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2 | Motivation

Why is the aerodynamic breakup of liquid metal important?
Simulations suggest that liquid metal (high density ratio) breakup has more intensive fragmentation!
= Experimental investigations of liquid metal breakup in cross flows are limited?

= Breakup morphology as a function of Weber number and secondary droplet formation are important
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Liquid Metal Breakup

Breakup morphology and secondary droplet formation are important
parameters which scale with non-dimensional numbers:
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Column breakup transitions occur at slightly lower Weber numbers than
spheres due to the capillary instability
Liquid metals have unique characteristics such as high density, high surface
tension, fast surface oxide formation
Galinstan (68.5% gallium, 21.5% indium and 10% tin) is a non-toxic
eutectic liquid metal at room temperature that forms a surface oxide
= Melting temperature of -19 degrees Celstus
= Forms passivating, elastic oxide layers (Ga203/Ga20, surface yield
stress of EGaln is ~ 0.5 N/m) preventing the formation of perfectly
spherical droplets

Density ~ 6440 kg/m3  ~ 1000 kg/m3
Surface Tension ~0.718 N/m  ~ 0.073 N/m
Bulk Viscosity ~ 2.4 mPa-s ~ 0.89 mPa-s
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Experimental Setup

SNL Multiphase Shock-Tube
Driver Section Fast Action Valve Driven Section

Stream wise velocity at the center of the shock-tube
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76 X76 mm cross section and 5.2 m long

Generates shock waves using pressurized nitrogen and a fast action valve
Driven gas is air at 300K and 84.1 kPa (Albuquerque, NM)

Provides a uniform step change in velocity (Mach 1 to 1.5, u, = 30 to 177 m/s)

Test times of 5 to 10 ms determined by the reflected shock té'_gime
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5 I Experimental Setup

SNL Multiphase Shock-Tube
Driver Section Fast Action Valve Driven Section Test Section

= A precision fluid dispensing system formed laminar jets \
using low liquid volumes (Nordson EFD Performus) o \
Pressure \
= Driven with pressurized air from 1-8 psig Sontess %
. Fluid
* Column diameters d. = 0.5 to 1.36 mm . \
,’ Delivery \
= A liquid catch is used to prevent gas leakage - Driver Section &

_Fast Action Valve

/7

= Stainless steel test sections, Acrylic windows, and tape
were used to prevent Galinstan from damaging the walls _ ; -
and wetting to the walls Driven ! Liquid

Section

Column

Test Section

Side View - Fluid Delivery System
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Experimental Setup

SNL Multipha
Driver Section Fast Action Valve

se Shock-Tube

Driven Section

Used an LED backlight and diffuser
Two Photron SA-Z cameras (100 kHz)

Perpendicular and oblique cameras was used to help

classifty morphology

Column y-velocities were estimated (<3 m/s) and were
found to be much less than the convective velocities used

Technique is useful for qualitative assessment
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7 1 Backlit Results
Bag Breakup

Multimode Breakup
Galinstan, We = 26.5

Sheet-Thinning Breakup
Galinstan, We = 82.13

Water, We = 6.6

Water, We = 29.5 Water, e = 90.0

d=0.84 mm d=0.84 mm

d=0.84 mm
Galinstan Conditions: Ma = 1.41, u = 204.7 m/s, p, = 1.67 kg/m3 Galinstan Conditions: Ma = 1.24, u = 127.8 m/s, p, = 1.39 kg/m3 Galinstan Conditions: Ma = 1.12, u = 66.3 m/s, p, = 1.18 kg/m?
Water Conditions: Ma = 1.15, u = 80.0 m/s, p, = 1.22 kg/m? Water Conditions: Ma = 1.09, u = 47.9 m/s, p, = 1.12 kg/m? Water Conditions: Ma = 1.04, u = 23.5 m/s, p, = 1.04 kg/m3

= Galinstan bags break eatlier and are smaller (lower deformation ratio and thicker bag walls than water)
= Galinstan bag breakup tends to have sharp edges and droplets are non-spherical, (this may be due to the oxide skin)
= Secondary droplets of Galinstan travel faster due to the higher convective velocity but can be non-dimensionalized
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Breakup Morphology

Breakup Morphology and Breakup Time

Sheet Thinning
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Classitying breakup morphology is subject to uncertainties, multiple modes can occur along the column
Galinstan experiments line up well with water experiments in terms of breakup mode
Galinstan tends to initiate breakup earlier than water, breakup end also appears to occur slightly earlier

In order to get statistics for non-spherical droplets, higher magnifications with depth-of-field is needed

I D e



9 I Experimental Setup s F

SNL Multiphase Shock-Tube I
Driver Section Fast Action Valve Driven Section Test Section
N = -
= Time-dependent, non-spherical particle sizing is difficult to //’/ 7
conduct with conventional techniques - Diiver.Stetion &
. - - - Fast Action Valve End Wall 2>
DIH compares interference of dl'ffr’flcted apd un—d}ffracted _- S -
light!?, providing accurate, quantitative projected size and 3D ; X R =
position information Driven | Liquid ‘l . o BN, i | Shock
Section {Column 0° % ¢ f
1 : %
expanded to fill the FOV —— e

w\ .
X Test Section
" Made measurements as a function of downstream position x.

= 2X camera (640 X280 pixels at 100 kHz) was used to help
track droplets

o =

2X Magnification
High Speed Camera

= 6% (1024 X1024 pixels at 20 kHz) camera was used to

: L : 6X Magnification
determine extend particle size dynamic range

High Speed Camera

= Used Coherent Verdi 532 nm laser, spatially filtered and : 2 4 . i | Wave l

" D. Gabor, 1948 Top View - Digital In-line Holography
2 U. Schnars and W. Juptner, 1994



10 | Digital In-line Holography

= DIH is ideal for imaging and quantifying particles that may be out-of-focus at high magnifications
= Collimated light propagates as described by the diffraction equation

E(x,y;2) = [h(z,y)E; (2,y)] @ (v, y; 2)

b —hologram, E * is the planar reference wave, g — diffraction kernel, Different z-slices examined using amplitude A = | E(x,),%) |

In DIH, particle z-locations and diameters identified with minimum amplitude maximum Tenengrad method
Tracking conducted across multiple frames using nearest neighbor and particle size cost function

Processing was conducted on the SNL ODIN high capacity GPU accelerated CPU cluster
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X=0mm X =20to 25 mm X =50to 51 mm
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Three tests conducted at each position for each fluid, tracked 1200 to 5700 particles for each condition
Breakup morphologies are similar

Galinstan breaks up earlier in non-dimensional time

Galinstan droplet shapes are jagged due to fast surface oxide formation

Smaller particles are generated from bag breakup and larger particles are generated from column breakup




12 1 Detailed Column Motion
Column Motion
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13 I Column Drag
| e Assume constant acceleration due to drag
: 3 dAu A
i1 &~ 3l gy
" : A/M = 4/(mpd.) Au = Uy — Uy

Integrate using initial condition Au = ugatt =0
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Galinstan drag is
slightly higher than
water due to higher
gas velocity.

Approaching the sheet-
thinning regime, drag
increases significantly.




14 | Droplet Velocity and Diameter

Droplet Velocity Droplet Diameter

1 - 0.4
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Two downstream positions are compared (25 and 50 mm)

Velocity non-dimensionalized with gas velocity collapses each downstream position and fluid type
onto a single curve

Droplet diameters increase with non-dimensional time

Smaller droplets appear to be generated earlier and travel at a higher velocity



15 I Droplet Size-Velocity Correlation

Size vs. Velocity Non-Dimensionalized Size vs. Velocity
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= A size-velocity correlation collapses into two curves, one for water and one for Galinstan

= By non-dimensionalizing using the density ratio, both curves collapse into a single curve

= A more detailed derivation utilizing constant acceleration due to drag (also containing the density
ratio) also allows both fluids to collapse onto a single curve
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16 | Size Probability Distributions

Cumulative Volume Distributions . 1o-3 Yolume Probability Distribution
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* Number probability distributions indicate water produces more smaller droplets, a secondary peak
at 50 um is noticeable

* Volume probability distributions show that water and Galinstan droplets are more similar as a
function of downstream position

* The cumulative volume probability distribution shows that water and Galinstan are similar for many
Weber numbers

= Lines indicate the root-normal distribution, bag breakup appears to deviate the most from this
distribution
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DIH can also provide information on droplet shape

Eccentricity ¢ = 71-/?/4°, here 0 = petfect circle and 1 = thin line
Small water droplets are more spherical, water shape becomes more spherical further downstream
Galinstan droplets are more non-spherical, shape is frozen and does not change further downstream
Higher Weber numbers show more non-spherical droplets
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Conclusion

Backlit imaging provides qualitative information

DIH provides quantitative details on column motion, 3D
position, droplet size, and droplet velocity

Galinstan has a higher density, higher surface tension, and fast
passtvating surface oxide formation

Galinstan breaks up eatlier in non-dimensional time

Galinstan shows jagged breakup shapes and non-spherical
droplets due to fast oxide formation

Galinstan and water have many similar behaviors when non-
dimensionalized (acceleration, droplet velocity, droplet size
distributions, ...)

Additional work is needed to :
® Understand fast-oxide formation rates

= Obtain more streamwise DIH data (since FOV is small) so
that information can be plotted as a function of non-
dimensional time rather than downstream position.

s,
S’
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22 I Breakup Dynamics

Liquid
Column
Flow

Initial Column  Breakup Secondary
Cross Section  Morphology Droplets
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23 | Liquid Metal Properties

= Use a non-toxic, room-temperature liquid metal to avoid heat
transfer and combustion effects

= Most liguid metals form oxide layers quickly

= @Galinstan eutectic alloy
(68.5% gallium, 21.5% indium and 10% tin)

= Melting temperature of -19 degrees Celsius
= Alloys with aluminum and many other metals

= Forms passivating?, elastic oxide layers (Ga,0,/Ga,0, surface
yield stress of EGaln is ~ 0.5 N/m) which prevent the formation
of perfectly spherical droplets

Density ~ 6440 kg/m?3 1000 kg/m3
Surface Tension ~0.718 N/m 0.073 N/m
Bulk Viscosity ~ 2.4 mPa-s 0.89 mPa-s

M. D. Dickey et al. 2008
C. Karcher et al. 2003, surface tension values may be influenced by the oxide layer
J. N. Koster 1999, viscosity not verified as a function of shear rate

Top View of Liquid Galinstan

Copyright © GIPhotoStock

Side View of Galinstan Droplets

D. Kim et al. 2012

D. Kim et al. 2015

Reproduced for educational purposes only under fair use
o
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24 I 2D Simulations

= Time-resolved 2D simulation developed at Sandia was used to
simulate the flow?!
= Utilized a moment-of-fluid approach to solve for the
interface
= The surface tension is evaluated using the curvature and
the ghost fluid method
= Time step defined by the flow speed
= Gas -2 perfect gas equation of state
= Liquid = generic Tait equation of state for stiff materials
= Utilizes adaptive mesh refinement (BoxLib) with
minimum cell size of 3.9um
= Simulations conducted on the SNL Redsky super
computer
= Oxide layer effects and fluid non-uniformities not included
= 2D simulations do not capture lengthwise perturbations in
the column or some droplet formation effects which require
two principal curvatures to minimize surface area.

M. Arienti et al. 2016

Galinstan We =10.9

*Red/Blue background colors indicate the relative gas velocity (normalized per image) in the x-direction




25 I 2D Simulation Predictions

=0

Bag Breakup

Multimode

Sheet Stripping

*Red/Blue background colors indicate the relative gas velocity (normalized per image) in the x-direction

“Morphology begins to appear near T = (.8.
"Secondary droplets appear earlier as Weber number increases.

=Simulations with Galinstan properties show semi-spherical secondary droplets.




26 I Digital In-line Holography

Particle Field 7

= Holography records the full field information (amplitude and phase), proposed by D. Gabor in 1948

= Digital In-line holography (DIH) compares interference of diffracted and un-diffracted light, proposed by
U. Schnars and W. Juptner in 1994

= Light propagation is described by the diffraction integral equation (Rayleigh-Sommerfeld diffraction kernel)

— jkr

E(x,y,2) =711 I I E(é‘,n,z:O)erfdn where: r:\/ (E=xY +(n—y) +7

E(x,y,0) = h(x,y)-Er* is the complex amplitude at hologram plane, h(x,y) is the hologram,
Er* is the planar reference wave, E(Xx,y,z) is the refocused complex amplitude at optical depth z

= TFast convolution GPU solver codes for flow diagnostics are being developed by D. Guildenbecher at Sandia




27 | 3D Breakup model and Experiment
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29 I Experimental Setup

Shock Tube Top View - Digital In-line Holography Shock Tube Side View - Fluid Delivery System
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30 I Experimental Setup

Back-lit Imaging Digital In-line Holography
Pressure
Source
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31 I Backlit Breakup Morphology

Bag Breakup Multimode Breakup Sheet Thinning Breakup




32 | Breakup Morphologies
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34 I Digital In-line Holography of Droplets

1 =T e P
~

= > . :
"‘—“\ﬂ “ K e S TS s i GG\

e

e 61 TN0
o

.~‘—$ @ @ oy

Water We= 137 .= SIS 3 heps . Water Wejz 1%

>
- ™

4
)

cle

3 ¥

-




35 I 3D Droplet Distribution Reconstruction
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*
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Diameter and Velocity
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37 I Probability Densities We <13
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38 | Size-velocity Correlation and Drop-Size Modeling
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