
INNERLARGE thresholds shown in Figure 7 to control switching the execution
between CPU and GPU. Since the inner loop is offloaded across consecutive outer
loop iterations, we optimize data movement with target enter data and target
exit data directives such that it is copied only once when the INNERLARGE
threshold is met.

Extending OpenMP Metadirective Semantics for Runtime Adaptation 9

1 bool GPUDataCopied = false;

2 for (i = 1; i <= nDiag; ++i) {

3 long long int nEle, si, sj;

4 nEle = nElement(i); calcFirstDiagElement(i, &si, &sj);

5

6 //Copy the data for the first time GPU will be used

7 if (nEle >= INNERLARGE && !GPUDataCopied) {

8 #pragma omp target enter data map(to:a[0:m],...) map(to:H[0:asz],...)

9 GPUDataCopied = true;

10 }

11 //Copy data back to CPU after the last time GPU is used

12 if (GPUDataCopied && nEle < INNERLARGE) {

13 GPUDataCopied = false;

14 #pragma omp target exit data map(from:H[0:asz],...)

15 }

16 #pragma omp metadirective \

17 when (user={condition(nEle < INNERMEDIUM)}:) /*serial*/ \

18 when (user={condition(nEle < INNERLARGE)} : \

19 parallel for private(j) shared (nEle, ...)) /*CPU parallel*/ \

20 default (target teams distribute parallel for \

21 map (to:a[0:m], b[0:n], ...) map(tofrom: H[0:asz], ...) \

22 shared (nEle, ...)) //GPU offloading

23 for (j = 0; j < nEle; ++j)

24 similarityScore(si-j, sj+j, H, P, &maxPos);

25 }

Fig. 9: Selection via metadirective Based on the Inner Loop Count (nEle)

For both of the adaptive versions, an OpenMP compiler must generate three
versions of the inner loop for the three base versions. The runtime uses the
condition checks in the when clause of the directive to determine which version
to invoke.

5 Prototype Implementation

We use ROSE to prototype our metadirective implementation and extension.
Developed at LLNL, ROSE [7] is an open source compiler infrastructure to
build source-to-source program transformation and analysis tools for Fortran
and C/C++ applications. ROSE supports OpenMP 3.0 [1] and part of 4.0 [2].
It parses OpenMP directives and generates an Abstract Syntax Tree (AST)
representation of OpenMP constructs. The OpenMP AST is then lowered and
unparsed into multithreaded CPU or CUDA code. A backend compiler, such as
GCC or NVCC, compiles the CPU or CUDA code and links the generated object
files with a runtime to generate the final executable. Our prototype implemen-
tation includes the following components:

10 Y. Yan et al.

1 ...

2

3 if (nEle < INNERMEDUIM) { //serial

4 for (j = 0; j < nEle; ++j) similarityScore(si-j, sj+j, H, P, &maxPos);

5 } else if (nEle < INNERLARGE) { //CPU parallel

6 #pragma omp parallel for private(j) shared (nEle, ...))

7 for (j = 0; j < nEle; ++j)

8 similarityScore(si-j, sj+j, H, P, &maxPos);

9 } else { //GPU offloading

10 #pragma omp target teams distribute parallel for \

11 map (to:a[0:m], b[0:n], ...) \

12 map(tofrom: H[0:asz], ...) shared (nEle, ...))

13 for (j = 0; j < nEle; ++j)

14 similarityScore(si-j, sj+j, H, P, &maxPos);

15 }

16 ...

17 }

Fig. 10: Lowering metadirective with Dynamic Conditions to an if Statement

– A new OpenMP parser for metadirective, which is treated as nested directives;
– An extension of the internal ROSE AST to represent metadirective;
– A new phase of OpenMP lowering as the first step to translate the AST of

metadirective into the OpenMP 4.0 AST using if-else statement as Figure 10
shows for the input code in Figure 9;

– Existing OpenMP lowering phase that generates CUDA code and connec-
tions to a thin layer of the XOMP runtime [1]; and

– Generated CUDA code compilation with NVCC and linking with XOMP.

6 Experimental Results

Our experimental platform has 2 CPUs, each with 28 cores, and one NVIDIA
Telsa V100 GPU with 16 GB of HBM. The system has 192 GB of main memory
and runs Ubuntu 18.04 LTS, GCC 8.2.0 and NVIDIA CUDA SDK 10.1.105.

6.1 Evaluation of Adaptation Based on Outer Loop Count

To evaluate performance of the version that Figure 8 shows, we performed the
following experiment. First, we measured individual performance of CPU se-
quential, CPU parallel and GPU versions. As in Figure 6, we identified the
crossover points for the OUTERMEDIUM and OUTERLARGE thresholds as
3200 and 22000. Figures 11 shows the performance results. The adaptive version
always chooses the parallelism and device that delivers the best performance for

Extending OpenMP Metadirective Semantics for Runtime Adaptation 11

a large range of input sizes, with improvements between 20% and 200% over the
non-adaptive versions.

0

2

4

6

8

10

12

14

0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

Ti
m
e	
(S
ec
on
ds
)

N

Performance	Comparison	 (M	=	2,000,	N	=	400	- 200,000)

CPU	Sequential
OMP-CPU-56T
GPU
Adaptive-56T

Zoom-in N = 400 - 20000

Fig. 11: Adaptive Smith-Waterman Performance using Outer Loop Count

6.2 Evaluation of Adaptation Based on Inner Loop Count

As Figure 7 shows, this version tries to adaptively divide the inner loop iterations
among CPU sequential, CPU parallel and GPU such that it could perform better
than any individual version alone. In the experiments, we decide to use just the
INNERLARGER to switch the computation between CPU parallel and GPU since
the impact of CPU sequential is minimal. We evaluated the performance using
five different M-N configurations: 45,000-45,000, 2,000-200,000, 200,000-2,000,
20,000-40,000, 40,000-20,000. In each configuration, we experiment with different
INNERLARGE threshold values to control the switch between CPU parallel and
GPU.

Our experiment shows that the benefits of using the adaptive version of the
Smith-Waterman (SW) algorithm can be observed for M=20,000 and N=200,000,
shown in Figure 12. However, the performance advantage (when the inner loop
count threshold is at 200, 1300, 1600, etc) is very small compared to the best
non-adaptive GPU version.

12 Y. Yan et al.

2

3

4

5

6

7

8

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

Ti
m
e	
(S
ec
on
ds
)

INNERLARGE	=	1	- 2100

INNERLARGE	Performance,	M	=	2,000	N	=	200,000

OMP-CPU-56T

GPU	Total

Adaptive-56T

GPU	Data	Transfer	Total

Adaptive-Compute

GPU	Kernel

Fig. 12: Adaptive SW’s Performance using Inner Loop Count (M !=N)

For all other configurations, the adaptive version is not able to improve the
overall performance over the best non-adaptive baseline version. Figure 13 shows
one example for M=45,000 and N=45,000.

To understand our results, we profiled the execution to break down the GPU
time into GPU kernel time and GPU data transfer time (shown in both Fig-
ure 12 and 13). For M=N=45,000, the profiling results show that the GPU data
transfer overhead dominates the GPU offloading time, about 80%. Instead of
only transferring the wavefront that needed for calculation, it always transfers
all the data unnecessarily. Also, as we increase the inner loop count’s threshold
value, the compute time for the adaptive version also slightly increase, making
it difficult to outperform its non-adaptive baseline version. Further investigation
is still needed to make this adaptive version more effective.

6.3 Overhead Discussion

Since the transformation of metadirective simply uses the if-else statement and
the overhead is expected to be negligible. However, the multi-version fat-binary
code generated by the compiler may have a large code footprint in both disk and
instruction memory when being executed.

From Fig. 11, we observe that the execution time of adaptive version is
not significantly different from the the individual version. With configurations
that M=2,000 and N=20,000-200,000, the execution overheads are measured.
By average among all those configurations, the adaptive version is slower than
individual GPU version by 0.28%, which is unnoticeable.

We also measured code size of different versions, as shown in Table 1. The
object file of adaptive version is 18.37% to 34.9% larger than the individual non-
adaptive versions. For the final executable files, the GPU executable files are

Extending OpenMP Metadirective Semantics for Runtime Adaptation 13

0

5

10

15

20

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00
0

11
00
0

12
00
0

13
00
0

14
00
0

15
00
0

16
00
0

17
00
0

18
00
0

19
00
0

20
00
0

21
00
0

22
00
0

23
00
0

24
00
0

25
00
0

26
00
0

27
00
0

28
00
0

29
00
0

30
00
0

31
00
0

32
00
0

33
00
0

34
00
0

35
00
0

36
00
0

37
00
0

38
00
0

39
00
0

40
00
0

41
00
0

42
00
0

43
00
0

44
00
0

45
00
0

Ti
m
e	
(S
ec
on

ds
)

INNERLARGE	=	1	- 45,000

INNERLARGE	Performance,	M	=	45,000	N	=	45,000

Adaptive-56T

GPU	Total

GPU	Data	Transfer	Total

OMP-CPU-56T

Adaptive-Compute

GPU	Kernel

Fig. 13: Adaptive SW’s Performance using Inner Loop Count (M ==N)

significantly larger since they incorporate more supportive object files for both
CPU and GPU execution. As a result, our transformation has much less impact
on the code size.

Smith Waterman Version Object file size /KB Executable file size /KB

Non-Adaptive
Serial 43 14
CPU Parallel 49 18
GPU 44 751

Adaptive 58 751

Table 1: Code Size Overhead of Adaptive Smith Waterman

7 Related Work

In [6], the authors explored the benefits of using two OpenMP 5.0 features,
including metadirective and declare variant, for the miniMD benchmark from
the Mantevo suite. The authors concluded that these features enabled their
code to be expressed in a more compact form while maintaining competitive
performance portability across several architectures. However, their work only
explored compile-time constant variables to express conditions.

Many researchers have studied using GPUs to speedup Smith-Waterman al-
gorithm, beginning as far back as Liu et. al. in 2006 [3]. Our implementation

14 Y. Yan et al.

resembles some of these early attempts in terms of data motion and synchro-
nization behavior, mainly as a simple case study. Later work uses a variety
of techniques to reduce the data movement and memory requirement by doing
backtracing on the GPU [9] and even exploring repeating work to accomplish the
backtrace in linear space [4]. These techniques would likely make the inner-loop
optimization we discussed more attractive by removing the high cost of moving
the complete cost matrix to and from the device, and may be worth exploring
in the future.

8 Conclusion

Metadirectives in OpenMP 5.0 allow programmers to easily apply multiple di-
rective variants to the same code region in order to meet the need of different
software and hardware contexts. However, the context must be resolved at com-
pile time. In this paper, we have used the Smith-Waterman algorithm to demon-
strate the need for runtime adaptation. We propose to relax the compile-time
restriction to allow dynamic adaptation of user-defined contexts. Our experi-
mental results with a prototype compiler implementation show that dynamic
evaluation of user-defined conditions can provide programmers more freedom
to express a range of adaptive algorithms that improve overall performance. In
the future, we would like to explore more complex user-defined conditions and
extend other context selectors to support dynamic adaptation of metadirective
at runtime, including dynamic work partitioning between CPUs and GPUs.

Acknowledgment

This work was performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344,
and supported by the U.S. Dept. of Energy, Office of Science, Advanced Scien-
tific Computing Research (SC-21), under contract DE-AC02-06CH11357. The
manual reference codes were supported by LLNL-LDRD 18-ERD-006. LLNL-
CONF-774899. This material is also based upon work supported by the National
Science Foundation under Grant No. 1833332 and 1652732.

References

1. Liao, C., Quinlan, D.J., Panas, T., De Supinski, B.R.: A ROSE-based OpenMP 3.0
research compiler supporting multiple runtime libraries. In: International Workshop
on OpenMP. pp. 15–28. Springer (2010)

2. Liao, C., Yan, Y., de Supinski, B.R., Quinlan, D.J., Chapman, B.: Early experiences
with the OpenMP accelerator model. In: OpenMP in the Era of Low Power Devices
and Accelerators, pp. 84–98. Springer (2013)

3. Liu, Y., Huang, W., Johnson, J.: GPU accelerated smith-waterman. In: International
Conference on Computational Science (ICCS) (2006)

Extending OpenMP Metadirective Semantics for Runtime Adaptation 15

4. de O Sandes, E., de Melo, A.: Smith-waterman alignment of huge sequences with
gpu in linear space. In: 2011 IEEE International Parallel Distributed Processing
Symposium. pp. 1199–1211 (May 2011). https://doi.org/10.1109/IPDPS.2011.114

5. OpenMP Architecture Review Board: OpenMP Application Programming
Interface 5.0 (Nov 2018), https://www.openmp.org/wp-content/uploads/

OpenMP-API-Specification-5.0.pdf

6. Pennycook, S.J., Sewall, J.D., Hammond, J.R.: Evaluating the Impact
of Proposed OpenMP 5.0 Features on Performance, Portability and Pro-
ductivity. In: 2018 IEEE/ACM International Workshop on Performance,
Portability and Productivity in HPC (P3HPC). pp. 37–46 (Nov 2018).
https://doi.org/10.1109/P3HPC.2018.00007

7. Quinlan, D., Liao, C.: The ROSE source-to-source compiler infrastructure. In: Cetus
users and compiler infrastructure workshop, in conjunction with PACT. vol. 2011,
p. 1. Citeseer (2011)

8. Smith, T.F., Waterman, M.S., et al.: Identification of common molecular subse-
quences. Journal of molecular biology 147(1), 195–197 (1981)

9. Xiao, S., Aji, A.M., Feng, W.c.: On the robust mapping of dynamic programming
onto a graphics processing unit. In: 2009 15th International Conference on Parallel
and Distributed Systems. pp. 26–33. IEEE (2009)

https://doi.org/10.1109/IPDPS.2011.114
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://doi.org/10.1109/P3HPC.2018.00007

