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Formulation, analysis and computation of an
optimization-based local-to-nonlocal coupling method*
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Abstract

We present an optimization-based coupling method for local and nonlocal continuum models. Our approach couches
the coupling of the models into a control problem where the states are the solutions of the nonlocal and local equations,
the objective is to minimize their mismatch on the overlap of the local and nonlocal problem domains, and the virtual
controls are the nonlocal volume constraint and the local boundary condition. We present the method in the context
of Local-to-Nonlocal diffusion coupling. Numerical examples illustrate the theoretical properties of the approach.

Keywords: Nonlocal diffusion, coupling method, optimization, nonlocal vector calculus.

1 Introduction

Nonlocal continuum theories such as peridynamics [30], physics-based nonlocal elasticity [12], or nonlocal
descriptions resulting from homogenization of nonlinear damage models [23] can incorporate strong nonlocal
effects due to long-range forces at the mesoscale or microscale. As a result, for problems where these effects
cannot be neglected, such descriptions are more accurate than local Partial Differential Equations (PDEs)
models. However, their computational cost is also significantly higher than that of PDEs. Local-to-Nonlocal
(LtN) coupling methods aim to combine the computational efficiency of PDEs with the accuracy of nonlocal
models. The need for LtN couplings is especially acute when the size of the computational domain is such
that the nonlocal solution becomes prohibitively expensive to compute, yet the nonlocal model is required
to accurately resolve small scale features such as crack tips or dislocations that can affect the global material
behavior.

LtN couplings involve two fundamentally different mathematical descriptions of the same physical phe-
nomena. The principal challenge is the stable and accurate merging of these descriptions into a physically
consistent coupled formulation. In this paper we address this challenge by couching the LtN coupling into
an optimization problem. The objective is to minimize the mismatch of the local and nonlocal solutions on
the overlap of their respective subdomains, the constraints are the associated governing equations, and the
controls are the virtual nonlocal volume constraint and the local boundary condition. We formulate and
analyze this optimization-based LtN approach in the context of local and nonlocal diffusion models [16].

*SNL is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia,
LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energys National Nuclear
Security Administration contract number DE-NA0003525.

TCenter for Computing Research, Sandia National Laboratories, Mail Stop 1320 Albuquerque, New Mexico, 87185-1320
({mdelia,pbboche}@sandia.gov).
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Our coupling strategy differs fundamentally from other LtN approaches such as the extension of the
Arlequin [11] method to LtN couplings [23], force-based couplings [29], or the morphing approach [5, 25].
The first two schemes blend the energies or the forces of the two models over a dedicated “gluing” area, while
the third one implements the coupling through a gradual change in the material properties characterizing the
two models over a “morphing” region. In either case, resulting LtN methods treat the coupling condition as
a constraint, similar to classical domain decomposition methods. In contrast, we treat this condition as an
optimization objective, and keep the two models separate. This strategy brings about valuable theoretical
and computational advantages. For instance, the coupled problem passes a patch test by construction and
its well-posedness typically follows from the well-posedness of the constraint equations.

Our approach has its roots in non-standard optimization-based domain decomposition methods for PDEs
[13, 14, 15, 19, 20, 21, 22, 24]. It has also been applied to the coupling of discrete atomistic and continuum
models in [27, 28] and multiscale problems [1]. This paper continues the efforts in [8], which presented an
initial optimization-based LtN formulation and in [10], which focussed on specializing the formulation to
mixed boundary conditions and mixed volume constraints and its practical demonstration using Sandia’s
agile software components toolkit. The main contributions of this paper include (i) rigorous analysis of
the LtN coupling error, (ii) formal proof of the well-posedness of the discretized LtN formulation, and (iii)
rigorous convergence analysis.

We have organized the paper as follows. Section 2 introduces notation, basic notions of nonlocal vector
calculus and the relevant mathematical models. We present the optimization-based LtN method and prove
its well-posedness in Section B and study its error in Section 4. Section [f| focusses on the discrete LtN
formulation, its well-posedness and numerical analysis. A collection of numerical examples in Section [6]
illustrates the theoretical properties of the method using a simple one-dimensional setting.

2 Preliminaries

Let w be a bounded open domain in R?, d = 2,3, with Lipschitz-continuous boundary dw. We use the
standard notation H®(w) for a Sobolev space of order s with norm and inner product || - ||s. and (-, )s.w,
respectively. As usual, H’(w) := L?(w) is the space of all square integrable functions on w. The subset of
all functions in H!(w) that vanish on ¢ C dw is Hcl(w) = {ue€ H'(w) : ul|c =0}.

The nonlocal model in this paper requires nonlocal vector calculus operators [16, §3.2] acting on functions
u(z): R — R and v(z,y): R x R? — RY. Let y(z,y): R x RY — R and a(z,y): R x RY — R be a
non-negative symmetric kernel and an antisymmetric function, respectively, i.e., y(x,y) = v(y,x) > 0 and
a(y,x) = —a(x,y). The nonlocal diffusion!| of u is an operator £(u): R? — R defined by

Lu@)i=2 [ (ulw) - u(e)) v(e,y)dy @R
R
and its nonlocal gradient is a mapping G(u): R% x RY — R? given by

Gu(z,y) = (u(y) - u(x))a(z,y)  xyeR" (1a)

Finally, the nonlocal divergence of v(x,y) is a mapping D(v): R? — R defined by?

Dv(z) := /Rd (v(z,y) +v(y, ) - a(z,y)dy x € R (1b)

1 More general representations of £, associated with non-symmetric and not necessarily positive kernel functions exist. Such
nonlocal operators may define models for non-symmetric diffusion phenomena such as non-symmetric jump processes [9].
2 The paper [I7] shows that the adjoint D* = —G.
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Fig. 1: Two-dimensional domain w and interaction domain 7 with interaction radius e.

Furthermore, given a second-order symmetric tensor ®(x,y) = ®(y, ), equations () imply that

D@Gu)(@) =2 [ (u(y) ~ u(@) (a(z.) - B(z.v)a(z.y) dy.
Thus, with the identification v(x,y) = a(x,y) - ®(x,y)a(x,y) the operator L is a composition of the
nonlocal divergence and gradient operators: Lu = D(‘I’gu). We define the interaction domain of an open
bounded region w € R? as

n={y eR\w: y(z,y) # 0},

for € w and set 2 = w Un. In this paper we consider kernels 7 such that for x € w

{W(m,y) >0 Vy€ B(z)

A(@,y) =0 VyeRI\B(x), ®

where B.(z) = {y € RY: |z — y| < €}. Kernels that satisfy (2) are referred to as localized kernels with
interaction radius €. It is easy to see that for such kernels the interaction domain is a layer of thickness e
that surrounds w, i.e.
n={yeR¥\w: inf |y —x| <e};
TrEW

see Fig. [I] for a two-dimensional example. For a symmetric positive definite tensor ® we respectively define
the nonlocal energy semi-norm, nonlocal energy space, and nonlocal volume-constrained energy space by

ol =5 | [ Gv-(@Gu)dy da (30)
V(Q) :={veL*Q) : |||v]|lo < oo} (3b)
Vr(Q):={veV(Q) : v=0on7}, forrCn. (3c)

We also define the volume-trace space V(1) := {v] : v € V(Q)}, and an associated norm

Ty = inf v||lq- 4
1705 = eyt _ vl )
We refer to [16, 17] for further information about the nonlocal vector calculus.

In order to avoid technicalities not germane to the coupling scheme, in this paper we consider integrable
kernels. Examples of applications modeled by the latter can be found in [2, B, 4]. Specifically, we assume
that there exists positive constants vg and 5 such that

Yo S/ v(@,y)dy  and /v(w,y)Qdy < 7, (5)
QNB.(x) Q
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for all € €. Note that this also implies that there exists a positive constant ~; such that for all € 2
/ V(@ y)dy <. (6)
Q
In [16, §4.2] this class of kernels (referred to as Case 2) is rigorously analyzed; we report below an important
result, useful throughout the paper.
Lemma 2.1: Let the function + satisfy (2)) and ([)), then, there exist positive constants Cp,, and C* such that
1
Con
Furthermore, the energy space V,(Q) is equivalent to L2(Q) = {v € L*(Q) : v|, = 0}.

[ulloe <lllullle < C*[lufloe Vue Vr(Q). (7)

The latter is a combination of results in Lemmas 4.6 and 4.7 and Corollary 4.8 in [16, §4.3.2]. Note
that the lower bound in ([7]) represents a nonlocal Poincaré inequality. Even though not included in the
analysis, singular kernels appear in applications such as peridynamics; numerical results, included in the
paper, suggest that the coupling scheme can handle such kernels without difficulties. However, their analysis
is beyond the scope of this paper.

2.1 Local-to-Nonlocal coupling setting

Consider a bounded open region w C R? with interaction domain 7. Given f, € L2(w) and o,, € V(1)) we
assume that the volume-constrained® nonlocal diffusion equation

—Lu, fn TEW
{ Up = Onp TET, (8)

provides an accurate description of the relevant physical processes in Q = w U 7. Let I' = 010, we assume
that the local diffusion model given by the Poisson equation

—Aul

uj

with suitable boundary data o; € Hz (') and forcing term f; € L2(Q) is a good approximation of (8)
whenever the latter has sufficiently “nice” solutions. In this work we define f; to be an extension of f, by 0

in 7, specifically,
fn TEW
= 10
L { 0 zen. (10)

fi xe
o xel,

(9)

For a symmetric positive definite ® standard arguments of variational theory show that the weak form/Y

/Q/qun (®Gz,) dydx = /wfnzn dx Yz, € V,(Q) (11)

3 The volume constraint in (§) is the nonlocal analogue of a Dirichlet boundary condition.
4 Multiplication of (8)) by a test function 2z, € V,(f2), integration over w and application of the first nonlocal Green’s identity
[17] yield the weak form (11) of the nonlocal problem.
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Fig. 2: An example LtN domain configuration in two-dimensions.
of () is well-posed [16], i.e., (11)) has a unique solution such that
I[un|llo < Kn(”fﬂ“(),w + Hgn”f/(n)) (12)

for some positive constant K,,. In this work, for simplicity and without loss of generality, we set ® = I.

Although ([IT) and the nonlocal calculus [16] enable formulation and analysis of finite elements for (),
which parallel those for the Poisson equation (9), resulting methods may be computationally intractable for
large domains. The root cause for this is that long-range interactions increase the density of the resulting
algebraic system making it more expensive to assemble and solve.

3 Optimization-based LtN formulation

For clarity we consider (8) and (9) with homogeneous Dirichlet conditions on 7 and T', respectively. To
describe the approach it suffices to examine a coupling scenario where these problems operate on two over-
lapping subdomains of €2. Thus we consider partitioning of 2 into a nonlocal subdomain w,, with interaction
volume 7),, and a local subdomain €, with boundary T';, such that Q,, := w,Un, C Q, 2 = Q,, U Q; and
Q, =, NQ; # 0; see Fig. 2. Let np =N 1y e =0 \np, 'p =T NIy, and T =T\ I'p; see Fig. 2 and
Appendix B for a summary of notation and definitions. Restrictions of (8) and (9)) to w, and Q; are given
by

—Lu, = fn T Ewy Ay = fi ey
U, = 0, xTEN and w = 0, xzel, (13)
u, = 0 =xze€np w = 0 =x=elp,

respectively, where 0, € O, = {vnly. : vn € V;, ()} and 6, € ©; = {v|r, : v, € HE ()} are an
undetermined Dirichlet volume constraint and an undetermined Dirichlet boundary condition, respectively.
The following constrained optimization problem

1

migl , J(un,u;) subject to (13), where J(uy,w;) = §||un —wldq, (14)
Un,UL,On,0]

defines the optimization-based LtN coupling. In this formulation the subdomain problems ([13) are the

optimization constraints, u, and w; are the states and 6,, and 8; are the controls. We equip the control space

0,, X ©; with the norm

1o, oD)lIE,, <0, = lonlls 4. + lould 1 - (15)

In contrast to blending, (14) is an example of a divide-and-conquer strategy as the local and nonlocal
problems operate independently in €2, and ;.
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Given an optimal solution (u,u;,05,0;) € V;,(Qn) x HE () x O, x O of (14) we define the LtN
solution u* € L?(2) by splicing together the optimal states:

« _Ju e,
v _{ wowe\ Q. (16)
The next section verifies that (14)) is well-posed.

3.1 Well-posedeness

We show that for any pair of controls subproblems (I3) have unique solutions ., (6,,) and u;(6;), respectively.
Elimination of the states from (14) yields the equivalent reduced space form of this problem in terms of 6,

and 6; only:
. 1
Inin J(0,,6;) where J(6,,6,) = §||un(0n) - ul(91)||(2)790. (17)
n,yv1l
To show that (7)) is well-posed we start as in [19, 27] and split, for any given (6,,6;), the solutions of the
state equations into a harmonic and a homogeneous part. The harmonic components vy, (6,) and v;(6;) of
the states solve the equations

—Lv, =0 xc€w, -Avy, =0 xey
vy, =0, x€Emn. and vy =60, zel, (18)
v, =0 x€np, vy =0 xelp,

respectively. The homogeneous components u? and u? solve a similar set of equations but with homogeneous
volume constraint and boundary condition, respectively:

e Tt A B (et S (et 9)
In terms of these components u,, = v, (6,,) + uS, u; = v;(6;) + u), and the objective
T60,6) = 3 l0n (@) =08 0, + (08—, 0a(80) —1(80)) g+ 5 I~ .,
The Euler-Lagrange equation of (17) is given by: seek (o,,0;) € 0, X ©; such that
Qon, 015 piny ) = F(pins )V (pn, ) € On x Oy, (20)
where Qa1 fins ) = (vn(0n) = vi(E1)s vn(jan) — vi(p)) 0, AN Fljins ) = — (0, — uf,vn(jin) —

vl(”l»o,ﬂo‘ The following lemma establishes a key property of Q.

Lemma 3.1: The form Q(:;-) defines an inner product on ©,, x ©;.

Proof. By construction Q(+;-) is symmetric and bilinear. Thus, it suffices to show that Q(-;-) is positive
definite, i.e., Q(on,01;0n,01) = 0 if and only if (o,,07) = (0,0). Let (o,,0;) = (0,0) then v,(c,) = 0 and
v(oy) = 0, implying Q(on, 01;04,07) = 0. Conversely, if Q(o,,01;0n,0;) = 0, then v,(0,) — vi(o7) = 0 in
Q. Let v = v, (0y) = vi(0y) in Q,. Then we have that (i) Av =0 for all & € Q,, i.e., v is harmonic in ,,
and (ii) v = 0 for all ® € Q,N7np, i.e., v vanishes on a non-empty interior set of 2,. By the identity principle
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for harmonic functions, v = 0 in Q,. Because ¢, = v in 7. and 0; = v on I, it follows that (c,,0;) = (0,0).
O

As a results, Q(+;-) endows the control space ©,, X ©; with the “energy” norm
(70, )12 := Q(on, 0100, 1) = [|va(on) — (@) I3 q,- (21)

Note that @ and F' are continuous with respect to the energy norm. However, the control space ©,, X ©; may
not be complete with respect to the energy norm. In this case, following [T, 13], we consider the optimization

problem (17) on the completion ©,, x ©; of the control space.

Theorem 3.1: Let ©,, x ©; denote a Completio of the control space with respect to the energy norm (21).
Then, the minimization problem

min _ J(0,,0;) (22)
(07“01)6@%)(@!
has a unique minimizer (5;;, F9Vl*) € ©,, x ©; such that
Q03,07 s 1) = Fptns i) ¥ (i, 1) € Oy x Oy (23)

Proof. Equation (23) is a necessary condition for any minimizer of (22). Assume first that the control space
is complete, i.e. ©, X ©; = (:)n X él. Then ©,, x O, is Hilbert and the projection theorem implies that (23))
has a unique solution.

When ©,, x ©; is not complete, the continuous bilinear form ) and the continuous functional F' defined
on 0, x ©; can be uniquely extended by using the Hahn-Banach theorem to a continuous bilinear form @
and a continuous functional F' in ©,, X ©;. Then, the existence and uniqueness of the minimizer follow as
before. [

To avoid technical distractions, in what follows we assume that the minimizer (6}, §) belongs to ©,, x ©;
and hence uj, = un(05) € V;,(Qy) and uj = w(6;) € HE (2;). We note that in the finite dimensional case
the completeness is not an issue, as the discrete control space is Hilbert with respect to the discrete energy
norm, see Section [

4 Analysis of the LtN coupling error

We define the LtN coupling error as the L2-norm of the difference between the global nonlocal solution i,
of (8) with homogeneous volume constraints and the LtN solution u* € L?(Q2) given by ([16). This section
shows that the coupling error is bounded by the modeling error on the local subdomain, i.e., the error made
by replacing the “true” nonlocal diffusion operator on €2; by the Laplacian.

We prove this result under the following assumptions.

H.1 The kernel v satisfies (2)) and (5).
H.2 The global nonlocal solution® u,, € H*(2).

We also need the trace operator T : H'(2) — ©,, x©; such that

T(v) = (Ta(v), Ty(v)) = (vly, vlr.) Vv e HY(Q), (24)

5If ©, x ©; is complete, then of course we have that O X (:)l =0, X 0.
6 This assumption can be relaxed to: @, € L2(Q) has a well-defined trace on T';.
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and the lifting operator L : ©,, x ©; — L*(Q), L(0y,01) = H(0oy,01) + u®, where

— Un<0n) Qn 0. U% Qn
H(op,07) = { oo i\ Do, and u’ = { 0 (25)

are a harmonic lifting operator and the homogenous part of the states, respectively. Our main result is the
following theorem.

Theorem 4.1: Assume that H.1 and H.2 hold. Then, there exists a positive constant C' such that
un —u*llo.o < Cllw, —wiloe
where @, = v (T} (ty,)) + u).

For clarity we break the proof into several steps.

4.1 The harmonic lifting operator is bounded from above

We prove that H is bounded in the operator norm | - ||« induced by the energy norm (21). We refer
to Appendix Al for additional notation and auxiliary results used in the proof. We introduce the space
Vin)={neVn) :ul, =0, for 7 Cn}.

Lemma 4.1: Assume that H.1 holds. There exists a positive constant C' < co such that

| H]|ve = sup M<g (26)
(0,0)£(on,01)€0n x0;  1(Tny 1)l K

where « is the thickness of §2,.
Proof. To prove (26)) it suffices to show that

HH(O'anl)”O,Q < 5||(0na<71)||* V(0,0) #* (O’n,m) € 0, x 0y,

For some positive constant 5, inversely proportional to k. According to the definitions of H and ||(-, )|/« in
(25) and (21)), this is equivalent to

X (Qn)vn (@) + X%\ Qo)ui(or) o, < Cllon(on) = vi(on)lo.0,s

where x(-) is the indicator function. Since (€;\Q,) N, = @, this inequality reduces to

lon (@)l 0, + ()1 0\0, < Cllvn(on) — ()3 q,-

The strong Cauchy-Schwarz inequality for the harmonic component (see Lemma [A.3) yields the following
lower bound for the right hand side:

lvn(om)—vi(1)ll5 0, = lvn(@a)ll6., — 2(wa(on), vilon)o.q, + lula) 5 0,

> [lvn (o) 13,0, — 20llva(on)llo.e, lvi(on)llo.q, + lu(a)lF o, (27)
> (1= 8)(llva(on)l§ o, + llu(on)llg.a,)-
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We now proceed to bound [[v,(on)|l0,0, and |[vi(o1)]o.q, from below by |[v,(0n)llo,e, and [lvi(o1)|lo,00\0.,

respectively. We start with the nonlocal term. Let u, € ‘77“3 (nn) denote the extension of o, by zero in np,
i.e., gy = oy inn. and 0 in np. By using the nonlocal Poincaré inequality, the well-posedness of the nonlocal
problem and Lemma we have

[[vn(on)llo,0. < Cpulllvn(on)llla. nonlocal Poincaré inequality (7))
& CannHlian/(nn) nonlocal well-posedness (12)
S CP’”«KnKlH/fanO,nn Lemma

< CannK1K2||vn(Un)||0aQo'

Therefore, we have that B
||vn(‘7n)||g,£2n < Cnllvn(on)”g,ﬂov (28)

with C = Cp, K, K1 Ko.

To analyze the local term we derive a Caccioppoli-type inequality for the local harmonic component. We
introduce the cutoff function g € C(€;) such that g = 1 in 4\ Q, g = 0in Q\ Q, [|[Vg|sw < L, and
supp(Vg) C €,, where & is the thickness of the overlap, see Fig. 2. These properties imply that guv; and g2v;
belong to H} (). Next, we note that v; is the solution of the weak formulation of (9) with f; = 0. Using
g?v; as a test function then yields the following identity

0= [ VuV(¢*v)dx = 2/

qu; Vlegdw+/ §*Vu,Vu, de.
197} Q

Q
We use the latter to find a bound on ||V (gv;)|l0,0,:

IV@lie, = [ ViewVignde - [ TuT(gu)de
Q Q

= V(gu)V(gu) d — 2/ gu Vo Vgdx —/ ¢*Vu,Vu, dx
(97} Q 9

1 1
:/ vangda::/ vangdmg ?/ vfda::pﬂvlﬂago.
Q

o o

Thus, we conclude that

C
lvillo,one. = llguilloena, < llgvillo.q < CpllV(gu)llon, < fllvl 0.2,

where C), is the local Poincaré constant. Let Ky = max{Ch,, C2}. Together with (27) and (28) this yields

B
6.2, + (eI o0, < Kgl (Ilon(on) 1180, + (o) lIf q,)
I?'Ql 2
< ,‘{2(1)1— 5) ||7}n(0'n) - vl(o—l)HO,Qo'

l|[vn (o)
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4.2 The approximation error is bounded by the modeling error

The optimal solution (6}, 6;) of the reduced space problem ([I7) approximates the trace of the global nonlocal
solution @, on 7. and T, respectively. The following lemma shows that the error in (6%, 6;) is bounded by
the modeling error on ;.

Lemma 4.2: Let u,, and (6}, 6;) solve (8) and (7)), respectively. Then,

1T (tn) = (67, 00) ||« < [|tn — |

O)Qo' (29)

Proof. Because (6}, 0;) satisfies the Euler-Lagrange equation (20) we have

Q0% 07 sty ) = —(uhy — u, vy () — Uz(uz))o’ﬂo V (o, ) € O x Oy (30)
Using this identity together with the energy norm definition (21)) yields

QT (Un) — (07,07 ); tins 1) = QT (Un); pins 1) — Q03,675 i, 1)
= (Un(Tn(an)) - Ul(n (an))vvn(un) — U ('ul))(]‘ﬂo + (U% - u?vvn(un) - Ul(u'l))O,Qo
= (U — U, vn(ptn) = v1(tr)) g o, < N80 = illo,0, 1o (kn) — i) llo,g,

= [[tn = willo,0, [ (rns pa2) ]

The lemma follows by setting (un, i) = T'(W,)— (6}, 0;) above and observing that Q(T'(4,)— (65, 6;); T'(w,)—
4.3 Proof of Theorem
Let u := L(T'(u,)). Definitions (24)) and (25) together with the identities

Bal, = v (Ta(@)) + 0 and @ = w(Th(@n)) + uf, (31)

imply that
~ U, x€Q,
“—{al z e\, (82)
Likewise, the identities u}, = v, (0) + u!) and u} = v (0]) + u) imply that v* = L(6,6;). Adding and
subtracting @ to the LtN error then yields

[tn —ulloe < [[un —ullo.o+ @ —ullog
= [[tn = L(T (n))llo. + [ L(T (un)) — L0, 67 )llo.0 (33)
= |[tn = L(T (@n))llo.0 + [ H(T(un)) — H(67,07) 0.0 -

The first term in (33) is the consistency error of L; (32) implies that
[t — L(T(@n))llo,0 = [[tn = tillo.c\0,- (34)

To estimate the second term we use (26) and (29):

~ * )k ~ * * C -~ -~
1H(T (un)) = H(O7, 6000 < [1H [T (@n) = (65,0l < —ltn —llo.g,-



OPTIMIZATION-BASED LOCAL-TO-NONLOCAL COUPLING 11

Combining (B3)) with this bound and (34)) gives

[t — ullo,0 < [[tn = llo,0ne, +

c. . C\ .
—|tn — Gilfo,0, < (1 + —) 1Tn — willo,0,
K K

which completes the proof. [J

4.4 Convergence of the modeling error

In this section we show that ||, — U;|o,q, vanishes as e — 0.

Lemma 4.3: Let @, be the solution of (8) with homogeneous volume constraints and let @; be defined as in
(B1). Assume that H.1 and H.2 hold; then,

lim Hﬁn - al||07Ql =0.
e—0

Proof. By definition 4; solves the boundary value problem

—Aﬂl = fl x €
u = u, xzel,
ﬁl = 0 T € FD,

and so, it is also a solution of the weak equation

Vi, -Vwdz = | frwde Yw e Hg(Q).
Q Q

Let ¢ € H}(€;) solve the dual problem

Vw - Vipdz = / (U — Up)wdz Yw € HY (). (35)

Ql Ql

Since u; — U, = 0 on I'; one can set w = u; — U, in (35)) to obtain

@ —Gnlg o, = | V(@ —1n)- Vide

9]

= fivdx — Vi, - Vipde
ol Q

- W'F le\Vl fn¢d$ - le Van ¢ dea:

inn

= Luydx — Vi, - Vide — 0, ase—0,

Qu\n Qu\n

where the third equality follows from the fact that f; is extended to zero in 1 and the limit follows from the
result in [17, Section 5]7. O

71t can be shown that when kernels satisfying (2) and (5)) are properly scaled, so that £ — A, ||tn —yll0,0, < Ce? +O(e?).
The same result holds for the peridynamics kernel in (58)).
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5 Approximation of the optimization-based LtN formulation

This section presents the discretization and the error analysis of the LtN formulation (14). Throughout this
section we assume that 7. and I'. are polygonal domains; this assumption is not restrictive as those are
virtual domains that we can define at our discretion.

5.1 Discretization

We use a reduced-space approach to solve the optimization-based LtN problem (I4) numerically, i.e., we
discretize and solve the problem

min J(0,,0;) with J(6,,6;) ||un n)—ul(el)ng& (36)

n sVl

where u,(0,) € V;,(£2,) solves the weak nonlocal equation

B (un(6n); 2ns n) .—//Qun Gz, dydzx +/unf<an dr = /fnzn dx —1—/6 Kn dx, (37)

QnQp Ne Wn

for all (2, kn) € V, x O}, and u(6;) € Hf (€4) solves the weak local equation

Bi(ui(0;); 21, K1) == VuVz dx —|—/ w Ky de =
) 1128 (o))

fizidx + / 0,k dx, (38)
Te

for all (z;, k) € H} () x ©F. Here, O} and O} are the duals of ©,, and 0, respectively.
To discretize (36)—(38) we consider the following conforming finite element spaces

VU}; c V;7D (Qn)a 62 C @nv Vh X (—)Z C ‘/7]n (Q’l) X 627 (39)
HI}‘LD CH%D(Ql)7 @?C@lv HO X@h - H()( )X@*

for the nonlocal and local states, controls, and test functionsf], respectively. In general, the finite element
spaces for the nonlocal and local problems can be defined on different meshes with parameters h,, > 0
and h; > 0, respectively, and can have different polynomial orders given by integers p, > 1 and p; > 1,
respectively.

Restriction of (B6))—(38) to the finite element spaces (39) defines the discrete reduced-space LtN formu-
lation

min Ju (0, 0)') with  Ju (67, 0]') = ||u O8) — ' ()3 0 (40)
0r.,0 e

n?’l

where ul (1) € VnhD solves the discrete nonlocal state equation

By (ul(67); 21 k1) = fn2h dw+/ Orkhde, Y (2h k) eV xoh, (41)

Wn,

and u]'(0]') € H' solves the discrete local state equation’

By (ul (01); 2l k) —/ fimdx+ | 0Pkl dx, V(2 k}) € HE x OF. (42)
(97} re

8 For simplicity, we approximate ©,, ©; and their duals by the same finite dimensional space.
9 Note that both (41) and (42)) are well-posed.
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Following Section [3.1], we write the solutions of (41]) and (42) as
uP =0 440 and ul = o +u, (43)

where v and v!' are “harmonic” components solving (41) and (42) with f, = 0 and f; = 0 respectively,
whereas uho and ul'® are “homogeneous” components solving (41) and (42) with 6" = 0 and 6 = 0,
respectlvely In terms of these components

(0, 00') = IIU( )= (O3 0, + (un’ =, v (07) vf(9?))0790+%||u O~ I3 o, -

The Euler-Lagrange equation of (40) has the form: seek (07, 01') € O x ©F such that

Qu(ol, oyl w) = Fr(pl, u) VY (ul, 1) € OF x OF, (44)
where Qn (ol of's iy, 1) = (vh(of) = o (o), vi () —of' (1]")) ., a0d Fn (o, ) = —(uh® —uf®, vl () —

Ulh(,ulh))o_Q . To prove the positivity of @y, the arguments of Lemma cannot be extended, as the identity
principle does not hold for v}'. We use instead the discrete strong Cauchy-Schwarz inequality in Lemma A4

Lemma 5.1: The form Q(-,-) defines an inner product on ©F x OF.

Proof. We prove that Qp(ol, 000", 01) = 0 if and only if (of,00) = (0,0). If (¢,00) = (0,0) then

vl (oh) = 0 and v} (o) = 0, implying Qh(amalh, ol o) =0. Conversely, if Qu(ol,oft;0l oft) =0, then

h h(_h hy . h(_h
0= Qh(anval ,aﬁ,az )= ||U (o )H?mo + [|v' (oy )”g,Qo - 2(”2(‘%),“1 (09 ))07Qo'

The discrete strong Cauchy-Schwarz inequality (see Lemma [A.4)) then implies
0> (1=8)(lon(em§a, + v (@)15.0,)- (45)

Since § < 1 the left hand side in the above inequality is nonnegative. Thus, we must have that v"(c?) = 0
and vl(oh) = O which implies (o, ol) = (0,0). O
Lemma [A.5 proves that ©F x @ is Hilbert with respect to the discrete energy norm

This fact, Lemma and the projection theorem provide the following corollary.

Corollary 5.1: The reduced space problem (40) has a unique minimizer.

5.2 Convergence analysis

In this section we prove that the discrete solution (97*, 67*) converges to the exact solution (6}, 6;) assuming
the latter belongs to the “raw” control space ©,, x ©;. This assumption mirrors the one made in [1] and
is necessary because the continuous problem is well-posed in the completion of the raw control space. We
prove this result under the following assumptions.

H.3 The optimal solution belongs to the raw space: (6},6;) € ©,, x 6.
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H.4 The kernel v is translation invariant, i.e. y(z,y) = v(x — y)°

Let (0%,07) € ©,, x ©; denote the optimal solution of (I7) and (67*,0*) € ©! x OF be the optimal
solution of its discretization (40). We denote the associated optimal states by (uf,u), and (ul*,ul*),

respectively, that is,

(un, ) = (un(03),w(6;)) and  (up™, ™) = (up(637), w(6])).

We will estimate the discrete energy norm of the error (6 —67*; 6 —01*) using Strang’s second'!| Lemma; see,
e.g., [18, Lemma 2.25, p.94]. Application of this lemma is contingent upon two conditions: (i) the discrete
form @, is continuous and coercive with respect to || - |5+, and (ii) there exists a positive real constant C
such that

||/J/n7/-l/l’|h* < C”,unuu/lH* v(ﬂn:ﬂl) € ®n X ®l~ (47)
The first assumption holds trivially. To verify (47) note that
s all7e == Qi (s a5 s ) = [0 () = 07 () 3., -

Given py; € ©; the function v'(4) solves the weak equation

By(vi (m); ', K1) =/ pury de :/ W (ki de ¥ (2", w]') € HY x OF,
r, r.

where II; is the L? projection onto OF, i.e., v/ (y;) = v (I;11;). Similarly, we have that v/ (p,,) = v (I, 1),
where II,, is the L? projection onto ©7. Additionally, similarly to [1], we assume that there exist positive
constants 7, 7", Vn«, and ;. such that for h, and h; small enough the following inequalities hold:

Yuxllva(@)llog, < lon(emlog, < mllva(om)log,

. (48)
oo og, < vl (@) o0, < llviler)llo.e,-

The latter, the strong Cauchy-Schwarz inequality and the boundedness of the L? projection operators yield
ns puallfe = 103 (1) = o () 13,0, = 105 (T () = 07" (T () 113 2,
< lop (M () 13,0, + o7 (W (u))3 0,

< llon M ()13 0, + 97 o @@ (u))G g,

< %an(ﬂn(un)) —u(IL ()5 0,

Gy

Cy
= 1L, g, 11 2< == s 2~
1— 5” s l/u'lH* —= —6”M lul”*

Application of Strang’s second lemma then yields the following error estimate.

10 Note that this assumption is not too restrictive; in fact, it is very common in nonlocal mechanics applications.
1 The discrete problem (44) also fits in the setting of Strang’s first Lemma [18, Lemma 2.27, p.95]. We use the second lemma
because it simplifies the analysis.
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Lemma 5.2: Let (07,07) and (67*,01*) be the solutions of (20) and (44), then
1667, — 05", 67 — 07l <

inf (|85 — o, 0F — oM+ sup |Qn(05, 05 P, 1) — Fr(ul, ul)| (50)
(ohsop (el ) =1

where (o, 1), (ul, 1) € O x Of.
We use the result in Lemma to obtain asymptotic convergence rates under the assumption that 1)
the homogeneous problems ([19) have solutions u2 € HP»*(Q,,), for t € [0,1], and u) € HP'*1(€)); 2) the

control variables (6,,,0;) are such that u,(6,) € HP»T*(Q,,) and u;(0;) € HP'T1(;). We treat the first term
in (50) by using the norm-equivalence (67); we have

inf |[(6;, — om0 — o)k = inf [|(ILa6;; — o7, ILOF — o).
(ohort) (ot ort) 51)

<C inf ||(IL6;, — oy, L8 — o7)[3, xe, =0,

(Unva'l )

where || - ||@ X6, is defined as in (I5). We focus on the second term in (50). Adding and subtracting
Q(0r,0;; ul, u) and using conformity of ©F x OF gives

Qn(07, 07 by 1) — Frpry, ') =
= [Qn(0}, 67 iy, 1) — QO 075 gy, )] + [QUO%, 07 s 1) — Frpafs 1))
= [Qu (05, 073 1y, 1) — QO O s iy, )] + [F (i, 1) — Fpag, )]
Adding and subtracting the terms
(0n(0) = wi(6]), vn () — o (u))o.e, and  (up —uf, v () — o' (147'))o.0
to the last expression and using the definitions of @, F', @y and F}, yields the identity:
Qn(07,, 07 iy, 1) — Fn(py, 1) =
= ((01(0;) — va(05)) — (0] (67) — wi(67)), v () — v (1)) 0.0, +
((wn® —ud) — (uf® —uf), v (uh) — vi( ))07
(ur, — ui's (o () — va () — (0 () — vi(pef ))
Application of the Cauchy-Schwartz inequality then gives the following upper bound:
|Qn (05,075 1y 1) — Fr(pges )] < Mvp () = v () o0, %
(llvﬁ(%)—vn(@i)ﬂo,nﬁ Il (8F) — v (87 )llo., +llun® = llo., +||U?0—u?||o,ﬂo)+
(I u2) = on (e lo g, + 0 () = (o, ) Nl = o, -

Furthermore, note that [[vf(ul) —vl ()0, = Ilut, ulllne = 1, and that |Juf —ufllo.q, = J(ul,u}) is
the optimal value of the objective functional, which is bounded by the modeling error. The regularity
assumptions on the nonlocal solutions in (19) allow us to apply Theorem 6.2 in [16, p.689]:

lun’ —upllo, < ChEllupllp,+t.9.,
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where ¢ € [0,1]. Furthermore, the regularity assumptions on the local solutions in (I9) allow us to use
Corollary 1.122 in [I8, p.66] to conclude that

HU{LO_U?HO,QD < Chf”q ||u?||Pl+1,QL'

According to Weyl’s Lemma [31] the local harmonic liftings v;(6;) and v;(uf) are smooth functions and so
there are positive constants C; and Cy such that

1o (0) = w67 lo.2, < Crh™ and [lof () = (') llo.0, < Cah'™.

While a similar result holds for the nonlocal harmonic lifting v,, (6} ), the treatment of v, () is more involved,
due to the discrete nature of the Dirichlet data, and it requires an auxiliary function i, € C°°(n.) such that
zim — 2l £2(n.) < €, for an arbitrarily small e. Because v, and v" depend continuously on the data,

llog () = vn (1) llo.22,
< ol (i) = vk (n) 0.0, + 05 (Fin) — v (i) llo.02, + 00 (in) — va () llo.g,
< Clh£n+t||vn(ﬁn)| P+t T HUZ(:“Z - ﬁn)”()ﬂo + ”'Un(ﬁn - /‘Z)H&Qo

< Clhfzn_’_tnvn(/jn)Hpn-i-t,ﬂn + CZ”NZ - /jnHO,nc + C3H/jn - /’L’ZHO;U("

(52)

Since € can be arbitrarily small, the last two terms in (52) are negligible. To complete the estimate we only
need a uniform bound on ||vy, (fin)||p, +¢,0, - To this end, assume that for all /i, € C°°(n.), va(fin) € CF(2)
with k = p, +¢. Under this assumption D?[Lv,(fin)] = LD?[v,(fin)] for all 3 < k. Taking into account
that v, (fi,) is nonlocal harmonic, i.e., Lv, (ji,) = 0, it follows that £LD?[v,(fi,)] = 0, i.e., D?[v, (ji,,)] is also
nonlocal harmonic for all 8 < k. Thus, D?[v, (ji,)] has a uniformly bounded L? norm, i.e. |[D?[v,]]0.q, <
Cs, V3 < k. This implies the existence of a positive constant C' such that, ||v, (i) |lp,+t.0, < C. It follows
that there exist positive constants C; and Cy such that

[v (65) =vn (85 )llo,0, < Crhbr ™t and  [|v)i(ur) — valup)llo,, < Cahlr .
We have just shown the following result.
Theorem 5.1: Assume that H.1-H.4 hold. Then, there exist positive constants C7, Cy such that

(67, — 67"

hx 07 — 01*)||ne < CrRERTE 4 CohPtT, (53)
We use Theorem to estimate the ©,, x ©; norm of the discretization error.

Corollary 5.2: Assume that H.1-H.4 hold. Then, there exist positive constants Cy, Cs, C3 such that

10 = 08,65~ B3, o < CLREIED 4+ Copitr (54)
Y]

Proof. Adding and subtracting fL’LGi an *’and using the triangle i%lequality

1(6, = 60", 67 = 67 lle,. xe

* * * * * h* * h* (55)
< 167, = Inby,, 67 — IL67)|lo, xe, + |(Inb;, — 0,7, 1167 — 6;)[le,,xe, -
Using standard finite element approximation results for the first term yields
1065, — T8, 6F — TLODB, wo, < Cohp P TN IS, srm. + Cah™ HIOFND L1 p - (56)
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Fig. 3: One-dimensional LtN configuration used in the numerical tests.

We focus on the second term in (55). By the norm-equivalence (7)) in the discrete control space, we have
(11067, — 65, 1167, — 67 )lle e, SCII(MLabyy — 657 ILuby; — 61 |nx = CI(65 — 617, 65 — 7).

This result along with (53)) and (56) implies (54). O
Since u}, and u; depend continuously on the data, (54), Corollary implies that

g, — w18 o, < Kt hEP"HD + K P

(57)
”u? - uithngl < Kp hi(p""'t) + Ko hl2pl+1,

that is, the L? norm error of the state variables is of the same order as the L2 x Hz norm error of the

controls.

6 Numerical tests

We present numerical tests with the new LtN formulation in one dimension, including a patch test, a
convergence study and approximation of discontinuous solutions. Though preliminary, these results show
the effectiveness of the coupling method, illustrate the theoretical results, and provide the basis for realistic
simulations. In our examples we use an integrable kernel, 7;, satisfying assumptions (2)) and (5)) to illustrate
theoretical results and a singular kernel, 7,, often used in the literature as an approximation of a peridynamic
model for nonlocal mechanics. These kernels are given by

1

3
"Yz(lay) = g){(m—s,w—i—a)(y) and 'Ys(xay) = mx@—e,w—&-a) (y)» (58)

respectively. Even though ~, does not satisfy our theoretical assumptions™?, these numerical results demon-
strate the effectiveness of the LtN coupling for realistic, practically important, nonlocal models. In all
examples we consider the LtN problem configuration shown in Fig. 3, where ,, = (—¢,1+¢), np = (—¢,0),
ne =(1,1+¢), Q = (0.75,1.75), T'p = 1.75, T'. = 0.75, and Q, = (0.75,1 + ¢). In all numerical tests an;,
an; , and ©" are discontinuous piecewise linear finite element spaces, while Hl'lD and Hg‘ are CY piecewise
linear finite elements. We use the same grid size h for the local and nonlocal finite element spaces. To solve

the LtN optimization problem we apply the gradient based Quasi-Newton scheme BFGS [26].

12 The energy space associated with =, is not equivalent to a Sobolev space, nevertheless it is a separable Hilbert space whose
energy norm satisfies a nonlocal Poincaré inequality.
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Fig. 4: Optimal states for the patch test with ~; (left) and s (right).

The patch test This test uses the linear manufactured solution u, = w = &, uy|n, = =, w/(1.75) = 1.75,
fn = fi = 0. We expect the LtN formulation to recover this solution exactly, i.e., u* = u* and u* = uj.
Figure 4 shows the optimal states u* and ul"*, computed with e = 0.065 and h = 277, for 7; (left) and 4
(right). The LtN method recovers the exact solution to machine precision.

Convergence tests We examine the convergence of finite element approximations with respect to the grid
size h using the following manufactured solutions:

M.1 uy = w = 22, Uy, = 2%, w(1.75) = 1.752, f, = fi = —2.
M.2 u, = w = 2%, Un|T7D =", u (1.75) = 1.75%, fn = fi = —6z.

Note that, for both kernels, the associated nonlocal operator is equavalent to the classical Laplacian for
polynomials up to the third order. For examples M.1 and M.2 we compute the convergence rates and the
L? norm of the errors for the nonlocal state, e(u,), the local state, e(u;]), and the nonlocal control parameter,
e(0;). The results are reported in Tables [I] and 2 for 4; and in Tables 3 and { for 7, in correspondence of
different values of interaction radius € and grid size h. In Fig. 5] we also report the optimal discrete solutions.

Results in Tables [ and 2 show optimal convergence for state and control variables. We note that
according to [16] and FE convergence theory [18] this is the same rate as for the independent discretization
of the nonlocal and local equations by piecewise linear elements.

Remark 6.1: The convergence analysis in Section establishes a suboptimal convergence rate in the L?
norm of the discretization error of the state variables as we lose half order of convergence. We believe that
the bound in (57) is not sharp, in fact, additional numerical tests (with h = 278 ...2712) show that there
is no convergence deterioration.

For the singular kernel v, there are no theoretical convergence results; however, there is numerical evidence
that piecewise linear approximations of (11)) are second-order accurate; see [6]. Our numerical experiments
in Tables 3 and 4] show that the optimization-based LtN solution converges at the same rate.

Recovery of singular features The tests in this section are motivated by nonlocal mechanics applications
and demonstrate the effectiveness of the coupling method in the presence of point forces and discontinuities.
We use the following two manufactured solution examples:
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Fig. 5: Optimal states for M.1 (left) and M.2 (right) with +; (top) and ~, (bottom).

Tab. 1: Example M.1 with ~;: dependence on the grid size h and interaction radius € of the error.

€ h e(uy) rate | e(uf) rate | e(6%) rate
273 [ 2.63e-03 - 2.76e-03 - 5.59e-05 =
2% [ 6.16e-04 | 2.10 | 6.74e-04 | 2.04 | 2.63e-05 | 1.09
0.010 | 27° [ 1.40e-04 | 2.13 | 1.63e-04 | 2.05 | 1.14e-05 | 1.20
270 [ 3.46e-05 | 2.02 | 4.04e-05 | 2.01 | 4.18e-06 | 1.47
277
273 [ 2.24e-03 | - 2.56e-03 | - | 6.34e-04 | -
2% | 7.56e-04 | 1.56 | 7.13e-04 | 1.85 | 1.78e-04 | 1.83
0.065 [ 27° [ 1.89e-04 | 2.00 | 1.78e-04 | 2.00 | 4.46e-05 | 2.00
27% [ 4.73e-05 | 2.00 | 4.46e-05 | 2.00 | 1.12e-05 | 2.00
277 [ 1.18e-05 | 2.00 | 1.11e-05 | 2.00 | 2.82e-06 | 1.99

Al uply, =0, w(1.75) =0, f, = fi = 6(x — 0.25), being 0 the Dirac function.

A2 |y, =0, u(1.75) =0,

?% +loge) z

— ) («®

ze?—e+2+ (26— 2 —loge)z +
(%+loge) 2?2 —log (%
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€ h e(ul) rate | e(u]) rate | e(6}) rate
273 | 4.89e-03 - 1.09e-02 - 2.04e-04 -
271 1 1.23e-03 | 1.99 | 2.74e-03 | 2.00 | 9.63e-05 | 1.08
0.010 | 272 | 3.11e-04 | 1.99 | 6.86e-04 | 2.00 | 4.16e-05 | 1.21
270 | 7.85e-05 | 1.99 | 1.72e-04 | 2.00 | 1.45e-05 | 1.51
2—° 1.95e-05 | 2.01 | 4.29e-05 | 2.00 | 3.16e-06 | 2.20
273 | 5.41e-03 - 1.09e-02 - 2.29e-03 -
2% 1 1.34e-03 | 2.01 | 2.74e-03 | 2.00 | 5.46e-04 | 2.07
0.065 | 27° | 3.38e-04 | 1.99 | 6.86e-04 | 2.00 | 1.38e-04 | 1.99
275 | 8.46e-05 | 2.00 | 1.71e-04 | 2.00 | 3.46e-05 | 1.99
2771 2.12e-05 | 2.00 | 4.29e-05 | 2.00 | 8.73e-06 | 1.99

Tab. 2: Example M.2 with ~;:

dependence on

the grid size h and interaction radius € of the error.

€ h e(ul) rate | e(uj) rate | e(6}) rate
273 [ 2.67e-03 - 2.78e-03 - 5.79e-05 -
2% 1 6.33e-04 | 2.08 | 6.81e-04 | 2.03 | 2.72e-05 | 1.09
0.010 | 272 [ 1.47e-04 | 2.11 | 1.65e-04 | 2.04 | 1.19e-05 | 1.20
270 | 3.63e-05 | 2.01 | 4.11e-05 | 2.01 | 4.29e-06 | 1.47
2=7 1 9.10e-06 | 2.00 | 1.03e-05 | 2.00 | 1.05e-06 | 2.03
273 [ 2.36e-03 - 2.62e-03 - 6.52e-04 -
2% [ 7.54e-04 | 1.65 | 7.12e-04 | 1.88 | 1.78e-04 | 1.87
0.065 | 27° | 1.88e-04 | 2.00 | 1.78e-04 | 2.00 | 4.45e-05 | 2.00
270 [ 4.67e-05 | 2.01 | 4.44e-05 | 2.00 | 1.11e-05 | 2.00
2=7 [ 1.14e-05 | 2.04 | 1.10e-05 | 2.01 | 2.76e-06 | 2.01

Tab. 3: Example M.1 with ~,:

dependence on

the grid size h and interaction radius e of the error.

€ h e(ul) rate | e(uj) rate | e(6}) rate
273 | 4.90e-03 - 1.09e-02 - 2.07e-04 -
271 1 1.23e-03 | 1.99 | 2.74e-03 | 2.00 | 9.68e-05 | 1.10
0.010 | 272 | 3.11e-04 | 1.99 | 6.86e-04 | 2.00 | 4.17e-05 | 1.21
270 [ 7.85e-05 | 1.99 | 1.72e-04 | 2.00 | 1.46e-05 | 1.52
271 1.96e-05 | 2.01 | 4.29e-05 | 2.00 | 3.17e-06 | 2.00
273 | 5.40e-03 - 1.09e-02 - 2.31e-03 -
2% ] 1.34e-03 | 2.01 | 2.74e-03 | 2.00 | 5.46e-04 | 2.08
0.065 | 27° | 3.37e-04 | 1.99 | 6.86e-04 | 2.00 | 1.38e-04 | 2.00
2705 | 8.46e-05 | 2.00 | 1.72e-04 | 2.00 | 3.46e-05 | 1.99
2771 2.12e-05 | 2.00 | 4.29e-05 | 2.00 | 8.73e-06 | 1.99

Tab. 4: Example M.2 with ~s: dependence on the grid size h and interaction radius € of the error.

In Fig. §/ we report the optimal discrete solutions for h = 277 and € = 0.065. In particular, A.2 is a significant
example that shows the usefulness of the coupling method in approximating the true solution with a local

model where the nonlocality effects are not pronounced, i.e. the solution is smooth.
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Fig. 6: Optimal states for examples A.1 and A.2.
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Fig. 7: Domain for Lemma AT

A Ancillary results

This appendix contains several results necessary for the well-posedness of the continuous and discrete reduced
space problems and for the estimate of || H|| ... In the following results and proofs we let C and C;, i =1,2,. .,
be generic positive constants.

Lemma A.1: [Nonlocal trace inequality] Let = w Un where w and n are an open bounded domain and its

associated interaction domain and let ¥ C Q, 7 Cn, 7 C ¥ as in Fig. @ Assume that o € ‘7(77) is such that
0|y = 0. Then
lollgqy < Clllvllls Vo e V), vl =0 (59)

Proof. We need the following subspaces of V() and V()

‘777\7-(77) = {U & ‘7(77)» M|n\-r = O} - ‘7(77)» (60)
Vn\'r(ﬂ) = {w € V(Q)7 w|77\7' = 0} - V(Q)

Let xx be the indicator of . Definition (4) and the fact that o vanishes on 5\ 7 imply that

I inf = inf < inf .
9150 1= oy i, _ Mollo= b lblle< st sl
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To bound the energy norm of xsv note that

lxselll3 = / / xo(@)o(@) — xo@)e()) >y (@, y) dydz

:// (v(:c)—v(y))2 (z,y) dydx + Q\E/ (z,y) dydz
et
. |||v|\|z+/ / ey dyde+ [ of 2/Q\Ev<cc,y>dmdy

< [[[ollg + 27 vllg & < (L +2mCp) [Iv]][%,
where the last two inequalities follow from () and (7)) respectively. Thus,

o 2 inf —{ f ,
lollg ¢y < UGVN\TI(g)?%:U|||U|I\E wevt el

with C? = (1+271C2,). O

Lemma A.2: Let €, w and 7 be defined as in Lemma . The trace space XN/W\T(n) is a closed subspace of
L?(n). Furthermore, for all u € XN/U\T(n) we have that

lallgy < Cllalon. (61)

Proof. Consider a sequence {u*} C VW\T (n) such that g* — p* in L?(n). To show that p* € ‘7,,\7(77) consider
the function v* € L*(Q) such that v*|,, = p* and v*|, = 0. To complete the proof it remains to show that
v* has finite energy norm. Using the norm equivalence in Lemma

Hlv* [l < C*[[v™[lo,0 = C < oo.

Therefore, v* € V() and v*|,, = p*, hence pu* € YN/,,\T(n). Finally, let w € V(Q) be such that w|, = u; by
Lemmas .1 and 2.1, ],y < Cllwllly < Callullo- O

Application of Lemma with n = n, and 7 = 7. implies that the trace space ‘7% (nn) is a closed
subspace of L?(n,), and thus it is a Hilbert space in the L? topology. We use this result to prove a strong
Cauchy-Schwartz inequality for the nonlocal and local harmonic components of the states, i.e., the solutions
to ([18). This inequality is essential for the estimate of || H ||.x.

Lemma A.3: There exists § < 1 such that for all (o,,0;) € ©,, X ©;
|(vn (o), vi(01))o,0,| < 8l|lvnlon)lloq, [lvi(a)lo.q,- (62)

Proof. We prove (62) by contradiction. If (62) does not hold then for all 0 < € < 1, there exist (o§,07) €
©,, x ©; such that the corresponding harmonic components v, (cf,) = v5, and v;(o}) satisfy ||vg[lo,0, = 1 and
[07ll0,0, =1 and

(vn(a7,), vi(07))o.0, 2 (1 = €)llvn(on)ll0.0, [vi(a7)llo.0,- (63)
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Note that

(1 = llvalan)llo.g, lvi(eD)lo.0, < (valag), viloi))o, < lvnlon)llog, lvi(ai)lo.a,-

This implies that the sequence of inner products converges, i.e. (v, vf)oq, — 1. Furthermore, since {v5}
and {v;} are bounded, there exist subsequences, still denoted by {v5} and {vf}, such that

vS =S inL? and ovf — o] in H'. (64)
Since H! is compactly embedded in L2, we also have
vf —» v} in L2 (65)

The weak convergence of the sequences also implies that |[vf oo, < 1 and ||v]|lo,q, < 1. Properties (64)
and (65)) then imply that

lim ('Ufzv 711,6)0790 = hm(vi - v:m U;)O,Qo + lim (U:v U;)O,Qo
e—1 e—1 e—1
= lim(v;, — vy, v )o,0, + Um (v}, — vz, v — v )o,a, + (v3, v o0,
e—1 e—1

= lim (vy,, v} — v)')o,0, — lim vy, vf — v])o,q, + (U5, v7 o0,
e—1 e—1

= (U:, UI*)O,Qov

where the last inequality follows from the strong convergence of the local component:

(0n, v = 00,0, < llonllo.ullvi = villo., = [lvf = villo,0, = 0 as e — 1.
Thus,
1= lim(vy, v))o,0, = (Var 0o, < llvpllo.llvillon, < 1.
This means that (v}, v])o,0, = [|v}lo,0,]1) ]l0,0,- This identity holds if and only if v; = awv}; for some real

a. To complete the proof we apply the same argument as in Lemma 3.1, On the one hand v} = 0 in np
and so, vf =0 in Q, Nnp. On the other hand, vj is harmonic in Q, and the identity principle implies that
v =0 in Q,. Thus, (63) holds if and only if v} = v; = 0 in Q,, a contradiction. O

Lemma A.4: Let 0 be the constant in Lemma and let_fuZ and _vlh be the discrete harmonic components of
the discrete state variables as in (43). Then, there exist h,, and h; such that

(w5, v o] < dllvnllog, 1ol llogns ¥V hn < hn, by < hu. (66)

Proof. In this proof we follow the same arguments of Lemma A.7 of [1].

Let {Ank, hik }x>1 be a sequence of mesh sizes for the nonlocal and local finite element approximations such
that {h,k, hix} — 0 as k — oo. Also, let v"* and v]** be the nonlocal and local discrete harmonic components
corresponding to h,r and hyg. It is well-known [I8] that the local finite element solution converges strongly
in L? to the infinite-dimensional solution v; as k — oo. Furthermore, paper [16] shows that when « is such
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that (5)) holds the nonlocal finite element solution converges strongly in the energy norm to the infinite-
dimensional solution v,,. Due to the Poincaré inequality such convergence implies the storng convergence in
the L2 norm. Thus, we have

lim |lv, —v"™*oq, =0

k—oo

lim |jv; — vlhk||0790 =0.
k—oo

Since the strong convergence in L? implies the weak convergence and the convergence in norm, the following
are also true

im (v2*, 0%)0.0, = (vn,v)o0,
k—oo
im [[0/*loq, = llvnllog,
k—o0
Jim o *llo,0, = llvillo,g,-
c— OO

Using the strong Cauchy-Schwarz inequality (62), we obtain

lim ’(’Uﬁk, ’Ulhk)owga
k—oo

= |(vn, w)o,0,] < 8 [[oallo.e, lvillon, =6 lim op*llo.0,v7* o0,
k—o0

Thus, 3% > 0 such that Ve < &, 3 h,,, h; such that ¥ h,, < hy, by < hy

hk

@i, v o0, | < 8 llvn"llo.g, llvr”

’0790'

O
Lemma A.5: The space O x ©F is Hilbert with respect to the inner product Qp (o, oft; ult, u) = (v (ch) —

v (o), v () = o (1),

Proof. By assumption ©F x O is a closed subspace ©,, x©;. Thus, it is Hilbert with respect to ||(c, o}')||o,, xe, -
Let ||(c®, a!)||ne = Qn(cl,ol; 0", ol); we show that ||(0”,00)|e, xe, and ||(c?, o1)||ns are equivalent, i.e.
there exist K, and K* such that
K. l(on, 0f)lewxe: < l(an,at)lns < K*||(on, 01" lonxe:- (67)
Using the well-posedness of the discrete problems, we have
I(on, o) Ihe = llon(on) = v (613 0, < llvn(on)]

n n

< C1 (loh 1, + ol 13 v, ) -

6.0, * v (@1)Il3 0,

On the other hand, we have

lonll3 . + 107113 r, < lvn(om)E q, + Callvl (01 g, Local trace inequality
< ||v2(aff)||(2)_’90 + C’3||vlh(alh)||ago Local inverse inequality [7]
< Cy (llon(omlI3 o, + 7' (@)1I5 0,)
< 1€46 vl (o) — v{’(alh)HaQo Strong Cauchy-Schwarz
Cy

= (ot ol

Choosing K. = 452 and K* = C\, we obtain (67). O
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B

Notation summary

In this appendix we report a summary of the notation we use for local and nonlocal domains. In Table
we report local entities on the left and nonlocal entities on the right (see Fig. 2 for a two-dimensional

configuration).
Symbol | Definition Symbol | Definition
Q wUn w interior of 2
r o0 n interaction domain of w
9] local subdomain | Q, nonlocal subdomain, wy, U ny,
Wn interior of Q,
Iy oY Nn, interaction domain of wy,
I'p rnr D NN
Te \TI'p e n \ 7D
195 overlap domain, Q, N Q;

Tab. 5: Symbols used to denote local (on the left) and nonlocal (on the right) entities.
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