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Anthropogenic Climate Change
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Shift from Fossil to Renewable Energy
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Storage as Hydrogen

• High gravimetric energy density

• 1 kg H2 equivalent to 3 kg (1 gallon) gasoline

• Very low volumetric energy density

• >3000 gallons H2 (STP) equivalent to 1 gallon gasoline
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40 kg H2 m-3 at 700 bar

Liquefy Solidify

70 kg H2 m-3 at 21 K Up to Till, wit-T3 at RT
in metal hydrides
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Vehicular Hydrogen Storage Goals
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•DOE 2020 System Targets

•5.5 wt% H2

•40 g H2/ L

•85° C max delivery temp
(6,1-1z20-30 kJ/mol H2)

•Reversible (1500 cycles)

• 1.5 kg H2 / min fill rate

Enthalpy. .\1-1 kJ mol-1 H 2

Need "Goldilocks" thermochemical properties and fast kinetics!

•
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04MARC
Hydrogen Materials Advanced Research Consortium

https://hymarc.org/
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Sandia
National
Laboratories

1! Lawrence Livermore
National Laboratory
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BERKELEY LAB
Lawreme Berkeley National Laboratory

Three Bay Area DOE National Laboratories serve as core team

Goals
"Foundational understanding, synthetic
protocols, new characterization tools, and

validated computational models" for
solid-phase hydrogen storage materials to
meet industry requirements for vehicles

Bulk Hydrides
Nanostructured
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Sodium Aluminum Hydride

< 200 °C 3 NaAIH4 Na3AIH6 + 2 Al + 3 H2
Tia3

-250 °C Na3AIH6 —> 3 NaH + Al + 3/2 H2
>400 °C 3 NaH —> 3 Na + 3/2 H2

Effective capacity of 5.6 wt.% H

H
heat

2
H

H2
2 H2

NaH+Al
+(Ti)

What form of Ti is present and what is its role in
(de)hydrogenation at the surface?

J. Alloys Compd. 1997, 253-254, 1-9.

Chem. Rev. 2012, 112, 2164-2178.
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Ti-Doped NaAIH4-Prior Predictions

H2

O 0 0.'0 0 0 0 0 0
o 0 o HO o0oOo

O 0 o 0 0 0 oHo 0
O 0 0 0 0 0 0 0 0

H2 H2

11 

...

\..../ N a <-----,

C)
H-rich

Metallic Ti on surface acts as
H2 pump or spillover site

Ti alloys with Al and encourages
Na vacancies while bringing

H atoms together

Chem. Rev. 2012, 112, 2164-2178.



Sample Preparation

■ Recrystallized NaAIH4 from diethyl ether

■ Ball-milled in 0.4, 2, and 10 mol% TiCI3

■ Cycled three times by desorbing at 200 °C and
rehydrogenating at 150 °C and 100 bar H2



Major Characterization Techniques

X-ray Photoelectron Spectroscopy
(XPS)

Ambient Pressure
X-ray Photoelectron

Spectroscopy
(AP-XPS)
at BL11.0.2

Others: X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD)

Scanning Transmission
X-ray Microscopy

(STXM)
at BL5.3.2.2

Low Energy
Ion Scattering

(LEIS)
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Surface Sensitivity of Probes:
Information depth depends on particle range
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TFY: total fluorescence yield

TEY: total electron yield

1 1 *L.I.-AMARC



Recrystallized NaAIH4
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XAS shows high purity, but XPS shows significant oxidation present before milling
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Titanium Localization

10 mol%TiCI3-doped NaAIH4
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Ti not on surface until H2 is desorbed STXM shows Ti as predominantly
metallic, not as TiCI3



In Situ Low Energy Ion Scattering

scattered ions
recoiled H

•
ion source

analyzer

Low energy ion scattering (LEIS):
Determine surface composition, H surface conc.

(First monolayer only, <1 nm)
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Detection not only of heavy atoms but also of
surface hydrogen atoms through direct recoil
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• Surface enrichment with Na after brief heating
• H starts migration to surface at -80 °C
• Still no Ti detected



Operando AP-XPS: Monitor Chemical Changes

to pump to pump

1 Pi << Po P2<< P1Po

up to
1 Torr

sample

Ti-doped NaAIH4 mounted
in clean transfer case

Electron
spectrometer

tunable X-rays

Tunable X-rays yield varying
penetration depths (1-5 nm)

0 ADVANCED LIGHT SOURCE

Photoelectron energies reveal
elements and chemical states

Differentially pumped
chambers allow non-
UHV conditions, such
as sample out-gassing
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Evolution of Desorbing Hydride
In

te
ns

it
y 
(a
.u
.)
 

0.7

0.6

0.5

0.4

0.3

0.2

0.1

H2 Mass Spectrometry
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Survey spectra show substantial oxygen,
even after recrystallization and clean transfer
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Titanium Over Time
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Ti appears at surface only after
extended heating



Initial Al and 0 Species
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Aluminum Speciation
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Oxygen Becomes H-Enriched
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Molecular Dynamics (MD) Simulations

Na

C Al

0 0
H

c

b

Add O atoms to
NaAIH4 crystal

Relax structure
with VASP

c

Al-[01-1]-H
Al-OH
A1-0-Al

MD perturbation
at 500 K

Ab initio MD shows stability and dynamicity
of O-containing species on hydride surface
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Proposed Mechanism of Desorption
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Desorption Activation Energies

Pristine

Oxidized
(Higher barrier)

Oxidized
(Lower barrier)
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Reaction Coordinate

Nudged Elastic Band (NEB) method: desorption easier from
partially oxidized surface with both hydridic and protic H
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Ti-Doped NaAIH4 Surface Chemistry

• Ti absent from surface
until after desorption

• Surface 0 changes
substantially in process

• Lower barriers to H2
release with O on surface

• Ti activity must be
subsurface: H transport?

• Rehydrogenation roles at
surface unknown and
hard to probe
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Applicability to Other Hydrides?

■ Surface oxidation likely widespread occurrence in air- and
moisture-sensitive hydrides

■ NaAIH4 not very high capacity (5.6 wt.% H usable)

■ Magnesium borohydride (Mg(BH4)2) has capacity of 14.9 wt.%



Mg(I3H4)2

Mg(B3H8)2

1
MgB10H10

MgB2

MgB12H12

Very complex boron cluster chemistry

High temperature (- 600 °C) needed for complete desorption

Reversibility only at high H2 pressures (> 500 bar)
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ALS AP-XPS General User Proposal

• Additional 100 h of instrument time to study hydrides in situ

• Collected >1500 spectra on Mg(BH4)2 desorbed up to 600° C

• Included Mg(BH4)2 samples after exposures to 02, H20, and air

• Data analysis still ongoing

AP-XPS at BL11.0.2

Mg(BH4)2 on Au foil at 600 °C
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Preliminary AP-XPS Results
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Binding Energy (eV)

B-O species shift to more B-OH
character above desorption

temperature (-200 °C)
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200°C

200 198 196 194 192 190 188 186 184

Binding Energy (eV)

B starts oxidized; numerous
new species appear after

heating

Mg 2p

Initial

58 56 54 52 50 48 46

Binding Energy (eV)

Mg segregates to the surface at
high temperatures in different

chemical environments
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Conclusions

• Highly dynamic
dehydrogenation of
NaAIH4 was observed

• Oxidic species play
substantial role in
desorption mechanism

• Titanium not near
surface during H2 loss

• Cleanliness difficult to
achieve

• Combination of theory
and in situ experiments
enable comprehension
of behaviors during
dehydrogenation

• Other hydrides (e.g.,
Mg(BH4)2) currently
under investigation
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Sandia National Laboratories is a multimission laboratory managed and operated by National
Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell
International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration
under contract DE-NA-0003525.

This presentation describes objective technical results and analysis. Any subjective views or
opinions that might be expressed in the paper do not necessarily represent the views of the U.S.
Department of Energy or the United States Government.


