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3 Motivation -2
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• Brittle fracture of silicates affect the stability and reliability of amorphous systems
making prediction of the mechanical response difficult

š -4
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• Develop fundamental understanding of the chemical-mechanical mechanisms that
"6

control subcritical cracks in silicates -7

• Link atomic-scale insight to macroscale observables and directly address how 3

chemical environment alter mechanical behavior
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What are the chemical and mechanical aspects of fracture?

Why atomistic simulations?

• Cracks start at the atomistic scale by the

breaking of bonds at the solid-fluid interface.

• Crack tip formation & crack propagation is

influenced by fluid and surface chemistry
• Isolation of chemical and mechanical effects

on fracture
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4 I Separation of Chemical and Mechanical Impact on Fracture

• ReaxFF inter-atomic potential used for all simulations (Fogarty et al., J. Chem. 1-)s., 2010; Yeon and van Duin. J. 1-).s. Chem. C., 2015)

• Created 12 configurations: 3 systems 14 x 14 x 2.8 nm3 (38,400 atoms) annealed at 4000K for 100 ps, cooled to 300K at
5K/ps, alternating NPT/energy min simulations to achieve density of 2.187 g/cm3. Four (4) orientations relative to crack for

each system.

•Investigated three different loading conditions on each configuration to isolate chemical and mechanical effects on fracture

• Protocol: Apply initial loading (0.15 MPa-qm) and relax fracture tip

• Mechanical: increase loading (stepwise), relax for 5ps at 300K, repeat

• Chemical: initial loading held fixed, add water molecules at low density, NVT for 500ps at 300K

• Chemical-Mechanical: increase loading (stepwise), add in water molecules, relax for 5ps at 300K, repeat

• Requires GCMC (Grand canonical Monte Carlo) method of inserting water into the fracture to maintain surface wetting

Mechanical
(mechanical loading only)

Chemical-Mechanical Chemical
(aqueous enviorment and mechanical loading) (aqueous enviorment only)
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5 Example Simulations

Mechanical
(mechanical loading only)

Chemical
(aqueous environment)

NACCM2018, NEWYORK, NY

Chemical-Mechanical
(aqueous environment and mechanical loading) 1



6 Fracture Depth

■ Fracture depth identifies aggregate effect of aqueous environment
on fracture

■ Chemical-mechanical conditions: longer fracture propagation, larger

number of fracture events and slightly shorter average fracture length

■ Chemical effects become more prominent as the fracture propagates

■ May be altering the conditions for fracture (bond stretching, stress
states etc.)

■ Chemical impact is more than additive on fracture growth

Crack depth for silica systems in mechanical,
chemical, and chemical-mechanical conditions.
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Average Fracture Length

(nm)
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Mechanical 4.9210.76 11.5012.06 0.3510.08 0.9010.23 9.8511.51

Chemical 0.2310.07 0.5010.50 0.1610.08 0.1010.08 0.4710.16

C hem ical-M echanical 5.6910.53 14.8312.41 0.3210.06 0.9710.38 11.3811.07



7 Fracture Toughness

• Identified from variation in the potential energy of the silica during loading

• Earlier fracture of silica in aqueous conditions

• No fracture in chemical-only systems (dissolution)

• Kic is lower than in experimental systems (0.78 MPaAini) due to resolution and temperature effects
Time (ps)

Mechanical: 0.339±0.037 MPaAim

Chemical-Mechanical: 0.246±0.074 MPaAiM

Reduction in Kic: —26.5%
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8 Energy Dissipation

• G is related to both the surface energy and dissipative energy
(unrecoverable inelastic character around the fracture tip)

• Gdiss is calculated from energy and surface area of the fracture:

• Surface energy (y) = related to hydroxylation of the surface

G = Gdiss + 2Ys

Gdiss

• Wet fracture results in a lower Kic value and lower Gic, due to lower

dissipation energy

• Larger G cliss relates to the strain distribution surrounding the
fracture tip

Mechanical

Chemical-Mechanical

KIC(MPafm) GIC (J/m 2) Gdiss(J/m 2) Si-OH (#/nm2)

0.339±0.037 8.90 6.70 0 . 0

0.246±0.074 4.95 4.15 3.1

NACCM2018, NEWYORK, NY
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9 Stress Distribution

• Stresses from the atomistic simulations were coarse grained and averaged over the twelve replicates to describe the
stress states surrounding the fracture tip

Stress fields for

silica system s in

mechanical and

chemical-

mechanical

(Kl=0.2 MPa\lm)

conditions, and

chemical-only

condition

(K1=0.15 M Pa-qm).

Mechanical

(mechanical loading only)
Chemical-Mechanical

(aqueous environment and mechanical loading)
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10 Aqueous Solutions with Chemical Complexity — Preliminary Results

•NaC1 is added at the entrance of the slit
crack at each step — results in a concentration

of —1M over the course of the simulation

.All other computational details remain
constant

EVideo: pink/purple — silica, blue — water,

yellow — NaC1

ACCM2018, INEWYCW, IslY



11 Addition of NaCl/NaOH affects Crack Tip Morphology

• Changes in the fracture tip morphology with water composition

• Addition of NaC1 causes an increased number of dissolution events (formation of QO)

MCM 2018, NEW YORK, NY



Addition of NaCl/NaOH affects Connectivity and Dissolution Events

• Water/NaCl/NaOH solutions show the same crack depth with vacuum conditions being shorter

• Connectivity within wet/vacuum systems overlap until K = 0.45 MPaNim then diverge; NaG/NaOH
systems are separate (but overlap heavily)

•Addition of NaC1 causes an increased number of dissolution events (formation of Q0)

• Q1 /QO has NaC1 as the strongest effect on connectivity — causing "dissolution" events

• Connectivity for NaC1 /Na01-1- is similar, possibility of different types of mechanisms?
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1 3 Conclusions

Atomistic simulations of silica fracture in aqueous environments were used to isolate the chernical and
mechanical effects of fracture
• Chemical-mechanical systems exhibited increased fracture growth due to higher number of fracture events (and

possibly lower threshold for fracture)

• Fracture toughness was decreased by —25% between vacuum and water conditions, consistent with reported

experimental data

• Gic (strain energy release rate) was decreased by —50% in chemical-mechanical systems due to decreased

dissipation energy and surface energy

• Stress fields indicate relaxation of the process zone surrounding the fracture in aqueous conditions, suggesting that

the strain effects are even more localized at the fracture tip

• Thresholds for fracture may be decreased in the presence of water, even on extremely local distance and time
scales, and chemical effects are not additive
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