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Abstract

We present an optimization-based coupling method for local and nonlocal continuum models. Our approach couches
the coupling of the models into a control problem where the states are the solutions of the nonlocal and local equations,
the objective is to minimize their mismatch on the overlap of the local and nonlocal problem domains, and the virtual
controls are the nonlocal volume constraint and the local boundary condition. We present the method in the context
of Local-to-Nonlocal diffusion coupling. Numerical examples illustrate the theoretical properties of the approach.
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1 Introduction

Nonlocal continuum theories such as peridynamics [®], physics-based nonlocal elasticity [I12], or nonlocal
descriptions resulting from homogenization of nonlinear damage models [23] can incorporate strong nonlocal
effects due to long-range forces at the mesoscale or microscale. As a result, for problems where these effects
cannot be neglected, such descriptions are more accurate than local Partial Differential Equations (PDEs)
models. However, their computational cost is also significantly higher than that of PDEs. Local-to-Nonlocal
(LtN) coupling methods aim to combine the computational efficiency of PDEs with the accuracy of nonlocal
models. The need for LtN couplings is especially acute when the size of the computational domain is such
that the nonlocal solution becomes prohibitively expensive to compute, yet the nonlocal model is required
to accurately resolve small scale features such as crack tips or dislocations that can affect the global material
behavior.

LtN couplings involve two fundamentally different mathematical descriptions of the same physical phe-
nomena. The principal challenge is the stable and accurate merging of these descriptions into a physically
consistent coupled formulation. In this paper we address this challenge by couching the LtN coupling into
an optimization problem. The objective is to minimize the mismatch of the local and nonlocal solutions on
the overlap of their respective subdomains, the constraints are the associated governing equations, and the
controls are the virtual nonlocal volume constraint and the local boundary condition. We formulate and
analyze this optimization-based LtN approach in the context of local and nonlocal diffusion models [E6].
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LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energys National Nuclear
Security Administration contract number DE-NA0003525.

Center for Computing Research, Sandia National Laboratories, Mail Stop 1320 Albuquerque, New Mexico, 87185-1320
({mdelia,pbbochel@sandia.gov).
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Our coupling strategy differs fundamentally from other LtN approaches such as the extension of the
Arlequin [11] method to LtN couplings [23], force-based couplings [4, or the morphing approach [5, 25].
The first two schemes blend the energies or the forces of the two models over a dedicated "gluine area, while
the third one implements the coupling through a gradual change in the material properties characterizing the
two models over a "morphine region. In either case, resulting LtN methods treat the coupling condition as
a constraint, similar to classical domain decomposition methods. In contrast, we treat this condition as an
optimization objective, and keep the two models separate. This strategy brings about valuable theoretical
and computational advantages. For instance, the coupled problem passes a patch test by construction and
its well-posedness typically follows from the well-posedness of the constraint equations.

Our approach has its roots in non-standard optimization-based domain decomposition methods for PDEs
EIA,11-51, DJ, 21, 22, 2A. It has also been applied to the coupling of discrete atomistic and continuum

models in [V, 28] and multiscale problems [1]. This paper continues the efforts in [8], which presented an
initial optimization-based LtN formulation and in [E03], which focussed on specializing the formulation to
mixed boundary conditions and mixed volume constraints and its practical demonstration using Sandia's
agile software components toolkit. The main contributions of this paper include (i) rigorous analysis of
the LtN coupling error, (ii) formal proof of the well-posedness of the discretized LtN formulation, and (iii)
rigorous convergence analysis.

We have organized the paper as follows. Section p introduces notation, basic notions of nonlocal vector
calculus and the relevant mathematical models. We present the optimization-based LtN method and prove
its well-posedness in Section 3 and study its error in Section 4. Section 5 focusses on the discrete LtN
formulation, its well-posedness and numerical analysis. A collection of numerical examples in Section 0
illustrates the theoretical properties of the method using a simple one-dimensional setting.
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2 Preliminaries

Let w be a bounded open domain in N , d = 2, 3, with Lipschitz-continuous boundary aw. We use the
standard notation Hs (w) for a Sobolev space of order s with norm and inner product and (•, •),,,w,
respectively. As usual, H° (w) := L2 (w) is the space of all square integrable functions on w. The subset of
all functions in H1 (w) that vanish on c 8w is 1/2. (w) := {u E H1 (w) uk = O}•

The nonlocal model in this paper requires nonlocal vector calculus operators [ff, §3.2] acting on functions
u(x): Rd —> R and if (x , y): Rd x Rd —> Rd. Let -y(ac, y): Rd x Rd —> N and a(x, y): Rd x Rd —> Rd be a
non-negative symmetric kernel and an antisymmetric function, respectively, i.e., -y(x , y) = y(y, x) > 0 and
a(y, , x) = —a(x , y). The nonlocal diffusionr of u is an operator G(u) : Rd —> R defined by

Gu(x) := 2 f (u(y) — u(x)) y(x, y) dy x E Rd,
Rd

and its nonlocal gradient is a mapping g(u): Rd x Rd —> Rd given by

gu(x, y) := (u(y) — u(x))a(x, y) x, y E Rd . (la)

Finally, the nonlocal divergence of v(x, y) is a mapping D(v): Rd —> R defined byr

Dv(x) := f (v(x, y) v(y, x)) • a(x, y) dy x E Rd. (lb)

1 More general representations of L, associated with non-symmetric and not necessarily positive kernel functions exist. Such
nonlocal operators may define models for non-symmetric diffusion phenomena such as non-symmetric jump processes [9].
2 The paper [®] shows that the adjoint D* = —g.



OPTIMIZATION-BASED LOCAL-TO-NONLOCAL COUPLING 3

Fig. 1: Two-dimensional domain w and interaction domain n with interaction radius E.

Furthermore, given a second-order symmetric tensor ,P(x , y) = ,P(y , x), equations (1) imply that

(4)gu)(x) = 2 f (u(y) — u(x)) (a(x, y) 4)(x, y)a(x, y)) dy.

Thus, with the identification -y (x , y) := a(x, y) • 4 >(x, y)a(x, y) the operator G is a composition of the
nonlocal divergence and gradient operators: Lu = (kg u). We define the interaction domain of an open
bounded region w E Rd as

= {y E Rd \ c4) : y) 01,

for x E w and set S2 = w U ri. In this paper we consider kernels -y such that for x E w

-y(x, y) > 0 V y E B6(x)

-y(x, y) = 0 V y E Rd \ B6(x),
(2)

where B,(x) = {y E d — < E}. Kernels that satisfy (2) are referred to as localized kernels with
interaction radius E. It is easy to see that for such kernels the interaction domain is a layer of thickness
that surrounds w, i.e.

= {y E Rd \ : xEinf — El;
cv

see Fig. for a two-dimensional example. For a symmetric positive definite tensor 4, we respectively define
the nonlocal energy semi-norm, nonlocal energy space, and nonlocal volume-constrained energy space by

:= —21 fol2cv • (ckgv)dy (3a)

V(1-2) := {v E L2(f2) < oo} (3b)

17,-(f2) := {v E V(I2) : v = 0 on T} , for T C (3c)

We also define the volume-trace space (71) := {211,1 : v E V(52)}, and an associated norm

:= (4)
vE dzijfv 1, =

We refer to [®, F71] for further information about the nonlocal vector calculus.
In order to avoid technicalities not germane to the coupling scheme, in this paper we consider integrable

kernels. Examples of applications modeled by the latter can be found in [2, 3, 4]. Specifically, we assume
that there exists positive constants -yo and -y2 such that

-Yo -y(x, y) dy
LB,(x)

and -r(x, y)2dy 73, (5)
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for all x E SI Note that this also implies that there exists a positive constant 71 such that for all x E

fo -y(x,y) dy (6)

In [E6, §4.2] this class of kernels (referred to as Case 2) is rigorously analyzed; we report below an important
result, useful throughout the paper.

Lemma 2.1: Let the function y satisfy (2) and (5), then, there exist positive constants Cpr, and C* such that

1
11140 <' 

V u E VT(C2). (7)
cpn

Furthermore, the energy space V,-(52) is equivalent to L2T(SI) = {v E L2(S2) = 0}.

The latter is a combination of results in Lemmas 4.6 and 4.7 and Corollary 4.8 in [Hi, §4.3.2]. Note
that the lower bound in (7) represents a nonlocal Poincare inequality. Even though not included in the
analysis, singular kernels appear in applications such as peridynamics; numerical results, included in the
paper, suggest that the coupling scheme can handle such kernels without difficulties. However, their analysis
is beyond the scope of this paper.

2.1 Local-to-Nonlocal coupling setting

Consider a bounded open region w c Rd with interaction domain 77. Given
assume that the volume-constrained0 nonlocal diffusion equation

{ —Gun
un

fn
an

xEw
x E 77,

fn E L2(w) and an E 17(n) we

(8)

provides an accurate description of the relevant physical processes in SZ = w U 77. Let r = all, we assume
that the local diffusion model given by the Poisson equation

{ Ul

fl

al

x
x c r, (9)

with suitable boundary data al E Hl(r) and forcing term fj E L2(52) is a good approximation of (8)
whenever the latter has sufficiently "nice" solutions. In this work we define fl to be an extension of fn by 0
in /I, specifically,

E L4.1

fl = fn (10)
0 x E

For a symmetric positive definite (1> standard arguments of variational theory show that the weak fornd

n
gu • (41cZn)dydx = f fnzn dx VZn E Vn(Q) (11)

3 The volume constraint in (g) is the nonlocal analogue of a Dirichlet boundary condition.
4 Multiplication of (g) by a test function zm E Vn(1.2), integration over w and application of the first nonlocal Green's identity

[®] yield the weak form (g) of the nonlocal problem.
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Fig. 2: An example LtN domain configuration in two-dimensions.

of (8) is well-posed [E0], i.e., ( ) has a unique solution such that

+ llarik(n)) (12)

for some positive constant Kn. In this work, for simplicity and without loss of generality, we set ik = I.
Although (11) and the nonlocal calculus PA enable formulation and analysis of finite elements for (8),

which parallel those for the Poisson equation (9), resulting methods may be computationally intractable for
large domains. The root cause for this is that long-range interactions increase the density of the resulting
algebraic system making it more expensive to assemble and solve.

11

3 Optimization-based LtN formulation

For clarity we consider (8) and (9) with homogeneous Dirichlet conditions on n and F, respectively. To
describe the approach it suffices to examine a coupling scenario where these problems operate on two over-
lapping subdomains of Q. Thus we consider partitioning of Q into a nonlocal subdomain con with interaction
volume nn and a local subdomain Q/, with boundary Ph such that Qn := wn U Tin C 52, S2 = Qn U Q/ and

520 = Sln fiR 0; see Fig. 2. Let nD = nn, 7), = np, rD = r n rj, and rc = rj rD; see Fig. 2 and
Appendix p for a summary of notation and definitions. Restrictions of (8) and (9) to wn and 521 are given
by

—.Cur, = fn x E con{

un = O 
k and uj = 01 æ E re (13)

æ E rip 

—Au/ = fl x E 52/
un = On x E r

uj = 0 æ Er D,

respectively, where On E en = {vnln : Vn E 17;//:, (C2n)} and 01 E ej = {v/Ir : vj E HL(C21)} are an
undetermined Dirichlet volume constraint and an undetermined Dirichlet boundary condition, respectively.
The following constrained optimization problem

min J(un,u1) subject to (13), where 
J(tcm1 „ 2

, = —2
1Iun — uni 0,00 (14)

defines the optimization-based LtN coupling. In this formulation the subdomain problems (13) are the
optimization constraints, un and u1 are the states and On and 01 are the controls. We equip the control space
en x ej with the norm

li(am,a/)11(9.x,91 = +110-1111 (15)

In contrast to blending, (14) is an example of a divide-and-conquer strategy as the local and nonlocal
problems operate independently in Qn and R.



OPTIMIZATION-BASED LOCAL-TO-NONLOCAL COUPLING 6

Given an optimal solution (uyi*, 7/7, On*, et) E Tin, (Qn) x 1-/L (C2l) x en x 61 of (
solution u* E L2(f1) by splicing together the optimal states:

The next section verifies that (

3.1 Well-posedeness

14)

*

u* = uttii

is well-posed.

æ E 11„
æ E Qi \ Qo.

14) we define the LtN

(16)

We show that for any pair of controls subproblems (13) have unique solutions un (On) and ui(01), respectively.
Elimination of the states from (14) yields the equivalent reduced space form of this problem in terms of On
and 01 only:

min J(On,01)er,,,e,
where J(On, 01) = 211ttn(On) — 14(00110,o°. (17)

To show that (17) is well-posed we start as in [19, E7] and split, for any given (0,,01), the solutions of the
state equations into a harmonic and a homogeneous part. The harmonic components vn (On) and v1(0/) of
the states solve the equations

{ —Lyn = 0 x E con
vn = On æ E ne and
vn =1:21 X ETID, { —,A.v1 =0 XEQi

V1 = Ol X E I',
v1 = 0 x G rD,

(18)

respectively. The homogeneous components u° and u° solve a similar set of equations but with homogeneous
volume constraint and boundary condition, respectively:

{ —.C4., = fn æ E wn
and 

{ —Au? = fi æ E 521
4., = 0 X E nn u? =0 xEr1.

In terms of these components un = vn(On) + u°, ul = vz(01) + u? , and the objective

1 1
J(0n,Oi) = 2 

ilvn(0n)—vi(0011O,00 + 04-4, vn(On)— v/(00)00o+ 1171°,,— u°11O,c20.

The Euler-Lagrange equation of (17) is given by: seek (an, al) E On x Oi such that

Q(an, al; iln, PO = F(-in, PI) V 0-in, PO E en x el,

(19)

(20)

where Q(an, ai; An, Ai) = (vn(an) — v1(0-1), vn(iin) — v1(111)) 0,0o and P(itn, iii) = — (un° — u? ,vn(i-tn) —
v1(µ1))(m10. The following lemma establishes a key property of Q.

Lemma 3.1: The form Q(•;.) defines an inner product on en x 81.

Proof. By construction Q(•;.) is symmetric and bilinear. Thus, it suffices to show that Q(•;.) is positive
definite, i.e., Q(an, ai; an, al) = 0 if and only if (an, ai) = (0,0). Let (an, ai) = (0,0) then vn(an) = 0 and
v1 (al) = 0, implying Q(an, al; an, ai) = 0. Conversely, if Q(an, al; an, al) = 0, then vn(an) — vl(ai) = 0 in
C20. Let v = vn(an) = vi(ai) in 520. Then we have that (i) Av = 0 for all æ E fin, i.e., v is harmonic in 520,
and (ii) v = 0 for all æ E Q0 n rip, i.e., v vanishes on a non-empty interior set of 520. By the identity principle
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for harmonic functions, v 0 in IL. Because ar,, = v in ne and al = v on it follows that al) = (0,0).
0

As a results, Q(.; .) endows the control space en x 8/ with the "energy" norm

2
11(an, aj)11* := Wan, an an, al) = Ilvn(cin) v/(0-011 (1,00• (21)

Note that Q and F are continuous with respect to the energy norm. However, the control space en x 8/ may
not be complete with respect to the energy norm. In this case, following [I, Li], we consider the optimization

problem (17) on the completion en x 61 of the control space.

Theorem 3.1: Let -en x 61 denote a completion0 of the control space with respect to the energy norm
Then, the minimization problem

min J (On, Oi)

( 9 n,611)EOn x 6",

has a unique minimizer (k, -e-t) E 6„, x 61 such that

ejC(4:i el iitn,[6l) = -P(ttn, iti) V (/-tn, E Õn X 61.

Proof. Equation (23) is a necessary condition for any minimizer of (22

(21

(22)

(23)

). Assume first that the control space

is complete, i.e. en x 0/ = On x 91. Then en x 8/ is Hilbert and the projection theorem implies that (23)
has a unique solution.

When en x el is not complete, the continuous bilinear form Q and the continuous functional F defined
on On x 81 can be uniquely extended by using the Hahn-Banach theorem to a continuous bilinear form Q
and a continuous functional F in en x 81. Then, the existence and uniqueness of the minimizer follow as
before. 0

To avoid technical distractions, in what follows we assume that the minimizer (On*, Ot) belongs to en x Ol
and hence un* = un(On*) E (lin) and WI = ul(On E HL(C2/). We note that in the finite dimensional case
the completeness is not an issue, as the discrete control space is Hilbert with respect to the discrete energy
norm, see Section 5.

4 Analysis of the LtN coupling error

We define the LtN coupling error as the L2-norm of the difference between the global nonlocal solution un
of (8) with homogeneous volume constraints and the LtN solution u* E L2(C1) given by (16). This section
shows that the coupling error is bounded by the modeling error on the local subdomain, i.e., the error made
by replacing the "true nonlocal diffusion operator on S2/ by the Laplacian.

We prove this result under the following assumptions.

H.1 The kernel -y satisfies (2) and (5).
H.2 The global nonlocal solution! icn E Hl(S2).

We also need the trace operator T : H1 (Q) —> On x 0/ such that

T(v) := (Tn(v), Ti(v)) = (gric, v1rc) b'v E H1(Q), (24)

5 If 6„ x 81 is complete, then of course we have that 6„ x 61 = en x
6 This assumption can be relaxed to: 'fin E L2(0) has a well-defined trace on F.
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and the lifting operator L : en x e1 —> L2 (S2), L(o-n, al) = H (o-n, ai) + u°, where

Un(an) 1-2nH (o-n, al) := { vl(o-l) fli \ fio,

{ °
and u° := 

C2n

ur Ud/ C2i \ C20
(25)

are a harmonic lifting operator and the homogenous part of the states, respectively. Our main result is the
following theorem.

Theorem 4.1: Assume that H.1 and H.2 hold. Then, there exists a positive constant C such that

11 41 n — ti*11o,c2 Cliin — fedo,o, ,

where iii = vi (Ti (iin))+ u?•

For clarity we break the proof into several steps.

4.1 The harmonic lifting operator is bounded from above

We prove that H is bounded in the operator norm 1** induced by the energy norm (21). We refer
to Appendix 4 for additional notation and auxiliary results used in the proof. We introduce the space
12,(77) = {tt E V(77): i i1 ,, = 0, for T C 7/}.

Lemma 4.1: Assume that H.1 holds. There exists a positive constant C < oo such that

< —sup 1111(an,vri)110' S2 C

'
IIHII. = (0,0)0(0",,,a1)Ee,,XeL Han, a OM* K

where ic is the thickness of 520.

Proof. To prove (26) it suffices to show that

11H (an, cri)110,Q < a -11(a n, ai)11* v(0,0) (an, az) E en x 61,

(26)

For some positive constant C, inversely proportional to lc. According to the definitions of H and 11(•,*)11* in
(25) and ( ), this is equivalent to

11X(Qn)vn(an) + x(C2i \ C2o)vi(c 1 i)llo ,0 < 011t,n(an) — vi(c I 0110,00,
where x(.) is the indicator function. Since (f/i \ fl,) fl Qn = 0, this inequality reduces to

21

Ilvn(un)g,o„, + Ilvicao M,o, \oo < o2llyn(an) — v1(0-011O,o„•
The strong Cauchy-Schwarz inequality for the harmonic component (see Lemma A.3) yields the following
lower bound for the right hand side:

llyn (an) —v/ (CIO KR, = IlVn(Cfn)ao0 — 2(vn (an), 1100)0Po + 111)/ (Cri)111?),S20

Ilvn (an) llr),o0 — 26llyn(an)110,11° 11 vi (0-/) MOP° + 11v1 (Crig1-20

(1 — (5) (11vn(an)111?),S2o + llvi WOW° ).

(27)
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and 11 vi (0-1)110AV-20 7and lln(0-1)110 1-2 421%We now proceed to bound Ilyn(0-70110,120 , o from below by 11 vn (an)110 
respectively. We start with the nonlocal term. Let fin E V71,(//n) denote the extension of an by zero in 71D,
i.e., pn = an in ik and 0 in TIE). By using the nonlocal Poincare inequality, the well-posedness of the nonlocal
problem and Lemma A.2 we have

Ilvn(an)110,c2,,, < 6', I I Ivn(un)I I IQ.
< 

CpnKnIlAnk(nr,)
< cimicnici Il[in11007.
< cpnicniciK211vn(an)110,Qo.

Therefore, we have that

nonlocal Poincaré inequality (

nonlocal well-posedness (

Lemma lAYJ

Ilvn(an)11gp, < On Ilvn(an)11g,Q,,

12)
7)

(28)

with a = CpnKnK1K2.
To analyze the local term we derive a Caccioppoli-type inequality for the local harmonic component. We

introduce the cutoff function g E Cl(S21) such that g =- 1 in S21 \ 120, g = 0 in ll \ 9/ , I l V91100 < ti-, , and
supp(Vg) c S2,, where K is the thickness of the overlap, see Fig. 2. These properties imply that gvi and g2vi
belong to Hð(Sti). Next, we note that vi is the solution of the weak formulation of (9) with fi = O. Using
g2vj as a test function then yields the following identity

0 = f VviV(g2vi) dx = 2 f gvi VviVg dx + I g2VviVvi dx.
ni S-2/ ni

We use the latter to find a bound on 11V(gvi)110,Q1:

lIV(9v2)11O,o, = f V (gvi)V (gvi) dx — I VviV(g2vi) dx
2/ 1-2/

= I V (gvi)V (gvi) dx — 2 f gvj VviVg dx — I g2VviVvi dx
Qi Sit Qi

2,-, 2 1 2 2
= I 7)/ vgVg dx = j vi V gV g dx < I vi dx = — 1174110,Q°.K2

Ci /20 k lio

Thus, we conclude that

111)2 llo,o, \ o„ = Ilgvillo,o, \oo Ilgvi Ilo,Q1 CplIv(gvi)llo,Q1 —KP II vi 110,s20,

where Cp is the local Poincaré constant. Let kn, = max{ on, q}. Together with ( ) and (

K-2 n
Ilvn(an)llO,stn + Ilvi(ai)gml\sto 

i 
(11vn(an)11O,Q0 + Ilvi(ai)HO,Q0)

27

k2

lc2 (1 6)
ni Ilvri(an)-7)/(a4,1-20.

0

28) this yields
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4.2 The approximation error is bounded by the modeling error

The optimal solution (On*, Or) of the reduced space problem (17) approximates the trace of the global nonlocal
solution iin on rie and rc, respectively. The following lemma shows that the error in (K, Or) is bounded by
the modeling error on Qt.

Lemma 4.2: Let un and (K, On solve (8) and (17), respectively. Then,

(K,67)11*

Proof. Because (0 7,* , et) satisfies the Euler-Lagrange equation (20) we have

(29)

Q(0 , et ; itn, = — (11°., — 4,vn(fin)— vi(m))0,00 V (Pn, Pi) E en x (V (30)

Using this identity together with the energy norm definition (21) yields

Q(T(Itn) — (97, on; Pri, PI) = (7' (sitri,; An, PI) Or; Pr

= (vn(Tn(iin)) — v (Ii (itn)) vn(lin) — tit (PI)) 0 ,szo (4, u? ,vn(itn) ))0,0o

= vi(tti))0,0° llo,00 Ilvn(fun) — 111G-014o°

= Ilun — ul 110,no II (An, ill)11*.

The lemma follows by setting (i.tn, pi) = T (fin) — (6 , et ) above and observing that Q (T n) — (07, , On ; tn
67)) = (itn) (197i,ot)11,2„ ❑

4.3 Proof of Theorem 4A

Let it := L (T(un)) . Definitions (24) and (25) together with the identities

= vn(Tn(lln)) + uc)n and 2ll = vi (11 (lin)) + U?, (31)

imply that

(32)

Likewise, the identities ten = vn(0,*,) u° and ur = vi(Ot) u° imply that u* = L(07„et). Adding and
subtracting it to the LtN error then yields

ullop Fin qlo,o +

= L(T(1112))110,o IlL(T(iin)) (33)

= L(TFtn))110,0 IlH(T(11,72)) —

The first term in (33) is the consistency error of L; (

To estimate the second term we use (26

X E
x E 521 \ c2o.

32) implies that

L(T(2ln))110,0 = i:1/110,C2/Vlo•

) and (29

IIH(T(Iin)) — 11(K, Onllo,o IIHIl**11T(iin) — On11* 7-1/ 110,o,,•

(34)
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Combining (33) with this bound and (34) gives

I I — U*110,C2 — Fin — + —

which completes the proof. El

4.4 Convergence of the modeling error

In this section we show that 111-in — ui 110,o1 vanishes as e —> O.

Lemma 4.3: Let un be the solution of (8) with homogeneous volume constraints and let ui be defined as in
31). Assume that H.1 and H.2 hold; then,

Proof. By definition

lim irtn — = O.
E->0

solves the boundary value problem

{ —Alt/ = fi
47/ = un
ul = 0

and so, it is also a solution of the weak equation

'MI • V wdx = f wdx V w E "Id (C21)•

Let lp E Hð (C21) solve the dual problem

V w • V1Pdx = f — iin)wdx w E (Q/) • (35)
S2i

Since ui — = 0 on rj one can set w = ul — in (

I I — 110,o1 =

35) to obtain

V(fii — iin) • VVICiæ

fiOdx f van • V1Pdx

i'lPdx + fs-21\77.fnOdx — foi Win • VOc/x

k £2:10Pdx — f Viim • ViPdx —› CI,
V/ o1\77

as e —> 0,

where the third equality follows from the fact that fi is extended to zero in n and the limit follows from the
result in [11-71, Section 5]7. ❑

7 It can be shown that when kernels satisfying (0) and (A) are properly scaled, so that —> Ce2 + 0(e4).
The same result holds for the peridynamics kernel in (M).



OPTIMIZATION-BASED LOCAL-TO-NONLOCAL COUPLING 12

5 Approximation of the optimization-based LtN formulation

This section presents the discretization and the error analysis of the LtN formulation (14). Throughout this
section we assume that Tic and I are polygonal domains; this assumption is not restrictive as those are
virtual domains that we can define at our discretion.

5.1 Discretization

We use a reduced-space approach to solve the optimization-based LtN problem (
discretize and solve the problem

14) numerically, i.e., we

min J(On,, 00 with J (0., 610 —2
1kin(On) — 211(611)H,SZo0„01

where un(On) E 147, (12n) solves the weak nonlocal equation

Bnettn(On); zn, := I I glin • g Zn dydx + f unKn dx = f fnZn dx + f On/cn dx,

14,12n, nc wn Tic

for all (zn, E x en*, and ILI(Bl) E HrD (11j) solves the weak local equation

131(11,1(91); z1, := f VuIV dx + f dx =J  dx + I OIKI dx,
s//

for all (zi, E HRS21) x et. Here, en* and et are the duals of en and ej, respectively.
To discretize ( )—(38) we consider the following conforming finite element spaces36

17,111, C (Q.),
Trh Tit to

/)\",

enh c en,

8;1 COI,

vh x eh c v (C2 ) e*,nn, n Tin n n

Ho x e;/ c Hj(c2i) x et

(36)

(37)

(38)

(39)

for the nonlocal and local states, controls, and test functions!, respectively. In general, the finite element
spaces for the nonlocal and local problems can be defined on different meshes with parameters hn > 0
and hi > 0, respectively, and can have different polynomial orders given by integers pn > 1 and pi > 1,
respectively.

Restriction of ( )—(38) to the finite element spaces (39) defines the discrete reduced-space LtN formu-
lation

36

nain J097h,,, et) with Jh(OnhlOt) = —211unh(071) — tiii(Ot)11O,E-20
en.,,ef,

where unh(Onh ) E V, ihD solves the discrete nonlocal state equation

Bn(unh(Onh); Znh, Knh ) = frizh dx + i Onh Kmh dx, V (zin' , Kirli) E Viihn x WTI,f
con 

n
77. 

(41)

and uiii (Bt) E HPD solves the discrete local state equationf!

A (ulil (0); 41 , Kin = fi fizi dx + Ot Klil dx , V (zt, Kli') E Ht x 8//1.
rc 

(42)

8 For simplicity, we approximate en, el and their duals by the same finite dimensional space.
9 Note that both (g) and (g) are well-posed.

(40)
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Following Section 3.1, we write the solutions of (41) and (42) as

h0tinh = vnh + tin and v,//' = v//' + 40,

where vnh and 41 are "harmonic" components solving (41) and (
whereas Ur and are "homogeneoue components solving (
respectively. In terms of these components

Jh(onh, 0111) = 11vh(anh)—vh(9h)11022 n 1 / ,00

The Euler-Lagrange equation of (40

42
41

(43)

) with fn = 0 and fj = 0 respectively,
) and (42) with Onh = 0 and Bi = 0,

1 112(unhO vnh(onh) q(0))0,no+ —21iun
h0 h0

llo,sio •

) has the form: seek (anh, E enh x eti' such that

Qh(anh, uP; = Fh(Anh, /4) Cunh, enh (44)

where Q h(0-1, ; = (virl(anh) — — vp'cum)0 and Fh (14 h-- (unh0 vlizO vnh h) —

141 (4)) 0cio. To prove the positivity of Qh, the arguments of Lemma 3.1 cannot be extended, as the identity

principle does not hold for We use instead the discrete strong Cauchy-Schwarz inequality in Lemma A 4

Lemma 5.1: The form Q h(• , •) defines an inner product on enh X ell'.

Proof. We prove that Qh(an, at; anh at) = 0 if and only if (a- , = (0, 0). If (ah, = (0, 0) then
vnh(anh) = 0 and vr'01') = 0, implying Qh(anh, ;anh,at) = 0. Conversely, if Qh(anh, ; Cr:rnh , at) = 0, then

— 2(vn(an),vP(011))o,o0.0 = h(C nh 4; a nh = 071(an)11(),Q,, PI 1 (C111)110 S

The discrete strong Cauchy-Schwarz inequality (see Lemma

0 > (1 — 8)(11vm(o-n11(1,no +

A.4) then implies

(45)

Since (5 < 1 the left hand side in the above inequality is nonnegative. Thus, we must have that vnh(anh) = 0
and vti (am = 0, which implies (anh, = (0, 0). ❑

Lemma A.5 proves that enh X Oil' is Hilbert with respect to the discrete energy norm

PP' 'IL := Qh(it/71, /41; it/71, it'll).

This fact, Lemma 54 and the projection theorem provide the following corollary.

Coro I I a ry 5.1: The reduced space problem (40) has a unique minimizer.

(46)

5.2 Convergence analysis

In this section we prove that the discrete solution (Onh*, Or) converges to the exact solution (On*, Ot) assuming
the latter belongs to the "rave control space en x 81. This assumption mirrors the one made in [1] and
is necessary because the continuous problem is well-posed in the completion of the raw control space. We
prove this result under the following assumptions.

H.3 The optimal solution belongs to the raw space: (On*, Ot) E en x
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H.4 The kernel -y is translation invariant, i.e. -y(x, y) = -y(x — y)

Let (On*, Or) E en X 01 denote the optimal solution of (17) and (enh., op.) E fsnh x Ol be the optimal
solution of its discretization (40). We denote the associated optimal states by (un* , u7), and (unh*, ur),
respectively, that is,

Iu

(un* , ut) = (un (On* ), ui(On) and (unh*, ur) = (u171(en,ui(eir)).

We will estimate the discrete energy norm of the error (On* —Onh*; Or —OP*) using Strang's second0 Lemma; see,
e.g., [S, Lemma 2.25, p.94]. Application of this lemma is contingent upon two conditions: (i) the discrete
form Qh is continuous and coercive with respect to 11 • 11h*, and (ii) there exists a positive real constant C
such that

c11/in,11/11* V (Iin, E en x 61.

The first assumption holds trivially. To verify (47) note that

11* := Qh(itn, ; = llynh(i('n) v1/1(110110,C2. •

Given pi E 81 the function vti(p,i) solves the weak equation

BI(vP(m); zi Kif) = 
r

dx = dx V (zP, Kin E Ht x ell',
r, c

(47)

where 1-1/ is the L2 projection onto (3,, , vP(N) = vP(11/µi). Similarly, we have that vnh(An) = vnh(rinttn),
where lin is the L2 projection onto enh. Additionally, similarly to [1], we assume that there exist positive
constants -yr, -yn*, and -yi* such that for hn and itz small enough the following inequalities hold:

7n*Ilvn(anh)llo,s2. Ilvn(an)110,00 < 7:tilvn(an)110,1-2°

IlvNaP)110,o0 'Yillvi(011)110,s2o.

The latter, the strong Cauchy-Schwarz inequality and the boundedness of the L2 projection operators yield

NIL =Ilyn(itn) — = llyn(11n(Pn)) vP(11/0-10)11O,cto

11/7,(LIn(iin))1111,s20 +11vP(11/0-10)11Osto

7:111vn(fIn(Pn))11O,0° +7illvi(rli(ui))11O,Qo
(49)

1

Cl 
< iivn(rin(ktn)) — vi(11/(10)11O,sto—  —

= 
1— 6

Illlniin,HiPill! 1
C2  

11 An,

Application of Strang's second lemma then yields the following error estimate.

(48)

10 Note that this assumption is not too restrictive; in fact, it is very common in nonlocal mechanics applications.
11 The discrete problem (P) also fits in the setting of Strang's first Lemma [®, Lemma 2.27, p.95]. We use the second lemma

because it simplifies the analysis.
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Lemma 5.2: Let (O':„ Or) and (Onh*, ON be the solutions of ( ) and ( ), then

— nh* et — 9111*)11h*

inf II Wm ' — anh, — 4)11h* + sup IQ h(K, ; - Fh(itnh [61
(0,14) ll (4,4) 11h*=1

where (c4,i, an, (4, E ein x Cql.

We use the result in Lemma 5.2 to obtain asymptotic convergence rates under the assumption that 1)
the homogeneous problems (19) have solutions u°, E HP''±t(liri), for t E [0, 1], and u° E HP/±1(1-2j); 2) the
control variables (On, Eh) are such that un(On) E HP±t(C2n) and ui(01) E HP/±1(C21). We treat the first term
in (50) by using the norm-equivalence (67); we have

20 44

inf 11(Bn — a nil 'Or — all1)112h* = inf (ILK — an all')112h*
(c4',,cri) (cit,u1')

C inf II (ILK cfrt)11A' xel = 0,cot,,,T)
where 11 • 11 15 e„x 0, is defined as in ( ). We focus on the second term in ( ). Adding and subtracting
Q (0 , Bi ; prih , and using conformity of enh x op' gives

Q h(0;1,, el ; Fh (4, =

= [C2 h (en ° ; (K, ; , ttn] + [Q(K, ; AP) - Fh (Pin'

= [(2 h(K, Ot ; Q(K, Ot AM] [F(111, — Fh(itin' ; AM] •

Adding and subtracting the terms

(v7, (0 ) — v (On , v7,11 (i4) — vl (tin)o,00 and (u° — u°, nh (4) — vl (11,111))0,11„

to the last expression and using the definitions of Q, F, Qh and Fh yields the identity:

h(t9;,' ;
h 
 Fh(itnh , [in =

= ((vrih(eri)— vri(Bn*)) — (41(en — vi(67)),v„h(µ7,h) - vnu'ii)) 0,00 +

((unho - 74) -(ul - vnInh) - vl (4)) 0 0 +
(74, - , (vnh (unh) - vn(jihn) - (41(4) - vi(14))00° .

Application of the Cauchy-Schwartz inequality then gives the following upper bound:

h(6';2,, Ot — 4)1 < (PM llo 0 x

(11v v n(Oal o ,o. +PPM v Oti)llo >Q. + Munh° ,szo +11ur — u°110 ,o,,)+

— vn(Pin')110,a, + 114'(4) — vi (4)110,o.) x 114-4110,o..

Furthermore, note that ll vn (iinh ) — 141(4)110,Q° = 11Anh, tt1/111h* = 1, and that Hun* —4 llo,o0 = J(un*,u7) is
the optimal value of the objective functional, which is bounded by the modeling error. The regularity
assumptions on the nonlocal solutions in (19) allow us to apply Theorem 6.2 in rUi, p.6891:

(50)

50

llunho _ uno llo ,c2 0 < C hf,n+t Ilu° 11

(51)
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where t E [0,1]. Furthermore, the regularity assumptions on the local solutions in
Corollary 1.122 in [EK p.66] to conclude that

< Chr+1 11746/+1,Q/•

19) allow us to use

According to Weyl's Lemma [31] the local harmonic liftings v/(0r) and v1(4) are smooth functions and so
there are positive constants C1 and C2 such that

< Cihr+1 and Ilvi/V) — n(1-inllo,s20 < C2hr+1.

While a similar result holds for the nonlocal harmonic lifting v„(0;")), the treatment of vn (tin is more involved,
due to the discrete nature of the Dirichlet data, and it requires an auxiliary function iz„ E C°° (70 such that

ll /in itnhIlL2(nc) < €, for an arbitrarily small €. Because vn and vnh depend continuously on the data,

llyn-11.1) vn(iihn)110,Slo

< vn(iin)110,O0 Vn(Nin)110,S2o Gin) vn(P11)110,00

< Clhfr" llyn (Fin) bin±t,C2n ([117-1 F111)110,C1., Pilt)110,C2.,

< Cihfin±tiivn(Fin)ilpn+tp„ CA-41 — T411113,77, /41lo,nc.

Since € can be arbitrarily small, the last two terms in (52) are negligible. To complete the estimate we only
need a uniform bound on lIvn(i-tn)11p„-ktp„. To this end, assume that for all Fin E C°°(7/c), Vn E ck(Cin)
with k = pn t. Under this assumption DO[Gvn(iin)] = GDO[vn(rtn)] for all /3 < k. Taking into account
that vn(iin) is nonlocal harmonic, i.e., Lyn(iin) = 0, it follows that GDO[vn(rtn)] = 0, i.e., DO[vn(iin)] is also
nonlocal harmonic for all 3 < k. Thus, D'3[vn(Tin)] has a uniformly bounded L2 norm, i.e. <
Co, V < k. This implies the existence of a positive constant C such that, Ilyn(lin)11P.±t,f2„ < C. It follows
that there exist positive constants Ci and C2 such that

11V

We have just shown the following result. 

vn (ttnh bp° < C21/7"r".nh(K)—Vn(K)110,00 < Cilt,f;''±t and llynh(tinh) — 

Theorem 5.1: Assume that H.1—H.4 hold. Then, there exist positive constants C1, C2 such that

(52)

11(6n 07112* 0;' 9111*)11h* < C1/4,--Ft + (53)

We use Theorem 15.11 to estimate the en x Cl/ norm of the discretization error.

Corollary 5.2: Assume that H.1—H.4 hold. Then, there exist positive constants Cl, C2, C3 such that

11(0* 
_ oh*, _ 0h)11?, xe < C1h2(p,+t) C2hi2p,±1.

Proof. Adding and subtracrting YlnOn% and Tigr,` and using 'the triangle inequality

01X, en xet

< (0  — Mei) 11 e. x e, + — On" ,1119'; — en xe, •

Using standard finite element approximation results for the first term yields

11(0;1-1-Ino';,,,60'; —llion11.2.„xe,<c2hn2(p-H-0110:;11,2,,+t,„,+ c3h,12Pi+1 1 ..p,+ ,,c•118* 112

(54)

(55)

(56)
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Fig. 3: One-dimensional LtN configuration used in the numerical tests.

We focus on the second term in (55). By the norm-equivalence (67) in the discrete control space, we have

II - 9 nh*, fin ()nil e„x ei <CII (1-1,2K — OF: ,11719;'t 611r )11h* = ClI(K - rih* , en - )11h*.

This result along with ( ) and ( ) implies (54). 111
Since tt':, and ut depend continuously on the data, ( ), Corollary  implies that

53 56
54 5.2

Hun — unh110,or, < Knl

11 74 UTh 110,121 < 

q,(13'+t) + Ic,2 qP1+1.

IC11 ela'+t) + K12 qPI+1

(57)

that is, the L2 norm error of the state variables is of the same order as the L2 x H 2 norm error of the
controls.

6 Numerical tests

We present numerical tests with the new LtN formulation in one dimension, including a patch test, a
convergence study and approximation of discontinuous solutions. Though preliminary, these results show
the effectiveness of the coupling method, illustrate the theoretical results, and provide the basis for realistic
simulations. In our examples we use an integrable kernel, -yi, satisfying assumptions (2) and (5) to illustrate
theoretical results and a singular kernel, -ys, often used in the literature as an approximation of a peridynamic
model for nonlocal mechanics. These kernels are given by

3 1
and 78(x, y) =

E21x X(x-E,x+E) (Y), (58)

respectively. Even though 'Ts does not satisfy our theoretical assumptionsT2 these numerical results demon-
strate the effectiveness of the LtN coupling for realistic, practically important, nonlocal models. In all
examples we consider the LtN problem configuration shown in Fig. 3, where lin = (—E, 1+ 0, nD = (-6, 0),

= (1,1 + = (0.75, 1.75), rD = 1.75, rc = 0.75, and Sto = (0.75, 1 + e). In all numerical tests Vh

Vh and e nh are discontinuous piecewise linear finite element spaces, while Hh and 1/4' are Co piecewisen., rD
linear finite elements. We use the same grid size h for the local and nonlocal finite element spaces. To solve
the LtN optimization problem we apply the gradient based Quasi-Newton scheme BFGS [213].

12 The energy space associated with ys is not equivalent to a Sobolev space, nevertheless it is a separable Hilbert space whose
energy norm satisfies a nonlocal Poincare inequality.
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Fig. 4: Optimal states for the patch test with -y, (left) and -y, (right).

The patch test This test uses the linear manufactured solution un = ui = x, unlop = x, ui(1.75) = 1.75,

fn = fi = 0. We expect the LtN formulation to recover this solution exactly, i.e., ttn" un* and On* ?it .

Figure 4 shows the optimal states tin" and ur, computed with E = 0.065 and h = 2-7, for -y, (left) and -y,
(right). The LtN method recovers the exact solution to machine precision.

Convergence tests We examine the convergence of finite element approximations with respect to the grid
size h using the following manufactured solutions:

M.1 un = ui = x2, UnInD = x2, ui(1.75) = 11521 fn = = —2.

M.2 un = ul = x3, unloD = x3, ui(1.75) =1.753 , fn = = —6x.

Note that, for both kernels, the associated nonlocal operator is equavalent to the classical Laplacian for
polynomials up to the third order. For examples M.1 and M.2 we compute the convergence rates and the
L2 norm of the errors for the nonlocal state, e(un*), the local state, e(ut), and the nonlocal control parameter,
e(On*). The results are reported in Tables 1 and 2 for ry2 and in Tables 3 and 4 for -y., in correspondence of
different values of interaction radius E and grid size h. In Fig. 5 we also report the optimal discrete solutions.

Results in Tables 0 and g show optimal convergence for state and control variables. We note that
according to [li] and FE convergence theory [S] this is the same rate as for the independent discretization
of the nonlocal and local equations by piecewise linear elements.

Remark 6.1: The convergence analysis in Section 5.2 establishes a suboptimal convergence rate in the L2
norm of the discretization error of the state variables as we lose half order of convergence. We believe that
the bound in (57) is not sharp, in fact, additional numerical tests (with h = 2-8, ... 2-12) show that there
is no convergence deterioration.

For the singular kernel -ys there are no theoretical convergence results; however, there is numerical evidence
that piecewise linear approximations of (11) are second-order accurate; see [6]. Our numerical experiments
in Tables and 4 show that the optimization-based LtN solution converges at the same rate.

Recovery of singular features The tests in this section are motivated by nonlocal mechanics applications
and demonstrate the effectiveness of the coupling method in the presence of point forces and discontinuities.
We use the following two manufactured solution examples:
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Fig. 5: Optimal states for M.1 (left) and M.2 (right) with y2 (top) and ys (bottom).

E h e(u'';,) rate e(un rate e(8;11) rate

0.010

2-3 2.63e-03 2.76e-03 5.59e-05
2-4 6.16e-04 2.10 6.74e-04 2.04 2.63e-05 1.09
2=5 1.40e-04 2.13 1.63e-04 2.05 1.14e-05 1.20
2-b 3.46e-05 2.02 4.04e-05 2.01 4.18e-06 1.47
2- r-

0.065

2-3 2.24e-03 - 2.56e-03 - 6.34e-04 -
2' 7.56e-04 1.56 7.13e-04 1.85 1.78e-04 1.83
2-5 1.89e-04 2.00 1.78e-04 2.00 4.46e-05 2.00
2-'4.73e-05 2.00 4.46e-05 2.00 1.12e-05 2.00
2-7 1.18e-05 2.00 1.11e-05 2.00 2.82e-06 1.99

Tab. 1: Example M.1 with -yi: dependence on the grid size h and interaction radius E of the error.

A.1 um InD = 0, 111(1.75) = 0, fn = fi = (5(x - 0.25), being (5 the Dirac function.

A.2 unInD = 0'14(1.75) =

fn=fl =

x < 1
2

2 - E + + (2E - - log E) x +
1

- 10g s) x2 - 10g (1 - X) (X2 - X)) 
_
2
1 E < x < 

2

(
1E2 6. • l

6 8 + 
(2 
+ 2 + 6) 

x
3 1 1.) (x2 x)) 1 <
+ log e) X2 - log (x 2 x ̀- 2 +

X > 1 + E.
- 2



OPTIMIZATION-BASED LOCAL-TO-NONLOCAL COUPLING 20

e h e(4.,) rate e(u7) rate e(6);,`) rate

0.010

2-3 4.89e-03 - 1.09e-02 - 2.04e-04 -
2-4 1.23e-03 1.99 2.74e-03 2.00 9.63e-05 1.08
2-5 3.11e-04 1.99 6.86e-04 2.00 4.16e-05 1.21
2-5 7.85e-05 1.99 1.72e-04 2.00 1.45e-05 1.51
2-7 1.95e-05 2.01 4.29e-05 2.00 3.16e-06 2.20

0.065

2-3 5.41e-03 1.09e-02 2.29e-03
2-4 1.34e-03 2.01 2.74e-03 2.00 5.46e-04 2.07
2-5 3.38e-04 1.99 6.86e-04 2.00 1.38e-04 1.99
2-5 8.46e-05 2.00 1.71e-04 2.00 3.46e-05 1.99
2- ( 2.12e-05 2.00 4.29e-05 2.00 8.73e-06 1.99

Ta b. 2: Example M.2 with dependence on the grid size h and interaction radius E of the error.

e h e(uT,) rate e(u7) rate e(6);,`) rate

0.010

2-3 2.67e-03 - 2.78e-03 - 5.79e-05 -
2-4 6.33e-04 2.08 6.81e-04 2.03 2.72e-05 1.09
2-5 1.47e-04 2.11 1.65e-04 2.04 1.19e-05 1.20
2-5 3.63e-05 2.01 4.11e-05 2.01 4.29e-06 1.47
2-7 9.10e-06 2.00 1.03e-05 2.00 1.05e-06 2.03

0.065

2-3 2.36e-03 2.62e-03 6.52e-04
2-4 7.54e-04 1.65 7.12e-04 1.88 1.78e-04 1.87
2-5 1.88e-04 2.00 1.78e-04 2.00 4.45e-05 2.00
2-5 4.67e-05 2.01 4.44e-05 2.00 1.11e-05 2.00
2- ( 1.14e-05 2.04 1.10e-05 2.01 2.76e-06 2.01

Tab. 3: Example M.1 with 73: dependence on the grid size h and interaction radius e of the error.

e h e(u'',1) rate e(u7) rate e(enì) rate

0.010

2-3 4.90e-03 - 1.09e-02 - 2.07e-04 -
2-4 1.23e-03 1.99 2.74e-03 2.00 9.68e-05 1.10
2-5 3.11e-04 1.99 6.86e-04 2.00 4.17e-05 1.21
2-5 7.85e-05 1.99 1.72e-04 2.00 1.46e-05 1.52
2-7 1.96e-05 2.01 4.29e-05 2.00 3.17e-06 2.00

0.065

2-3 5.40e-03 1.09e-02 2.31e-03
2-4 1.34e-03 2.01 2.74e-03 2.00 5.46e-04 2.08
2-5 3.37e-04 1.99 6.86e-04 2.00 1.38e-04 2.00
2' 8.46e-05 2.00 1.72e-04 2.00 3.46e-05 1.99
2- ‘ 2.12e-05 2.00 4.29e-05 2.00 8.73e-06 1.99

Tab. 4: Example M.2 with 75: dependence on the grid size h and interaction radius e of the error.

In Fig. 6 we report the optimal discrete solutions for h = 2-7 and E = 0.065. In particular, A.2 is a significant
example that shows the usefulness of the coupling method in approximating the true solution with a local
model where the nonlocality effects are not pronounced, i.e. the solution is smooth.

Acknowledgements



OPTIMIZATION-BASED LOCAL-TO-NONLOCAL COUPLING 21

0.6

0.5

0.4

0.3

0.2

0.1

0.5 1 1.5

0

-0.2

-0.4

-0.6

-0.8 
0 0.5 1

Fig. 6: Optimal states for examples A.1 and A.2.
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A Ancillary results

1.5

T

a

Fig. 7: Domain for Lemma

This appendix contains several results necessary for the well-posedness of the continuous and discrete reduced
space problems and for the estimate of 11H11... In the following results and proofs we let C and Ci, i = 1, 2, ...,
be generic positive constants.

Lemma A.1: Nonlocal trace inequality] Let C2 = w U ri where w and n are an open bounded domain and its

associated interaction domain and let E C T C 77, T C E as in Fig. 7. Assume that a E -1-7'(71) is such that

aln\T = 0. Then

Mallfi(n) Vv E =

Proof. We need the following subspaces of V(n) and V(C2)

177,\T(n) = E 1(11), = 13} g -1(71),
Vii\r(S2) = fw E V(S2), ttyln\T = 01 c V(S2).

Let XE be the indicator of E. Definition (4) and the fact that a vanishes on n T imply that

in
vEv(0), 

f 
v 

=
in=cr 

in
vEv„\,-(0)

f
,v1,=c, 

inf
vEv„\,-(0),v1,=cr

(59)

(60)
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To bound the energy norm of xEv note that

IHXEvliqz -= Is_212(xE(x)v(x) — XE(Y)7)(Y))2-Y(x,y)dydx

= fE fE (v(x) v(y))2 -y(x , y) dydx + fo\E fE v(y)2-y(x, y) dydx

+ fE E v(x)2 -y (x , y) dydx

= I I Ivl I IE + fE v(x)2 -y(x, y) dy dx fE v(y)2 fix -y(x, y) dx dy

111v111+27111vg,E (1 +27,c,n)111v111,

where the last two inequalities follow from (6) and (7) respectively. Thus,

110-1117(n) =< Cycv C vE17(2.1)Ifyln=

with C2 = (1 + 2-yiqm). I=1

Lemma A.2: Let S-2, w and n be defined as in Lemma . The trace space Vn\,(71) is a closed subspace of

L2(n). Furthermore, for all µ E 170\,(77) we have that

II/11117(n) (61)

Proof. Consider a sequence {ilk} c -17.n\r(ty) such that itik —> iti* in L2(n). To show that it* E f7;A,-(T)) consider
the function v* E L2(C2) such that v*In = /../* and el, = O. To complete the proof it remains to show that
v* has finite energy norm. Using the norm equivalence in Lemma

A.1

111/11112 < C*P*110,Q = C11/210,0 < oc.

Therefore, v* E V(Q) and v*In = p,*, hence i7;1\,(//). Finally, let w E V(Q) be such that On = 11; by
Lemmas A.1 and 2.1, Ilidlii(n) Cill10110 C211/1110,0. ❑

Application of Lemma A.2 with ti = Tir, and T = ne implies that the trace space -12;ip(iin) is a closed
subspace of L2(n„), and thus it is a Hilbert space in the L2 topology. We use this result to prove a strong
Cauchy-Schwartz inequality for the nonlocal and local harmonic components of the states, i.e., the solutions
to (18). This inequality is essential for the estimate of 111111...

Lemma A.3: There exists (5 < 1 such that for all (un, al) E en x el

Kv.(0-.),v1(0-1))0,Q01 < 811v.(0-.)110,Q. 117)1(o-1)110,Q°. (62)

Proof. We prove ( ) by contradiction. If (62) does not hold then for all 0 < E < 1, there exist of) E
en x 61 such that the corresponding harmonic components vn(ot) = vri€ and v/(ol) satisfy Kllo,no = 1 and

II/1110,120 = 1 and

62

(vn(o-n€ ),v/(an)o,sto (1 — Olvn(an6)110,Qo Ilv1(oi)IIo,Qo• (63)
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Note that

(1 — 01114/(a-72)110,o. 111)/ (an 110,o0 (vn(art€ ), vj (at ))0,o0 111'72(a-12 ) llo,o0 (01)110,00 •

This implies that the sequence of inner products converges, i.e. (vn , tvo,o0 —> 1. Furthermore, since {4,}
and {vt} are bounded, there exist subsequences, still denoted by {vn€} and {v}, such that

vn€ vn* in L2 and vl — vi* in H.

Since Hi is compactly embedded in L2, we also have

—> vr in L2.

(64)

(65)

The weak convergence of the sequences also implies that 114110,c2„ < 1 and Ilvt110,c20 < 1. Properties (
and (65) then imply that

lim (v
n
 , vl )O,S2o

 
= lim (vn€ — v

n
 , vt)o,o0 lim vflo,o0

€—>1 

= €1L1111(ynE — yn, yno,o0 Hill
1 
(2/nE — 2/n, vl — vno,o0 + (vn* ,vr)o,o0E— 

= lim(v€ v/ € — v/ *)0, 0 
— — vno,00 + (41 vno,o0€_,1 

= (4, 4)0,C2o,

where the last inequality follows from the strong convergence of the local component:

Thus,

— Ilv,1104-2.1111 — 4110,c2. = — 41104-20 o as e —> 1.

1= 11111(Vn€ 4)0,1-20 = (4, vr)opo ~~o,~zo llq 110,o0 1.
e—>1

64

This means that (vn*, vno,o0 = 114110,00 llq 110,O0. This identity holds if and only if vt = av:.: for some real
a. To complete the proof we apply the same argument as in Lemma 34. On the one hand vn = 0 in 7/D
and so, vr = 0 in S20 n np. On the other hand, vt is harmonic in S2o and the identity principle implies that

0 in Ito. Thus, (63) holds if and only if vn* = vl = 0 in Q0, a contradiction. El

Lemma A.4: Let (5 be the constant in Lemma A.3 and let vn and vP be the discrete harmonic components of
the discrete state variables as in (43). Then, there exist hn and h1 such that

1(vnh,41)0,no l <(5114Illopo 11411o,c2o, V hn < hn, hl <

Proof. In this proof we follow the same arguments of Lemma A.7 of [E11].
Let {hnk, hjk}k>, be a sequence of mesh sizes for the nonlocal and local finite element approximations such

that {hnk, 0 as k —> oo. Also, let vn" and vPic be the nonlocal and local discrete harmonic components
corresponding to hnk and !ilk. It is well-known [EIS] that the local finite element solution converges strongly
in L2 to the infinite-dimensional solution vj as k oo. Furthermore, paper [lii] shows that when -y is such

(66)
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that (5) holds the nonlocal finite element solution converges strongly in the energy norm to the infinite-
dimensional solution vn. Due to the Poincaré inequality such convergence implies the storng convergence in
the L2 norm. Thus, we have

BM vn ynk 1 I 0,C2c, = 0k—>c>o

Ern 0.
k—>oo lly/ vt'k 110,o0 =

Since the strong convergence in L2 implies the weak convergence and the convergence in norm, the following
are also true

hk hk\
lim n 211 )0,00 =k—,00

hk
n 110 =k—>oo

lkim lly/40,S20 =

Using the strong Cauchy-Schwarz inequality ( ), we obtain

k
lim 

(
vnhk vhk )0 p = 1,1)0,CLI Ilvnlio,fO , 0 l vi llo 

= g 
k I 1I

1 
u
„,
n
hk ,0

, Ilvhk 110, 0 •

62

Thus, > 0 such that V E < hn, h1 such that V hn < hn, hl < hl

1(iinhk vhlo 0,00
) < 6 livnhkilo,00livilth ilo,Q0.

❑

Lemma A.5: The space enh x O//' is Hilbert with respect to the inner product Q h(o-,1, al ; iinh , tin = (v,h,"(anh) —

vill (aP),41" (1-lini) — vP (11M)o,o0.

Let en x 61 
II (an, cfM11 e,, x 8,Proof. By assumption enh x 0//z is a closed subspace On x01. Thus, it is Hilbert with respect to

there exist K * and K* such that 
11(anh, alii)11h* are equivalent, i.e.il(an,aP)11h* = Qh(anh, all; anh ,(41); we show that 11(anh,a1A1 and

K*11(an, ahller,xei < II(an,ahlk* < K*I1(anh, aNller,xei.

Using the well-posedness of the discrete problems, we have

1 1 (anh, ŒP)112h* = IIVNU nh) — Vill(a111) II4,Qo < II Vnh(anh) 11121,00 + Ill'ill(C11/1)1111,Q0
< Ci (Ilainig,Tk + 11a1/1111,rc) •

On the other hand, we have

Munh ilO,nc + <11vn(an)1111,o0 + C2livNati)117.,no

< Ilvn(an)11O,Qo + C3livNati)11O,s-20

< C4 (111411/(ŒNO,Q0 +

1
C• 4  

Ilvnh(anh) y/(4)110,1-20— — 

1
C4 

Il(Œnh) CIP )11*.— 

Choosing K * = 1 ,46 and K* = C1, we obtain (67). ❑

Local trace inequality

Local inverse inequality [I

Strong Cauchy-Schwarz

(67)
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B Notation summary

In this appendix we report a summary of the notation we use for local and nonlocal domains. In Table
5 we report local entities on the left and nonlocal entities on the right (see Fig. 2 for a two-dimensional
configuration).

Symbol Definition Symbol Definition
Q
r

w U 97
8s-2

w

71

interior of Q
interaction domain of w

Ch

rj
rD
ro

local subdomain

852/
r n rj
ri \ rD

Cin
wr,
Tin

TID

lie

nonlocal subdomain, wo U Tio,
interior of C271
interaction domain of wT,,
ij n Tin

nn \ li D
Qo overlap domain, Qn fl Qj

Tab. 5: Symbols used to denote local (on the left) and nonlocal (on the right) entities.
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