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ABSTRACT
Tetrahedral finite element workflows have the potential to drastically reduce time to solution
for computational solid mechanics simulations when compared to traditional hexahedral
finite element analogues. A recently developed, higher-order composite tetrahedral element
has shown promise in the space of incompressible computational plasticity. Mesh adaptivity
has the potential to increase solution accuracy and increase solution robustness. In this work,
we demonstrate an initial strategy to perform conformal mesh adaptivity for this
higher-order composite tetrahedral element using well-established mesh modification
operations for linear tetrahedra. We propose potential extensions to improve this initial
strategy in terms of robustness and accuracy.
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1. MOTIVATION

Significant strides have been recently made in the development, implementation, rapid
discretization, and remeshing/mapping of higher-order tetrahedral elements suitable for
resolving large, plastic deformations in solid mechanics. New tetrahedral workflows have
hastened CAD-to-Solution process for geometrically complex components by 100X. Our
current workflow, however, will be prohibitively expensive for system-level models to
sufficiently predict engineering responses which span both physics and length/time scales.

Although new efforts in Next Generation Simulation (NGS) are addressing parallel
discretization, little effort has been devoted to error estimation and local adaptivity. We
assert that foundational efforts in error estimation/indication for transient, inelastic
processes will provide the technical basis for in-core mesh adaption in full engineering models
necessary for the design, development, and qualification of systems.

A posteriori error estimation provides the critical feedback needed for mesh adaption and the
fulfillment of Steve Younger's vision for systematic modeling of relevant phenomena.

In an effort to illustrate both the need and the utility of error estimators/indicators in
abnormal mechanical environments, we have opted to develop a posteriori error estimation in
a new shock multiphyiscs application termed Lagrangian Grid Reconnection L GR. In
addition to being lightweight, L GR is built upon OMEGA_H, a portably performant library
for adapting triangular and tetrahedral meshes using anisotropic metrics. Our goal is to
develop and illustrate methods for error estimation/indication that drive adaptivity for
transient, evolutionary processes that encompass the localization of the deformation. The
demonstration of in-core workflow capable of resolving large inelastic deformations via mesh
adaptivity and the mapping of internal variables for dynamic, inelastic processes provides a
critical, first step towards the affordable resolution of full engineering models.

To leverage recent work on the composite tetrahedral element, we plan to implement and
verify the five-field composite-tet formulation intended for isochoric deformations into L GR.
In addition, recent advances in mapping internal variables via Lie Algebras will also be
verified. Team members in 8363 and 1540 seek to partner with team members in 1443 to
ensure commonality with the SIERRA/SM production environment in constitutive models,
element technology, and mapping methodologies.

Because error estimation without adaptivity is akin to words without action, we believe that
incorporating our best technologies in error estimation, element technology, and mapping
into current products featuring in-core adaptivity is a viable path forward. The totality of
the infrastructure illustrating the refinement and coarsening inherent in capturing localized
processes will realize the potential of a new, adaptive tetrahedral workflow capable of
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systematically modeling dominant phenomena. In prior work, we focused on the burden of
discretization. Affordable, system-level approaches require that we achieve solutions with
minimal computational cost to permit trade-off studies for design and the necessary V&V for
qualification. Hence, the team seeks to maintain the resolution of dynamic, localized
processes with a 10X reduction in the degrees of freedom for solution. The new, affordable
tetrahedral workflow is a critical step in realizing our Director's vision.
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2. APPROACH

Recent success in the application of a new tetrahedral workflow for solid mechanics in our
production environment for NW components have confirmed the potential of a tetrahedral
workflow to ease the burden of discretization. Component analysts are able to achieve
solutions in days, not months. Although we continue to make fundamental improvements in
element technology, contact algorithms, and discretization, we believe that our current
foundation of Sierra/SM and Cubit can provide value to many ND analysts today.
Interactions with system-level analysts, however, have revealed a multitude of needs that
primarily focus on model size. They simply cannot afford isotropic discretizations with a
constant element size. Although incorporating varying size fields and anisotropy into current
discretization processes is prudent and is currently being pursued, we hypothesize that the
research opportunity is to incorporate error estimators/indicators that drive anisotropic
adaptivity. If we can maintain solution quality with a 10X reduction in the degrees of
freedom for solution in the first year of our project, we believe that our future work can
establish the technical basis to realize the Director's vision.

To be clear, the call seeks for researchers to "demonstrate an innovative method to solve
coupled PDEs on complex 3D geometries without having to manually create a mesh." We
believe that our team can already accomplish this task today in our production environment.
Analysts in 1556 are rapidly employing a tetrahedral workflow on complex 3D geometries to
provide solutions to NW customers in FY18. From our perspective, widespread adoption to
full engineering models requires that we innovate to automate affordable predictions.

To realize the vision of the ES IAT with limited funds on a compacted time line, we have
elected to leverage and develop with established methods and tools

1. Employ the current 5-field composite tetrahedral element suitable for elastoplasticity

2. Leverage mapping technology for internal variables

3. Develop within the lightweight shock multiphysics application LGR built on OMEGA_H

4. Leverage OMEGA_H, an open source C++ library for mesh adaption

and research new avenues with contributions in

1. Developing new error estimators in explicit dynamics for elastoplastic solids under
large deformations. We will provide the necessary anisotropic metrics for OMEGA_H to
drive adaptivity.

2. Incorporating the aforementioned developments in element technology and mapping
into L GR.
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We believe this approach to be the most direct path to realize our research opportunity and
form the multidisciplinary team requisite for understanding. New error estimators. A
posteriori error estimation routines can be categorized as follows, in order of least complex to
most complex: recovery-based, residual-based, and adjoint-based. Recovery-based and
residual-based error estimation techniques attempt to bound or approximate the
discretization error in a chosen global norm, while adjoint-based procedures approximate the
error in a functional quantity of interest.

The history and development of each of these techniques is intimately linked with solid
mechanics applications. Despite this rich history, though, a posteriori error estimation has
remained relatively unexplored for (a) dynamic (b) nonlinear solid mechanics applications
with (c) history-dependent variables. Works that investigate applications with all three
properties include estimating the discretization error in a global norm based on a principle of
minimum potential energy [38, 29] and using geometric multigrid techniques [4].

It is, however, more common to find methods developed for some subset of the properties
(a)-(c). For instance, in the context of quasi-static mechanics applications with history
dependent variables, recovery-based error procedures have been used in metal forming
simulations [5], residual-based error estimation techniques have been used to study
viscoplasticity [9] and nonlocal damage models [41], and adjoint-based error estimates have
been applied to studies employing perfect plasticity [39]. In the context of truly transient
phenomena lacking history dependent variables, the so-called constitutive-relation error [21,
7], recovery-based approaches [22], and adjoint-based techniques [45] have been used to study
linear elastodynamics. Adjoint-based techniques have also been utilized to estimate
functional errors in quasi-static nonlinear elasticity applications [23, 46, 14]. Lastly, there has
been recent interest in using the variational multiscale (VMS) method, which is naturally
equipped with a residual-based point wise error estimate [15], to control discretization errors
in quasi-static finite elasticity [28].

Each of the error estimation techniques utilized in the previous literature show promise in
the space of explicit transient dynamics for elastoplastic solids. However, because this space
is relatively unexplored in the context of error estimation and mesh adaptation, the
practicality and utility of each approach is as of yet unknown. To map the space of
applicability for each of these types, we propose implementing a new library for a posteriori
error estimation in that will combine error information with directional solution information
to provide OMEGA_H with anisotropic metric inputs to drive mesh adaptation. We
emphasize that we will leverage anisotropic adaptation, a technique not commonly employed
in solid mechanics, to achieve the goal of a 10X reduction in degrees of freedom while still
maintaining solution fidelity.

Initial developments will include implementing practical recovery-based procedures, such as
Zienkiewicz-Zhu and Hessian-based error approximation techniques to quickly demonstrate
the ability to perform in-core adaptive workflows for explicit transient dynamics. Rather that
focus on oscillatory state variables such as the Cauchy stress, we will gravitate towards
monotonically increasing internal state variables. In conjunction, more rigorous
residual-based error estimates and VMS-based error estimates will be mathematically
studied and then implemented into the error estimation library. With the ability to switch
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between different types of error estimates, the space of applicability of each type of estimate
will be explored for the use cases aligned with abnormal mechanical environments.

Beyond FY19, we enter the iterative process of assessing and improving the reliability and
robustness of both error estimation and mesh adaptation for numerous use cases with a focus
on the localization of the deformation. Longer term efforts include the practicality and ability
to perform adjoint-based error estimation. The in-core workflows realized through OMEGA_H,
LGR, and the newly developed error estimation library will allow us to explore extending
adjoint-based techniques from quasi-statics to dynamics with history dependent variables
coupled to fully anisotropic mesh adaptation. Such an extension is an immense challenge for
the targeted applications, and its feasibility is, as of present, an open research topic.
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3. FORMULATION OF CONTINUUM
SOLID DYNAMICS

Consider a body as the open set Q c R3 undergoing a motion described by the mapping
x = yo(X ,t) : Q x [0, T] R3, where X E Q, t e [0, T], T R>o, and [0, T] is the time
interval. Assume that the boundary of the body is OQ = U aTli with unit normal N ,
where asoQ is a displacement boundary, OTQ is a traction boundary, and awS2 n 0742 = O.
The prescribed boundary displacements or Dirichlet boundary conditions are
x : x [0, T] R3. The prescribed boundary tractions or Neumann boundary conditions
are T : OTC2 x [0, T] R3. Let F := Grad cp be the deformation gradient. Let also
RB : Q R3 be the body force, with R the mass density in the reference configuration.
Furthermore, introduce the kinetic energy of the body as

T4 
2

) := —
1 
f Ryb • sb dV, (3.1)

and its potential energy as

V(clo) := f A(F , Z) dV f RB • yo dV I T • yo dS, (3.2)

OTC2

in which A(F , Z) is the Helmholtz free-energy density and Z is a collection of internal
variables. The Lagrangian function of the body is then

L(c p, sb) := T(sb) — V (yo), (3.3)

which gives rise to the action functional

I[so] := f L(y o , yb) dt. (3.4)

According to the Variational Principle of Hamilton, the equation of motion is obtained by
finding the critical point of the action functional I[cp] over the Sobolev space Wl(Q) that is
comprised of all functions that are square-integrable and have square-integrable first
derivatives [27]. Define

and

:= {go E 14q(Q) : go = x on apQ x [0, T]l (3.5)

V := e W2 (Q) : = 0 on a,,S2 x [0, T]l (3.6)
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where E V is a test function. This leads to

aaL ar: foT   d OL)
81 := DI[cp]W T t) dt = • dt

T
Jo (30 dt asb

= [ f (RB • — P : Grad dV + f Rcb dV + f T • ds] dt
0 5-2 aTQ

= f
Tr 
[ f (Div P + RB — Rc;c3) • dV + f T • dS] dt = 0,

o aTS2

(3.7)

where P=OAIOF denotes the first Piola-Kirchhoff stress. The Euler-Lagrange equation
correspondng to 3.4 is then

Div P + RB = Rc.6, in S2 x [0, T],

PN =T, on OTQ X [0, T],

cp = x, on Ow SZ x [0, T].

(3.8)

We solve the governing equations with a single-field (displacement-based) Galerkin finite
element method using an explicit central difference time integration scheme. This finite
element scheme is exactly the same as used in SIERRA/SM [43]. The details are omitted for
the sake of brevity. Section 6.2 highlights practically exact agreement between SIERRA/SM
and our implementation in LGR.
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4. A 10-NODE COMPOSITE
TETRAHEDRON

In this work, we concern ourselves entirely with a 10-noded composite tetrahedral finite
element [11]. At a high-level, this element is based on a composition of twelve sub-tetrahedra
with a piecewise linear basis defined over the sub-tetrahedra and an assumed linear gradient
space over the entire composite tetrahedron. The element was developed in the context of
finite deformation plasticity, where incompressibility often greatly hinders other tetrahedral
finite elements, by considering a Hu-Washizu variational principle.

Figure 4-1. The 10-node composite tetrahedral element

Figure 4-1 illustrates the node ordering for nodes 0 through 9 for the 10-node composite
tetrahedral element, where the llth node, labeled 10, is an auxiliary node that is implicitly
defined in the element formulation and does not carry with it any degrees of freedom. This
node is defined as the average location of the six edge nodes. Table 4-1 demonstrates the
connectivity of the twelve sub-tetrahedra in terms of the nodes that define them.
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Sub-tetrahedron Nodes Sub-tetrahedron Nodes

E0 0 4 6 7 E6 9 8 7 10

El 1 5 4 8 E7 7 8 4 10

E2 2 6 5 9 E8 4 5 6 10

E3 3 8 7 9 E9 5 9 6 10

E4 4 8 5 10 Eth 9 7 6 10

E5 5 8 9 10 E11 7 4 6 10

Table 4-1. Connectivity for the twelve sub-tetrahedra.
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5. ADAPTIVE STRATEGY

5.1. OVERVIEW

In this work, we propose an 'intermediate' approach towards performing fully higher-order
mesh adaption with the previously described composite tetrahedral element. Robust, reliable,
and efficient mesh modification strategies exist for both isotropic and anisotropic adaptivity
with linear simplical elements [12, 1, 18]. However, extensions of these techniques to
higher-order tetrahedra still remains an open research topic [26, 10]. For this reason, we have
chosen an approach whereby we leverage the robustness and reliability of linear mesh
adaptation procedures at the expense of discarding some information about edge nodes
produced by the solid mechanics finite element solve.

Our adaptive simulation strategy begins by generating a composite tetrahedral mesh that
conforms to a desired geometry. A solid mechanics simulation is then initialized using the
generated mesh with appropriate initial conditions and boundary conditions. The simulation
is then run until a user-specified criterion triggers mesh adaptation. At this point, the mesh
of composite tetrahedra contains edges that are potentially 'kinked', i.e. the location of an
edge node in the mesh is not guaranteed to lie halfway between the edge's endpoint nodes.

As a first step, the reference configuration is updated right before every mesh adaptation
occurs. The reference configuration is set to be the configuration given by the current
deformed mesh. This allows us to perform solution mapping on quantities that define the
reference configuration, thereby resetting the reference configuration on the final adapted
mesh.

A linear tetrahedral representation of this deformed mesh is then obtained by omitting the
positions of all edge nodes. This linear mesh, along with a mesh size field is passed to a
linear tetrahedral mesh adaptation software called OMEGA_H [18]. For isotropic mesh
adaptation, which we presently consider, the size field defines desired edge lengths at each
vertex in the input mesh. The mesh adaptation software then performs a sequence of edge
splits, swaps, and collapses in local cavities of elements to produce an adapted mesh of linear
tetrahedra that closely satisfies the desired size field while also providing certain guarantees
about the quality of every element in the adapted mesh (see Section 5.3).

To convert the adapted linear mesh back into a higher-order mesh of composite tetrahedra,
the location of edge nodes must be specified for all edges in the mesh. To retain higher-order
information from the solid mechanics solve, we first consider edges which exist both in the
input linear mesh and the output (adapted) linear mesh. Since these edges existed prior to
adaptation, we can retain the locations of their edge nodes prior to adaptation, as given by
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Edges
in old
mesh

Edges
in both
meshes

Edges
in new
mesh

Figure 5-1. Venn-diagram of edges in the old (non-adapted) mesh and new (adapted)
mesh. Edges in the white portion are no longer exist, edges in the blue portion
remain kinked, and edges in the red portion (newly created edges) are assumed to
be straight with a node at the edge's midpoint.

the solid mechanics solver. These edges are graphically represented in Figure 5-1 by the color
blue. In the adapted mesh, the remaining edges without a specified node location are the
edges that were created during mesh adaptation. These edges are represented in Figure 5-1
by the color red. For these remaining (new) edges, we place the node at the edge's midpoint,
creating straight sided edges.

The process of forming the higher-order mesh can result in composite tetrahedral elements
that have negative characteristic lengths (h) for time step purposes. Such elements are not
suitable to perform numerical simulation. To rectify this, we straighten the edges of any such
elements until a valid composite mesh is obtained. As a consequence, this further discards
known information about edge nodes.

Next, both nodal and quadrature point solution information is transferred from the input
mesh to the adapted mesh via a simple solution transfer scheme, although we propose a more
sophisticated transfer scheme for future consideration. The solve/adapt cycle is then
repeated until the final user-specified simulation time is reached.

We call this process an 'intermediate' approach because we have disregarded all higher-order
shape information of the composite tetrahedra during the mesh adaptation process itself, but
have still obtained an adapted composite tetrahedral mesh via post-processing. A more
mathematically sound mesh adaptation process would evaluate the quality of composite
tetrahedral elements directly taking into account all 10 nodes and would place new edge
nodes at a location informed by the true quality of adjacent elements. In the remaining
sections of this chapter, we discuss the details of our intermediate adaptive strategy.
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5.2. REFERENCE CONFIGURATION UPDATES

Before any mesh adaptation occurs, we perform an update of variables that define the
reference configuration. This, coupled with solution mapping during mesh adaptation,
provides an updated reference configuration on the adapted mesh. To update the reference
configuration, we set the reference density to be the density at the current time step n, we
reset the deformation gradient to be the identity tensor I, and we update the initial
deformation gradient Finit to be the accumulation of the deformation gradient at time step n
and the initial deformation gradient Fibnit used until the time step n. This process is outlined
by equation 5.1.

Po = Pn
F = I

F init = Fn

(5.1)

Note, with the approach, we must use the total deformation gradient F total = FT I F init when
calls to constitutive models are called.

5.3. TRIGGERING MESH ADAPTATION

To trigger mesh adaptation, we adopt an approach driven by element quality. While this
approach is relatively simple, we emphasize that the criterion to trigger mesh adaptation can
be as sophisticated as needed, and could even include information provided by error
estimation routines.

A first approach to trigger mesh adaptation is to compute quality measures over all elements
and adapt the mesh if the minimum quality over all elements is below some user-defined
threshold. In our current implementation, we consider a quality measure over linear
tetrahedra. Current efforts are developing quality measures specifically targeting the
composite tetrahedral element, but these metrics are still in their infancy. Consequently, we
utilize the so-called mean ratio element quality measure [25, 8, 24]. In equation 5.2, we define
the mean ratio and note its interpretation as comparing the volume of linear tetrahedron to
the volume of an equilateral tetrahedron with the same root-mean-squared edge length,

2

Vk 
Tik = ti •

Vkr3

Here, Vk is the volume of the tetrahedron corresponding to element k, lk is the
root-mean-squared edge length of the tetrahedron, given as

Tk

1

(
I 
i 6

i 7 )
:= 6Ekbki)

\2

i=o

20
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where 1k,i denotes the length of edge i in the tetrahedron, and -yk is the volume of a
equilateral tetrahedron with unit edge length,

1
'Yk := 

A/72
•

Note that the element quality measure satisfies the property 0 < rlk < 1 for valid
tetrahedron.

To determine whether or not mesh adaptation should occur, the minimum mean ratio
element measure is computed over elements as

nk,min := mkin nk,

(5.4)

(5.5)

and then compared to two user-defined parameters: a minimum desired quality 761e,nsifned and a
minimum allowed quality ned, where nicciemsiTned > nzlmloured,in

, such that adaptation occurs if

< ricklernsiirned
nk,min AND

nk,min ._<{

rik,min 

nceind in 0.02 OR
< niaclmlorrned + 0.02 (5.6)

where rain denotes the minimum mean ratio element measure at the previous time step.
Thus, adaptation occurs if the element quality is deemed to be too poor at the current time
step or if the element quality is deemed to be decreasing at an unsustainable rate.

5.4. MESH SIZE FIELDS

The input to the mesh adaptation software OMEGA_H is a so-called mesh size field that
specifies a desired edge length hd"ired at each mesh vertex in the mesh of linear tetrahedra.
In the results below, we consider two mesh size field specifications, one which attempts to
maintain element size throughout the simulation, and one that performs refinement with
increasing equivalent plastic strain.

5.4.1. Implied Isotropic Size Field

To maintain element size throughout a simulation, we utilize a size field specification at each
vertex v that averages the edge lengths hedge of all edges adjacent to v, such that

v.Thadj
h"so L-iedge=i hedge
=  

nadj
(5.7)

where nadj denotes the number of edges adjacent to the vertex v.

This size field specification is particularly useful in the context of explicit Lagrangian finite
element simulations in that the minimum characteristic element size (h) dictates the
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maximum stable time step. In particular, as element sizes tend to zero, computational time
will tend towards infinity. For instance, in a simulation with an inward converging geometry,
such as the canonical Noh [32] test case, elements near the origin become increasingly
compressed as simulation time increases. Without mesh adaptation, running such a test case
to long times becomes intractable. This size field specification attempts to avoid this pitfall
by preserving element sizes, thus preserving computational feasibility.

5.4.2. Refinement with Equivalent Plastic Strain

As a step towards adaptivity informed by error estimation information, we also consider a
size field that performs refinement with increasing equivalent plastic strain. We consider
three user-defined inputs: a minimal and maximal desired mesh size, hmin, hmax, respectively,
and a maximal equivalent plastic strain Emmax. We set the mesh size field according to the
formula:

keqpsv {
(hmax — hmin)

hmax Ep,v

//min

Ep,max
if Ep,v < Ep,max

otherwise
(5.8)

such that the mesh size h,„ at a given vertex v decreases linearly with equivalent plastic
strain cp until the maximal user-input equivalent plastic strain Ep,max is reached, at which
point the mesh size field is held constant at the user defined minimal mesh size hmin. In this
manner, we achieve increased resolution in areas of the mesh with localized equivalent plastic
strain while retaining element sizes that ensure computational feasibility. Figure 5-2
graphically illustrates this size field as a function of equivalent plastic strain.

Here, ep v denotes the average equivalent plastic strain at a given vertex, as computed as the
average over values at Alps integrations points in Tiadj elements adjacent to the vertex v.

\--,nadj vrtqp.
L—delem=1 Laqp=1 Ep,elem qp

Ep,v = •
nadjr/qps

5.5. CONFORMAL MESH ADAPTIVITY WITH

CAVITY OPERATIONS

(5.9)

Once a mesh size field has been specified, OMEGA_H performs local mesh modification
operations over cavities of elements. The three mesh modification procedures we consider are
edge splits, swaps, and collapses. For the sake of simplicity, Figure 5-3 demonstrates each of
the three mesh modification procedures with linear triangular elements. These techniques
readily extend to linear tetrahedral elements.

The edge split takes a given edge and places a new vertex at the edge's midpoint. New mesh
edges are then created by connecting this new vertex to every other vertex in the cavity. For
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  Ep

Figure 5-2. Size field function that decreases mesh size h with increasing equivalent
plastic strain E.

1=1 MEI
(a) split (b) swap (c) collapse

Figure 5-3. Split, swap, and collapse operations in two dimensions. Red indicates
the edge the operation is acting upon.

instance, in Figure 5-3, a single edge split creates four new additional edges. Edge splitting is
useful to refine the mesh to capture additional mesh resolution.

The edge swap takes a given mesh edge in cavity and creates a new mesh edge in the cavity
by 'swapping' the mesh vertices that define the edge. For triangular elements, there is only
one choice of newly created edge, as shown in Figure 5-3, however, in three dimensions, the
choice of newly created edge is non-unique. The swap operation is typically used to improve
mesh quality, and so we always choose the edge that leads to the highest quality elements in
the cavity.

The edge collapse takes a chosen mesh edge and 'collapses' it by treating its two end vertices
as one and the same. In general, the collapse operation is utilized to coarsen the mesh. For
example, Figure 5-3 illustrates a collapse that results in two larger elements from four finer
elements.

As mentioned previously, OMEGA_H performs sequences of these operations to satisfy the
chosen mesh size field, as given in Section 5.4, but will also provide guaranteed lower bounds
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on the minimum element quality. For our purposes, we utilize nk >= 0.3, where ilk is given
by equation 5.2.

5.6. EDGE STRAIGHTENING

Once a new valid linear tetrahedral mesh has been generated by OMEGA_H, edge nodes that
exist in the intersection of the old mesh and new mesh are given their previous values, as
determined by the solid mechanics solve. Additionally, the edge node for newly created edges
is always placed at halfway between the vertex nodes connected to the edge. Figure 5-1
shows graphically how edge node positions are assigned.

Figure 5-4. Splitting of an edge (red) for a 6-noded composite triangular element
that yields well-defined resultant elements

As in section 5.5, we again consider triangular elements to clearly illustrate concepts, while
noting that these concepts also extend to tetrahedral elements. Here, however, we consider
6-noded triangular elements that can have kinked edges, rather than straight-sided linear
triangles.

In certain scenarios, the restriction that all newly created edges are straight-sided actually
improves element quality. For example, Figure 5-4 demonstrates an edge split for a kinked
edge that results in four well-shaped 6-noded triangles from a cavity that initially had two
fairly deformed 6-noded triangles. This element quality comes at the cost of additional
solution mapping, however, which may lead to an imperfect transfer of information. In
contrast, a fully higher-order adaptive scheme may leave the red edge in Figure 5-4 kinked
and place a new vertex at the red edge node, eliminating the need for solution mapping at
that point.

• •
Figure 5-5. Splitting of an edge (red) for a 6-noded composite triangular element
that yields an inverted resultant element and subsequent straightening of all edges
adjacent to the inverted element

In other scenarios, however, newly created straight-sided edges can actually produce inverted
elements. Figure 5-5 illustrates how this might occur with a split operation for an edge
adjacent to a kinked element. To rectify inverted elements, we propose one of two strategies.
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The first is to simply straighten all edges in the mesh adjacent to inverted elements as shown
in the right-most image of Figure 5-5. This process must be performed iteratively, however,
as straightening the edge in Figure 5-5 could result in an inverted element outside of the
considered cavity.

As a more heavy-handed approach, we can also simply straighten all edges in the mesh. This
approach is guaranteed to provide elements of good quality as it will simply yield the linear
tetrahedral mesh produced by OMEGA_H with edge nodes placed at the edge's midpoint.

5.7. SOLUTION MAPPING

The transfer of field data from one mesh to another is a need that arises frequently within the
context of mesh adaption in the finite element method [34, 36, 37, 40, 19, 33, 6]. Fields that
are available at the nodes may be directly mapped by using the corresponding interpolation
functions. The situation is more complicated, however, in simulations that carry state
information in internal variables, as these are normally available only at integration points.

It is common for finite deformation constitutive models to be endowed with internal variables
that do not belong to linear spaces. Nevertheless, a problem that is prevalent to the mapping
procedures is that they transfer internal variables with the addition operator, typically via
Lagrange interpolation. This operator, however, may not be admissible in the spaces in which
these variables exist, and as a consequence such procedures do not, in general, guarantee that
transferred internal variables remain in their appropriate spaces. For example, a scalar
isotropic damage parameter might be extrapolated outside of its admissible range, [0, 1).

5.7.1. Introduction

We advance a three-field finite element formulation as a method for recovering internal
variables. The additional fields in the formulation are the target field of internal variables
and a Lagrange multiplier that enforces the equality between the source and target internal
variables. The Lagrange multiplier is subsequently identified as the corresponding conjugate
thermodynamic force. The formulation leads to an expression for the target internal
variables that is an L2 projection of the source internal variables onto the space spanned by
the interpolation functions selected for the extra fields. In effect, the projection extends the
field of internal variables from the integration points to the entire domain. Once extended in
this manner, values for the internal variables may be computed at any arbitrary point as a
means of transferring the variables to a different mesh. By using a variational approach, the
distance between the source and target internal variable fields is minimized in the L2 norm of
their space, and thus the projection is orthogonal and the corresponding operator is
self-adjoint. The matrices that result from the operator are symmetric positive definite,
sparse and of narrow band.

Next it is shown that for a set of common internal variables, the Lie algebras corresponding
to these variables lie in linear spaces and are therefore suitable for polynomial interpolation.
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The proposed recovery scheme preserves the constraints imposed on the internal variables as
long as they belong to a Lie group. We adhere to the classical definition of internal variables
as fields that are endowed with their own evolution equations as to eliminate the explicit
dependence of the stored energy function from the history of deformation [31, 2]. Thus, the
proposed variational principle states that thermodynamic forces conjugate to the internal
variables (such as stresses) are not mapped, but are computed instead based on the target
internal variables, thereby satisfying their own constraints (such as that stresses be within
the elastic domain) and balance laws.

Assuming that internal variables belong to Lie groups, the corresponding Lie algebras may
be obtained using the logarithmic map. Upon interpolation in the Lie algebra, the internal
variable of interest is recovered by using the exponential map [27, 42, 20, 13]. A fast and
accurate method for the computation of the exponential map is provided by the scaling and
squaring algorithm with Padé approximants [16, 17]. Most tensor fields of interest, however,
admit a polar decomposition and thus it proves convenient to interpolate the rotational and
stretch components separately. An added benefit of this method is that the computation of
logarithmic maps for these components is relatively straightforward.

Our previous work on mapping and updating internal variables via L2 projections and Lie
group interpolations did not contemplate the case of extremely large deformation [30]. When
very large deformation is involved, the deformation gradient F may have a rotation
component that has an angle of rotation 0 ,,,--2, n7r, where n E i>o. In that situation,
algorithms to compute the principal logarithm of F may fail or require the use of complex
arithmetic. This is undesirable. On the other hand, Mota et al. [30] advocate the use of the
polar decomposition of the deformation gradient F = RU , compute the logarithm of the
rotation R and stretch U separately, map, and then reconstitute the deformation gradient
field by means of the exponential map. This method requires the use of five tensor
algorithms: polar decomposition; logarithmic map for rotations; logarithmic map for
symmetric positive definite tensors; exponential map for symmetric tensors; and the
exponential map for rotations. The use of specialized algorithms for rotations and symmetric
tensors seeks to exploit their structure to minimize floating point operations.

5.7.2. Internal Variable Recovery

The formulation of our internal variable recovery technique may be carried out in the absence
of dynamical effects inherent to the formulation of Chatper 3. Without loss of generality, we
can restrict developments neglecting any inertial terms. introduce the energy functional

(Do[cp] := f A(F , z) dV — I RB • cp dV — f T • co dS, (5.10)
/2 /2 aTO

in which A(F , z) is the Helmholtz free-energy density and z is a collection of internal
variables.
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5.7.2.1. Three-Field Functional

The functional 5.10 is modified by introducing a constraint as

40 [co, 2, g] := f A(F , t) dV + f 9. (2 — z) dV — f RB • co dV — f T • co dS, (5.11)
St /2 S2 OTB

in which 2 is the field of target internal variables that is constrained to be equal to the
source internal variables z by means of the Lagrange multiplier 9. Although the Helmholtz
free-energy density A is now evaluated using 2 instead of z, the functionals in 5.10 and 5.11
are equivalent at this stage due to this constraint.

Assume that co E U := (W2 (B))3, z, 9 E V := (WI (B))q , in which W1(B) is the Sobolev
space of square-integrable functions with square-integrable first derivatives, and q is the
number of scalar parameters used to represent the collection of internal variables. The
functional 5.11 is optimized by applying variations with respect to the independent fields cp,
z and 9. Define test functions corresponding to these fields as E U , ri, C E V, with = 0
on apQ. The variations follow as

13(1.[cp, 2, g]W = f P: Grad dV — f RB • dV — f T • dS = 0, (5.12)
n /2 OTB

13(1)[cp , 2, ÿ](n) = L(9 - y) • 71 dV = 0, (5.13)

D(I)[cp , . i ,9]( -) = L(t — z) • C dV = 0, (5.14)

where P := OA/OF is the first Piola-Kirchhoff stress and y := —SA102 is the
thermodynamic force conjugate to 2. The corresponding Euler-Lagrange equations are

Div P+RB= 0 in Q, P N = T on .97,Q,
9 = y in Q,
2 = z in Q,

(5.15)

as expected. Note that the equilibrium condition 5.15 is evaluated using the target internal
variable field z, and therefore equilibrium and constitutive constraints are satisfied using this
field. Next, introduce discretizations for the fields and test functions as

Soh(X) := Na(X)coa E Uh, ii(X) := Nb(X)i, E Uh,

th(X) := AŒ(X)2,, E Vh, nh(X):= Ao(X)no G Vh,

yh(X) := Ac,(X)ÿ, e Vh, Ch(X) := )9(X)(3 E Vh,

(5.16)

where Na and Nb are interpolation functions for co and 4', A, and Ao are interpolation
functions for (z, 9) and (71, (), and (a, b) E [1 ... N] and (a, M E [1 ... M], in which N is the
number of nodes for so, M is the number of nodes for 2 and 9 respectively. Uh C U and
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Vh C V are finite-dimensional subspaces of U and V respectively. Introducing these
discretizations into the variational statements 5.12-5.14 gives

LP • Grad Na dV — f RBN, dV — i TNa dS = 0,
Q OTB

gh = Ac, (f A,A0/ dV)
Q

ih = A, (f A,A0I dV)
Q

(5.17)

(5.18)

(5.19)

which are the discrete statements of equilibrium, the discrete thermodynamic forces and
discrete target internal variables, respectively, and with I being the q x q identity. Note that
A„ and Ao form a basis for the space Vh, therefore 5.18 and 5.19 are projections of the fields
y and z onto Vh. Effective computation of the integrals in these expressions readily suggests
the use of interpolation functions A„ and Ao that are of the same order or less than Na and
Nb. This allows the application of the same integration scheme for 5.18 and 5.19 as for 5.17,
ensuring that the projections will be fully integrated (provided that full integration is used
for the equilibrium statement as well) using the same integration points, thus avoiding any
unnecessary transfer of variables at this stage. Furthermore, if the interpolation functions A„
and Ao are discontinuous across element boundaries, the projection 5.19 reduces to
extrapolation of values from integration points to nodes (cf. Ortiz and Quigley, Radovitzky
and Ortiz). For convenience, introduce

ii-c,0 :, LA,A01- dV, E0 := L Àoz dV, 2, := .1/(7, -E0,

in which i, are the nodal values of the discrete target field. Then the projection 5.19 can
also be expressed as

(5.20)

2h(X) = Aa(X)2,„. (5.21)

Herein, we advocate the use of the singular value decomposition (SVD) to address the case
of very large deformation. An additional benefit is the reduction of storage and decrease of
the number of tensor algorithms from five to four, as follows. First compute the SVD of the
deformation gradient F = XDYT , then compute the polar decomposition of the
deformation gradient F = RU, where R = XV' and U = YDYT, then compute the
logarithmic map of each of the components r := log R, and u := log U =Y log(D)YT.
Then map, apply the exponential map, and reconstitute the mapped deformation gradient.
Since r and u require the storage of three and six components correspondingly, the amount
of storage is the same as for the deformation gradient F or its principal logarithm log F.
The required logarithmic maps are those corresponding to either scalars or proper rotations,
and the corresponding exponential maps are those of a rotation pseudo-vector and a
symmetric tensor. This is described in detail in Algorithm 1.

Note that mapping the components X, D, and Y of the SVD separately leads to incorrect
results. This is due to the non-uniqueness of the singular value decomposition, even for
non-singular F. Likewise, mapping Y separately as a rotation leads to incorrect results due
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1: t <— 0, F <— I
2: repeat
3: Compute increment of deformation gradient AF
4: F <— AF • F
5: if mapping required then
6: [X, D,Y] <— SVD(F)
7: R— XYT
8: r <— RVofRT(R)
9: s <— align-rvs(r)
10: d diag(log(diag(D)))
11: u <— symm(YdYT)
12: Map s, u using additive interpolation.
13: R— RTofRV(s)
14: U <— exp(u)
15: F <— RU
16: end if
17: Compute time step At
18: t<—t+At
19: until t > Tfinal

> Time integration loop

> U = YDYT

Algorithm 1 Mapping algorithm for the deformation gradient F via the SVD.

to its non-uniqueness when the stretch U = YDYT has repeated eigenvalues. On the other
hand, the components R and U of the polar decomposition are unique for a non-singular
F.

5.7.3. Tensor operators

The steps outlined in Algorithm 1 require the computation of several tensor functions and
operators. The first is the computation of the rotation pseudo-vector from a rotation tensor
in Line 8. This is accomplished in a singularity-free manner by using a quaternion
parametrization of the rotations, and by recourse to Spurrier's algorithm [44]. A Julia'
implementation of this operator is shown in Listing 5.1, which in turn relies on the code
shown in Listing 5.2 and Listing 5.3. These algorithms were adapted from Balopoulos and
Abel [3]. Note that the quaternion parametrization is not exposed to the user of these
algorithms, and also that

r := RVofRT(R) check log R, (5.22)

and

R:= RTofRV (r) exp check r. (5.23)

The check operator is defined in such a way that if applied to a vector v E R3, it returns a
skew symmetric tensor 45 E so(3), and if applied to a skew symmetric tensor V E so(3), it
returns a vector v E R3. In both cases, the operator is constructed such that

'Julia is available on: https://julialang.org/
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Listing 5.1 RVofRT: rotation pseudo-vector of rotation tensor.

function RVofRT(R)

q = QofRT(R)

w = RVofQ(q)

return w

end

ii•uvxuVuEOR3,thatis

(vi ( 0 —v3 v2
v = check /5 <=> = check v, v = v2 , v= v3 0 —v1) .

V3 --V2 v1

The diagonal operator is defined in a similar fashion as

(5.24)

0 0
v = diag <=>. v= diag v, v = v2 , v= 0 v2 0 ) . (5.25)

V3 0 0 V_3

The alignment function in Line 9 of Algorithm 1 is necessary for the interpolation of rotation
pseudo-vectors. This is due to rotations that have an angle of rotation that is near 7F. In that
case, the corresponding rotation tensors may be arbitrarily close to one another, yet
interpolating their corresponding rotation pseudo-vectors yields incorrect results. Consider
the rotation pseudo-vectors a = [7r — c, 0, 0] and b = [6 — 7r, 0, 0], where € < 1. These two
pseudo-vectors have rotation tensors that are very close to one another. Yet directly
interpolating the pseudo-vectors results in c := (a + b) = [0, 0, 0], which is grossly incorrect.

By contrast, if we re-align b by 6 := b — 27r * — I Ibbl I — [7r + 6, 0, 0], we obtain

c := (a + 6) = [7r, 0, 0], which is correct. Likewise, if we re-align a by
:= a — 27r * Hall • 2 

= [—ir — E, 0, 0], we obtain c .= 1(et + b) = [—ir, 0, 0], which is also correct.
A heuristic algorithm to perform this alignment is shown in Algorithm 2.

Finally, the computation of a rotation tensor from a rotation pseudo-vector is performed by
means of Listing 5.4, which uses the algorithm often accredited to Rodrigues [13], as
implemented in Listing 5.5, Listing 5.6, and Listing 5.7. This completes the description of
the mapping algorithm for the deformation gradient for the case of very large deformation.
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Listing 5.2 QofRT: quaternion of rotation tensor.

# This function implements the singularity-free algorithm due to

# Spurrier.

# First the scalar "maxm" is defined as the maximum among the diagonal

# terms and the trace of the rotation tensor.

# i) If maxm is equal to the trace of R, then:

• 2 * qs = sqrt(1 + maxm)

• and
• qv = axial_vec(skew(R)) / (2 * qs)

# ii) If maxm is equal to REj7[j] (no summation), then:

• 2 * qv[j] = sqrt(2 * maxm + 1 - tr(R))
• qs = axial_vec(skew(R))[j] / (2 * qv[j])

• and for i,j,k all different:

• qv[k] = off_diag_vec(symm(R))[i] / (2 * qv[j])

# Since the rotation tensor is a quadratic function of the quaternion,

# at least one square root has to be evaluated to get back the

# quaternion. After that, only divisions are needed and the divisor

# should be bounded as far from zero as possible.

function QofRT(R)

trR = tr(R)
maxm = trR

maxi = 4

q = zeros(4)
for i = 1 : 3

if R[i, i] > maxm

maxm = R[i,

maxi = i

end

end

if maxi == 4

root = sqrt(maxm + 1.0)
factor = 0.5 / root

q[1] = 0.5 * root

q[2] = factor * (R[3, 2] - R[2, 3])

q[3] = factor * (R[1, 3] - R[3, 1])

q[4] = factor * (RE2, 1] - R[1, 2])

elseif maxi == 3

root = sqrt(2.0 * maxm + 1.0 - trR)
factor = 0.5 / root

q[1] = factor * (R[2, 1] - R[1, 2])

q[2] = factor * (R[1, 3] + R[3, 1])

q[3] = factor * (R[2, 3] + R[3, 2])

q[4] = 0.5 * root

elseif maxi == 2

root = sqrt(2.0 * maxm + 1.0 - trR)
factor = 0.5 / root

q[1] = factor * (R[1, 3] - R[3, 1])

q[2] = factor * (R[1, 2] + R[2, 1])

q[3] = 0.5 * root

q[4] = factor * (R[2, 3] + R[3, 2])

elseif maxi == 1

root = sqrt(2.0 * maxm + 1.0 - trR)
factor = 0.5 / root

q[1] = factor * (R[3, 2] - R[2, 3])

q[2] = 0.5 * root

q[3] = factor * (R[1, 2] + R[2, 1])

q[4] = factor * (R[1, 3] + R[3, 1])

end

return q

end
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Listing 5.3 RVofQ: rotation pseudo-vector of quaternion.

# This function maps a quaternion, qq = (qs, qv), to its

# corresponding "principal" rotation pseudo-vector, aa, where

# "principal" signifies that laal <= 7. Both qq and -qq map into the

# same rotation matrix. It is convenient to require that qs >= 0, for

# reasons explained below. The sign inversion is applied to a local

# copy of qq to avoid side effects.

# lqvl = I sin(laal / 2) I
# qs = cos(laal / 2)
• <==>

#

#

laal / 2 = k * 7 (+

laal / 2 = 2 * 1 *

or -) asin(lqvI)

(+ or -) acos(qs)

# • The smallest positive solution is: laal = 2 * acos(qs)

# which satisfies the inequality: 0 <= laal <= 7
# because of the assumption qs >= O. Given laal, aa

# is obtained as:

• aa = (laal / sin(acos(qs))) qv

• = (laal / sqrt(1 - qs-2)) qv

# The procedure described above is prone to numerical errors when qs

# is close to 1, i.e. when laal is close to O. Since this is the most

# common case, special care must be taken. It is observed that the

# cosine function is insensitive to perturbations of its argument in

# the neighborhood of points for which the sine function is conversely

# at its most sensitive. Thus the numerical difficulties are avoided

# by computing laal and aa as:

• laal = 2 * asin(lqvI)
• aa = (laal / lqvI) qv

# whenever qs is close to 1.

function RVofQ(qq)

if qq[1] >= 0
q

end

else

q = -qq
end

qs = q[1]

qv = [q[2] , q[3] , q[4]]

qvnorm = norm(qv)
aanorm = 2.0 * (qvnorm < sqrt(0.5) ? asin(qvnorm) : acos(qs))

coef = qvnorm < sqrt(eps()) ? 2.0 : aanorm / qvnorm

aa = coef * qv

return aa

Listing 5.4 RTofRV: rotation tensor of rotation pseudo-vector.

function RTofRV(w)
q = QofRV(w)
R = RTofQ(q)

return R

end
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Require: n > 2
Require: a E (0,1) 1
1: function ALIGN-RVS(ri, i E [1, n])
2: for i 1, n do
3: si
4: end for
5:
6: for i 2,n do
7: if si si < —a *7r2 then
8: si si — 2 *7r * Ilszll
9: end if
10: s s
11: end for
12: if s > n7r then
13: for i 1,n do
14: si si — 2 *7r *

15: end for
16: end if
17: return si, i E [1,n]
18: end function

s +—

si

i> Number of nodes in this element of source mesh.
I> Tolerance for opposite pseudo-vectors mapping to P.-, 7r rotations.

1> Nodal rotation pseudo-vectors for interpolation.

i> Copy pseudo-vectors to avoid changing originals.

1> Pseudo-vectors are nearly opposite with angle 7r

i> Re-align so that

Algorithm 2 Alignment of rotation pseudo-vectors for interpolation.

Listing 5.5 QofRV: quaternion of rotation pseudo-vector.

# This function maps a rotation pseudo-vector, aa, to a quaternion,

# = (qs, qv), where qv is a vector

# follows:

# qv = sin(laal / 2) * aa / laal
# qs = cos(laal / 2)

function QofRV(aa)

halfnorm = 0.5 * norm(aa)

temp = 0.5 * W(halfnorm)

qq = zeros(4)

qq[2 : 4] = temp * aa

qq[1] = cos(halfnorm)

return qq

end

and qs a scalar, defined as
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Listing 5.6 FaloofQ: rotation tensor of quaternion.

# For qq = (qs, qv), wnere qv is a vector and qs is a scalar, one

# can write:

# R = 2 * qv \otimes qv

+ 2 * qs * check(qv)

+ (2 * qs-2 - 1) * I

function RTofQ(qq)

qs = qq[1]

qv = [qq[2], qq[3], qq[4]]

I = [1 0 0; 0 1 0; 0 0 1]
R = 2.0 * qv * qv' + 2.0 * qs * check(qv) + (2.0 * qs * qs - 1.0) *

return R

end

Listing 5.7 *(a): singularity-free si".

# In the algebra of rotatlons one often comes across functions that

# take undefined (0/0) values at some points. Close to such points

# these functions must be evaluated using their asymptotic

# expansions; otherwise the computer may produce wildly erroneous

# results or a floating point exception. To avoid unreadable code

# everywhere such functions are used, we introduce here functions to

# the same effect.

# • NAME FUNCTION FORM X ASSYMPTOTICS FIRST RADIUS SECOND RADIUS

# • T sin(x)/x 0 1.0(-x-2/6) (6*EPS)-.5 (120*EPS)-.25

# • TXT

function T(x)

y = abs(x)
e2 = sqrt(eps())

e4 = sqrt(e2)
if (y > e4)

return sin(y) / y

elseif (y > e2)

return 1.0 - y * y / 6.0

else

return 1.0

end

end
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Figure 5-6. Relative error 1Ftarget Fsource 1Fsource l of the magnitude of the
deformation gradient for a straight bar deformed into a helix. The error is computed
after mapping the deformation gradient Fsource from a source mesh to a target
mesh, resulting in a target deformation gradient Ftarget . The meshes are designed to
lack common nodes except at the eight corners of the domain, and only the target
mesh is shown in the figure. The left helix shows the resultant error of using linear
interpolation for mapping. The right helix shows the error obtained by using Lie
group interpolation and the techniques advocated herein.
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6. RESULTS

6.1. INTRODUCTION

Prior to illustrating proof-of-concept simulations of in-core mesh adaptivity, the team sought
to establish a relatively strong theoretical basis through verification. We first examined the
kinematics through carefully constructed deformation paths which were complemented by
rigid body translations and rotations. Additional work confirmed the explicit time
integration. The composite tetrahedral element was unit tested for the gradient operator,
projected Jacobian (for integration), deformation gradient, volume-averaged Jacobian (of
deformation), lst Piola-Kirchhoff stress, volume-averaged pressure, residual, and mass
matrix. To be clear, all the element unit tests implemented in the production environment,
SIERRA/SM, were replicated in LGR. We even added a new unit test for calculating the
mass matrix with varying input density. First and foremost, we employ unit tests to speed
the implementation of technology. These nightly tests also provided some assurance that our
efforts to rapidly prototype mesh adaptivity would not impact the theoretical basis of our
research environment.

Because real problems invoke constitutive models of complexity, we also sought to have
common constitutive models for both the research environment and the production
environment. To that end, it is important to emphasize that the J2 model in LGR, fefp, is
identical to the J2 model in SIERRA/SM. This is an essential ingredient for verification of
the solutions obtained in LGR, as any differences in solutions with respect to SIERRA/SM
cannot be attributed to differences in material models. In addition, it is also noteworthy to
mention that the introduction of the fefp plasticity model in LGR was greatly facilitated by
code design. Essentially, the fefp code from SIERRA/SM was ported almost as-is to LGR,
with some very minor differences to account for their respective interfaces to material
models.

Given the compacted time line of the effort and need to both align and illustrate progress
applicable to the production environment, our team elected to compare solutions to relevant
problems of increasing complexity in both SIERRA/SM and LGR. Given very favorable
comparisons without adaption, we concluded that the computational infrastructure in our
research environment to be a suitable baseline upon which to build adaptive processes.
Indeed, we illustrated extremely favorable comparisons for dynamic use cases rooted in both
hyperelasticity and elastoplasticity. Convergence studies in in LGR confirm prior findings in
the production environment. With the composite tetrahedral element, we can resolve large
plastic deformations with accurate pressure distributions.
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These targeted studies provide the requisite segue to in-core mesh adaption. Although we
explored may themes, we converged on a few practical applications that have the potential to
resonate with analysts.

1. Given my computational budget, can I invoke mesh adaptivity to resolve large
deformations under constant element size? What is the best I can do given my current
limitations?

2. I'm currently evaluating a multiplicity of loading environments. Although I have the
ability to resolve localization, uniform refinement is not feasible. Can I employ mesh
adaptivity for local refinement? Through local refinement, can I achieve a 10X decrease
in the number of degrees of freedom?

The following sections illustrate a baseline for solution and the aforementioned practical
themes for adaptivity.

6.2. TORSION OF A HYPERELASTIC BAR

Prior to inelasticity, we sought to confirm the element formulation and the central-difference
explicit time integration. For this particular example, we employ a rectangular bar of length
6 with in-plane dimension 1. An element size of 0.2 placed 5 tetrahedral elements along each
edge. To preserve regularity along the major axis, the bar was first discretized into
hexahedral elements and then split (via CUBIT) into tetrahedral elements. In both code
bases, we employed a decoupled Neohookean model for elasticity with a Young's Modulus of
2.83 GPa and a shear modulus of 0.567 GPa. To emphasize the dynamics of the process, an
initial velocity of sinusoidal character is applied

vi(0) = 100 sin ( 
12
x2) x3

v2(0) = 0

v3(0) = —100 sin ( 
12
7±X2))(1.

(6.1)

Both the research and production codes then integrate the equations of motion as the bars
deform, spin down, stop, and then begin to spin up. Part of the evolutionary process is
illustrated in Figure 6-1. A consistent projection of the effective stress is illustrated in
SIERRA/SM. The wireframe of the LGR is overlaid for comparison. The deformed
discretizations match over the entirety of the simulation. The comparison notes 4,000 time
steps.
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Figure 6-1. Torsion of a hyperelastic bar subjected to a sinusoidal initial velocity
field. Comparison of the effective stress in SIERRA/SM and the wireframe in LGR
for numerous deformed configurations. Both codes took approximately 4,000 time
steps.

6.3. LARGE DEFORMATION PLASTICITY

We revisit the deformation of a circular-slotted, stainless steel bar illustrated in prior work
[35]. Both the stress concentrations and the inherent hardening of 304L stainless steel
provide a useful vehicle for illustrating adaptivity for large deformations. For reference, we
illustrate an initial discretization of the geometry of interest in Figure 6-2. Our initial goal to
to establish a baseline that mirrors prior work. We then seek to compare the research and
production environments for large deformation plasticity. In prior work, we employed a
piecewise-linear hardening model. To accommodate current modeling capabilities, we seek to
employ a common functional form hardening, Voce hardening. Although multiple models
could be explored, we elected to pursue the fefp model in SIERRA/SM for a clean
partitioning of the kinematics, robustness, and hyperelasticity. As previously mentioned, the
model was ported to LGR with few issues. The fit is illustrated in Figure 6-3. Clearly the
new model fit has the same character as prior work. Note that substantial hardening is
evident to equivalent plastic strains (eqps) of 2.0. This is indeed representative of austenitic
stainless steels and promotes a stable localization process for the geometry of interest. We
employed a Young's modulus and Poisson's ratio of 200 GPa and 0.249, respectively. For
Voce hardening, the hardening modulus was 1.23 GPa with an exponential coefficient of 0.55.
Having common material models and parameters in both SIERRA/SM and LGR,
simulations were performed for the same mesh discretization. Although we can easily
discretize the body to have mid-edge nodes be placed on curved boundaries, we elected to
constrain the mid-edge nodes to the midpoint. Presently, LGR constructs tet10
configurations from tet4 configurations. A consistent comparison requires SIERRA/SM to
employ the same tet4-derived discretization. A snapshot at large deformations is illustrated
in Figure 6-4. In this case, the equivalent plastic strain has been volume averaged over each
element in SIERRA/SM. The discontinuities evident in the heterogeneous fields are mirrored
by the overlaid wireframe from LGR. We note this excellent agreement is captured at a
common time approximately 230,000 steps into the simulation. Through this work and prior
studies, we believe that the mechanics operable is viable and provides a baseline for studies
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Figure 6-2. Tensile geometry having stresses concentrations subjected to far-field
tension. The large deformation of stainless steel alloys motivates mesh adaptivity.

l1.2 e9

1.0

0.8

o_

• 0.6

0.4

0.2

0.0
0 0

/

— MLEP

— Voce

0.5 1.0

eqps

1.5 2 0

Figure 6-3. In an effort to align current efforts with past work, we parameterized
Voce hardening parameters to sufficiently represent a piecewise-linear basis. Signif-
icant hardening a large equivalent plastic strains (eqps) promotes stability in the
localization process.

in adaptivity.

For additional completeness, we pursued a mesh refinement study to illustrate convergence in
the equivalent plastic strain and the pressure field at finite plastic strains in L GR. Figures
illustrating convergence are shown in Figure 6-5 and Figure 6-6. For both figures, we
illustrate the model system having symmetry across the width (x) and through the thickness
(z). Because one cannot currently volume-average quantities at the element level in LGR, we
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elect to display field quantities at the first integration point (0). In the case of pressure, all
integration points yield the same pressure (through a volume-averaged Jacobian), so one can
view Figure 6-6 as a volume average. The maximum plastic strains at times of 25 ms, 50 ms,
and 75 ms were 0.48, 0.85, and 1.5, respectively. As noted Figure 6-5, the deformation is
localizing to the surface of an evolving notch. The pressure field is less localized given the
asymptotic nature of the hardening noted in Figure 6-3. Even integration point quantities
are quite smooth with increasing mesh refinement. To be clear, the pressure in LGR is
defined to be —tr[a]/3. The color scale is reversed to help the reader. Although this study is
not exactly spellbinding, it does effectively illustrate that the composite tetrahedral element
does not lock under severe plastic deformation. Specifically, those conclusions can be drawn
from LGR for bodies subjected to explicit transient dynamics. We now embark on a series
of studies to examine the promise of local adaptivity.

Figure 6-4. Comparison of the equivalent plastic strain in SIERRA/SM and the
wireframe in LGR for large deformations. Both codes took approximately 4000 time
steps.

6.4. RESOURCE DRIVEN ADAPTION

The first thought experiment revolves around finite resources and large deformations. In
system-level models, we often seek to study phenomena for multiple environments. One's
ability to resolve phenomena via mesh size often stems from the explicit time step. As
elements deform in abnormal environments, the time step decreases. In order to keep the
simulation viable, analysts will "kilr based on time step. Elements with explicit time steps
below a threshold are removed from the simulation. If the goal is to resolve localization, we
must accept that traditional workflows remove elements in the region of localization. What
if, however, we could adaptively remesh the body to preserve the time step? What if, under
large deformations, the time step remained essentially unchanged? We could then allocate
resources and determine the best solution achievable with a particular level of resolution. We
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h = 0.50 mm
lime: 0,025

Time: 005

h = 0.25 mm h = 0.13 mm

Figure 6-5. Convergence in the plastic strain field with decreasing element size for
simulated times of 25 ms, 50 ms, and 75 ms. Plastic strains localize to the lower
notch and evolve some semblance of a plastic hinge.

believe this idea to be immensely practical given the available resources for system
analysts.

The idealization for this concept is noted in Figure 6-7. We have employed this geometry in
prior work on remeshing as it yields a nonintuitive load path with the evolution of the
deformation. In contrast to a circular bar that preserves symmetry in the necking process,
the "puckerine of a rectangular bar is quite interesting and less intuitive. The constitutive
parameters for the fefp model mirror Section 6.3. Without adaptivity, the solution is
illustrated in Figure 6-8. We elect to illustrate the model system (with symmetry) to access
the centerline of the bar. The evolution of the deformation proceeds from (a) to (h). Because
of the tremendous hardening in the constitutive model, the cross-section remains nearly a
square until the latter part of the deformation. Necking initiates on the perturbed, lower
cross-section over the first few elements along the axis of the deformation. A classic
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Tlme: 0.025

Time: 0.050

Tlme: 0.075

Figure 6-6. The corresponding pressure field under mesh refinement for simulated
times of 25 ms, 50 ms, and 75 ms. We note that the displayed quantity is constant
within each element and converges with mesh refinement. We can conclude from these
findings that that composite tetrahedral element does not suffer from volumetric
locking.

tension-compression couple, characteristic of the necking process, forms. We remind the
reader of the prior definition of pressure p = —tr[o]/3 with blue indicating hydrostatic
tension.

Albeit interesting, localization is essentially relegated to an element band as the critical time
step decreases from 6e — 7 s to 6e — 17. The localization process reduces the time step by ten
orders of magnitude. For all intents and purposes, the time step becomes zero. Reflecting on
system-level simulations, the only mechanisms to maintain some fraction of the initial time
step would be to exponentially add mass or remove bands of elements from the simulation.

In contrast, we can employ mesh adaptivity to both resolve the evolving deformation process
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Figure 6-7. Cube with three planes of symmetry subjected to uniaxial tension. The
unit cube contains a small geometric perturbation of 0.001 to manage the plane of
localization.

and maintain the time step. The evolution the deformation is illustrated in Figure 6-9.
Again, we elect to illustrate the model system to view the centerline of the rectangular bar.
We focus on the latter part of the deformation in snapshots (a) - (h). Even in regions of the
simulation in which the deformation is homogeneous, the mesh is continuously adapted
through recourse to Section 5.3 which details the mean ratio element quality measure with a
constant size field. The resulting time step is relatively constant and only decreases by
roughly a factor of two during the entirety of the simulation from 4e — 7 s to 1.8e — 7 s. This
is quite remarkable given the plastic strains exceed 300%. In fact, kinematic fields are
typically plotted to illustrate the character of the localization. Instead, we again focus on the
pressure field in Figure 6-9. The field is quite smooth and as the deformation becomes lobed
and a "butterfly" cross-section emerges. We note that a finer mesh size would better resolve
the character of the curvature. That said, the purpose of this study was to determine the
deformation path given finite resources and the evolved cross-section is promising given the
small reduction in the time step.

Figure 6-10 attempts to illustrate both the simulation time and the run time for both a fixed
mesh and adaptivity. For the fixed mesh, the time step craters and the run time
exponentially increases for small increments in the simulation time. Consequently, we
normalize simulation time by the asymptote observed in the fixed mesh. The run time can
then be normalized by the intersection of the asymptote in the fixed simulation with the
simulation employing adaptivity. In this sense, Figure 6-10 reveals the cost of obtaining a
particular simulation time. As noted in the in Figure 6-10, adaptivity is slightly more
expensive in the initial part of the simulation. However, after ,--, 0.5 of normalized simulation
time, mesh adaptivity is more efficient. In fact, looking at the entirety of the normalized
simulation time, we can conclude that mesh adaptivity ensures that run time (read cost) is
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Figure 6-8. Cube geometry subjected to uniaxial tension for a single, initial discretiza-
tion. Although the square cross-section does indeed neck under large deformations,
the time step rapidly decreases ten orders of magnitude from 6e — 7 s to 6e — 17 s.

roughly proportional to the simulation time. Given run time resources, we can achieve
proportional simulation times with prescribed levels of discretization to resolve complex
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Figure 6-9. Cube geometry subjected to uniaxial tension. Mesh adaptivity triggered
by mean ratio element quality measure. Size field is kept constant. Time step
decreases by roughly a factor of two from 4e — 7 s to 1.8 — e7 s.

phenomena.
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Figure 6-10. Comparing a fixed mesh with mesh adaptivity for the necking of
a rectangular bar. The simulation time is normalized by the asymptote in the
fixed simulation. The run time is normalized by roughly the intersection of the
asymptote of the fixed simulation with the adaptive simulation. Adaptivity ensures
that simulation time is roughly proportional to the run time.

6.5. ADAPTIVE REFINEMENT TO CAPTURE
LOCALIZATION

We now revisit the necking of the notched bar illustrated for a set of fixed discretizations in
Section 6.3. For this thought experiment, we seek to resolve the localization of the
deformation. Again, we attempt to align this idealized example with a system-level model.
Let us hypothesize that we have a large system-level model with tens of millions of degrees of
freedom. Although we can admit rather small mesh sizes, we cannot accept uniform
refinement. In three dimensions, we quickly move from the attainable to the unattainable. In
addition, because the system-level model is exposed to multiple scenarios under varying
environments, the region of localization will move in the body. A practical path forward is to
invoke adaptivity and resolve the localization process in-core and under deformation.

The size field we employed for this study was outlined in Section 5.4.2. The initial element
size, hmax, is 0.25 mm. The minimum element size hmin, is 0.10 mm. The size field decreases
linearly with increasing plastic strain until cp,max = 1.0. We continue to adapt the mesh for
Ep > 1.0 with a constant size field. As before, adaptivity is triggered when the mean ratio
element quality measure nonin < 0.3. We hypothesize that the equivalent plastic strain may
be helpful for adaptivity. The plastic strain represents a monotonically increasing state
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variable that is not susceptible to oscillatory behavior (read stress waves) in dynamic
environments. Our hypothesis is confirmed in Figure 6-11. Each time the element quality is
degraded beyond our threshold, we adapt the discretization with a hetrogeneous size field
driven by the localization process. That adaption is evident in the history of the deformation.
Not only were we able to capture the in-plane plastic hinge but also the through-thickness
"puckerine in the root of the notch.

Because mesh modifications are local and confined to the region of localization, the number
of additional nodes is minimal. The initial discretization contained 211,906 nodes at a
characteristic element size of 0.025 mm. The final configuration noted in Figure 6-11
contains 299,687 nodes with an hmin of 0.010 mm. We contrast the final, adaptive
discretization with uniform refinement for the region of interest with an element size of 0.010
mm. Uniform refinement yielded 2,118,990 nodes. Thus, uniform refinement had a 7X
increase in the number of nodes and a rs-, 21X increase in the number of degrees of freedom
(DOF). This concept is displayed graphically in Figure 6-12. Mesh adaptivity has the
potential to yield solutions that are more robust, more accurate, and more efficient.
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Figure 6-11. To capture both in-plane and through-thickness necking, adaptivity is
employed through a size field governed by an internal state variable, the equivalent
plastic strain. Not only does adaptivity capture the plastic hinge, the new approach
also resolves surface "puckerine in the root of the notch.
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Figure 6-12. If we employ mesh adaptivity in lieu of uniform refinement, we can
not only continue to adapt with ongoing resolution beyond Ep,max but also benefit
from a 21X reduction in the number of degrees of freedom.
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7. FUTURE WORK AND
CONCLUSIONS

This effort stemmed from the Director's Challenge. We do believe that in-core, physics
specific adaptivity is the key to having a single model adapt to multiple requirements. We
also believe that the cases presented in Section 6 are quite applicable to system-level
modeling approaches. System-level analysts will always have limited resources. Our goal is
to embrace those limitations with adaptivity. Reflecting on FY19, we offer what the 150K
investment purchased

1.

2.

A broad, multidisciplinary team

Potentially unique, adaptive capability in the entire solid mechanics community

3. Composite tetrahedral element suitable for large plastic deformations

4. In-core adaption of higher-order tet with OMEGA_H and mapping of internal variables

5. Fundamental advances in adaptvity needed for the systematic modeling of full
engineering models

6. Studies which illustrate gaps in mapping and extensions in OMEGA_H

7. A baseline framework for adaption to improve indicators and develop error estimators.

As previously stated, we hypothesized a research opportunity for mesh adaption to achieve a
10X reduction in the number of degrees of freedom for metallic bodies undergoing finite,
elastoplastic deformations in dynamic environments. We proved that hypothesis and
successfully demonstrated a 21X reduction with increased robustness and resolution.

Future work seeks to not only improve mapping and extension for higher-order tetrahedral
elements in OMEGA_H but also to move beyond isotropic error indicators to anisotropic error
indicators to drive anisotropic adaption. We hypothesize that even greater reductions in the
degrees of freedom and a path forward to realizing our vision.
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