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2 Motivation
• Why is the aerodynamic breakup of liquid metal important?
• Simulations suggest that liquid metal (high density ratio) breakup has more intensive fragmentation1
• Experimental investigations of liquid metal breakup in cross flows are limited2
• Breakup morphology as a function of Weber number and secondary droplet formation are important

Liquid Metal Cooling Systems
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3 Liquid Metal Breakup

Breakup morphology and secondary droplet formation are important
parameters which scale with non-dimensional numbers:
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Column breakup transitions occur at slightly lower Weber numbers than
spheres due to the capillary instability

• Liquid metals have unique characteristics such as high density, high surface
tension, fast surface oxide formation

• Galinstan (68.5% gallium, 21.5% indium and 10% tin) is a non-toxic
eutectic liquid metal at room temperature that forms a surface oxide
• Melting temperature of -19 degrees Celsius
• Forms passivating, elastic oxide layers (Ga203/Ga20, surface yield

stress of EGaIn is — 0.5 N/m) preventing the formation of perfectly
spherical droplets

Properties Galinstan Water

Density - 6440 kg/m3 - 1000 kg/m3

Surface Tension - 0.718 N/m - 0.073 N/m

Bulk Viscosity - 2.4 mPa•s - 0.89 mPa•s
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4 Experimental Setup

Driver Section
SNL Multiphase Shock-Tube

Fast Action Valve Driven Section
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• 76 x76 mm cross section and 5.2 m long
• Generates shock waves using pressurized nitrogen and a fast action valve
• Driven gas is air at 300K and 84.1 kPa (Albuquerque, NM)
• Provides a uniform step change in velocity (Mach 1 to 1.5, ug = 30 to 177 m/s)
• Test times of 5 to 10 ms determined by the reflected shock time
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5 Experimental Setup

Driver Section
SNL Multiphase Shock-Tube

Fast Action Valve Driven Section

• A precision fluid dispensing system formed laminar jets
using low liquid volumes (Nordson EFD Performus)

Driven with pressurized air from 1-8 psig

Column diameters dc = 0.5 to 1.36 mm

A liquid catch is used to prevent gas leakage

• Stainless steel test sections, Acrylic windows, and tape
were used to prevent Galinstan from damaging the walls
and wetting to the walls
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6 I Experimental Setup

Driver Section
SNL Multiphase Shock-Tube

Fast Action Valve

• Used an LED backlight and diffuser

• Two Photron SA-Z cameras (100 kHz)

• Perpendicular and oblique cameras was used to help
classify morphology

• Column y-velocities were estimated (<3 m/s) and were
found to be much less than the convective velocities used

• Technique is useful for qualitative assessment
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7 I Backlit Results

Bag Breakup

Galinstan, We = 6.1

r = 3.0

2 mrn

d = 0.84 mm
Galinstan Conditions: Ma = 1.41, u = 204.7 m/s, pg = 1.67 kg/m3
Water Conditions: Ma = 1.15, u = 80.0 m/s, pg = 1.22 kg/m3

Multimode Breakup

alinstan, We = 26.5

d = 0.84 mm
Gatinstan Conditions: Ma = 1.24, u = 127.8 m/s, pg = 1.39 kg/m3
Water Conditions: Ma = 1.09, u = 47.9 m/s, pg = 1.12 kg/m3

Sheet-Thinning Breakup
Galinstan, We = 82.13

T=0.01

Water, We = 90.0

Smm

d = 0.84 mm
Galinstan Conditions: Ma = 1.12, u = 66.3 m/s, pg = 1.18 kg/m3
Water Conditions: Ma = 1.04, u = 23.5 m/s, pg = 1.04 kg/m3

• Galinstan bags break earlier and are smaller  (lower deformation ratio and thicker bag walls than water)
• Galinstan bag breakup tends to have sharp edges and droplets are non-spherical, (this may be due to the oxide skin)

• Secondary droplets of Galinstan travel faster due to the higher convective velocity but can be non-dimensionalized



8 Breakup Morphology and Breakup TimP
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Classifying breakup morphology is subject to uncertainties, multiple modes can occur along the column
• Galinstan experiments line up well with water experiments in terms of breakup mode
• Galinstan tends to initiate breakup earlier than water, breakup end also appears to occur slightly earlier

In order to get statistics for non-spherical droplets, higher magnifications with depth-of-field is needed 

1



9 Experimental Setup

Driver Section
SNL Multiphase Shock-Tube

Fast Action Valve Driven Section

• Time-dependent, non-spherical particle sizing is difficult to
conduct with conventional techniques

• DIH compares interference of diffracted and un-diffracted
light1,2, providing accurate, quantitative projected size and 3D
position information

• Used Coherent Verdi 532 nm laser, spatially filtered and
expanded to fill the FOV

Made measurements as a function of downstream position xc

2x camera (640 x280 pixels at 100 kHz) was used to help
track droplets

• 6x (1024 x1024 pixels at 20 kHz) camera was used to
determine extend particle size dynamic range
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Top View - Digital In-line Holography



10 Digital In-line Holography

• DIH is ideal for imaging and quantifying particles that may be out-of-focus at high magnifications
• Collimated light propagates as described by the diffraction equation

E(x, y; z) = [h(x,y)g:(x,y)] g(x, y; z)
h — hologram, Er* is the planar reference wave, g— diffraction kernel, Different z-slices examined using amplitude A = E(x,y;

• In DIH, particle z-locations and diameters identified with minimum amplitude maximum Tenengrad method
• Tracking conducted across multiple frames using nearest neighbor and particle size cost function
• Processing was conducted on the SNL ODIN high capacity GPU accelerated CPU cluster
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x mm x 2: 20 to 25 mm x 50 to 51 mm

100 m/s

d (µm)

0 4 500

• Three tests conducted at each position for each fluid, tracked 1200 to 5700 particles for each condition
• Breakup morphologies are similar
• Galinstan breaks up earlier in non-dimensional time

Galinstan droplet shapes are jagged due to fast surface oxide formation
Smaller particles are generated from bag breakup and larger particles are generated from column breakup



1 2 Detailed Column Motion
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13 I Column Drag
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14 I DropletVelocity and Diameter

Droplet Velocity
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• Two downstream positions are compared (25 and 50 mm)
• Velocity non-dimensionalized with gas velocity collapses each downstream position and fluid type

onto a single curve
• Droplet diameters increase with non-dimensional time

Smaller droplets appear to be generated earlier and travel at a higher velocity



15 Droplet Size-Velocity Correlation

Size vs. Velocity
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A size-velocity correlation collapses into two curves, one for water and one for Galinstan
By non-dimensionalizing using the density ratio, both curves collapse into a single curve
A more detailed derivation utilizing constant acceleration due to drag (also containing the density
ratio) also allows both fluids to collapse onto a single curve
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16 1 Size Probability Distributions

Cumulative Volume Distributions
MMD 
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• Number probability distributions indicate water produces more smaller droplets, a secondary peak
at 50 um is noticeable

• Volume probability distributions show that water and Galinstan droplets are more similar as a
function of downstream position

• The cumulative volume probability distribution shows that water and Galinstan are similar for many
Weber numbers

• Lines indicate the root-normal distribution, bag breakup appears to deviate the most from this
distribution



17 I Non-spherical Droplet Shape
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DIH can also provide information on droplet shape
• Eccentricity e2 =1-b2/a2, here 0 = perfect circle and 1 = thin line
• Small water droplets are more spherical, water shape becomes more spherical further downstream
• Galinstan droplets are more non-spherical, shape is frozen and does not change further downstream
• Higher Weber numbers show more non-spherical droplets

800 1 000



18 I Conclusion

• Backlit imaging provides qualitative information

DIH provides quantitative details on column motion, 3D
position, droplet size, and droplet velocity

• Galinstan has a higher density, higher surface tension, and fast
passivating surface oxide formation

• Galinstan breaks up earlier in non-dimensional time

• Galinstan shows jagged breakup shapes and non-spherical
droplets due to fast oxide formation

Galinstan and water have many similar behaviors when non-
dimensionalized (acceleration, droplet velocity, droplet size
distributions, ...)

Additional work is needed to :

• Understand fast-oxide formation rates

• Obtain more streamwise DIH data (since FOV is small) so
that information can be plotted as a function of non-
dimensional time rather than downstream position.

o

We = 6.1

tz 0 ms

5 mm

t .-- 2.6 ms

t = 2.9 ms
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22 Breakup Dynamics
Liquid

Column
Flow

Gas Cross-Flow

• Investigate breakup using a liquid column in a gas cross-flow
(simplifies simulations and timing in experiments)

• We propose a few non-dimensional values which may contribute to
different aspects of breakup

• Weber number (inertial to surface tension forces)
pgu

We = 
2 d

• Ohnesorge number (viscous to inertial forces)
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23 Liquid Metal Properties

Use a non-toxic, room-temperature liquid metal to avoid heat

transfer and combustion effects

Most liquid metals form oxide layers quickly

Galinstan eutectic alloy

(68.5% gallium, 21.5% indium and 10% tin)

Melting temperature of -19 degrees Celsius

Alloys with aluminum and many other metals

Forms passivatingl, elastic oxide layers (Ga203/Ga20, surface

yield stress of EGaln is — 0.5 N/m) which prevent the formation

of perfectly spherical droplets

Properties

Density - 6440 kg/m 3 1000 kg/m3

Surface Tension - 0.718 N/m 0.073 N/m

Bulk Viscosity - 2.4 mPa•s 0.89 mPa•s

Top View of Liquid Galinstan

Copyright © GlPhotoStock

Side View of Galinstan Droplets

D. Kim et al. 2012 D. Kim et al. 2015

1. M. D. Dickey et al. 2008
2. C. Karcher et al. 2003, surface tension values may be influenced by the oxide layer
3. J. N. Koster 1999, viscosity not verified as a function of shear rate Reproduced for educational purposes only under fair use



24 2D Simulations

Time-resolved 2D simulation developed at Sandia was used to
simulate the flow'

Utilized a moment-of-fluid approach to solve for the
interface
The surface tension is evaluated using the curvature and
the ghost fluid method
Time step defined by the flow speed

• Gas 4 perfect gas equation of state
. Liquid 4 generic Tait equation of state for stiff materials

Utilizes adaptive mesh refinement (BoxLib) with
minimum cell size of 3.9µm
Simulations conducted on the SNL Redsky super
computer

Oxide layer effects and fluid non-uniformities not included
2D simulations do not capture lengthwise perturbations in
the column or some droplet formation effects which require
two principal curvatures to minimize surface area.

Galinstan We = 10.9

*Red/Blue background colors indicate the relative gas velocity (normalized per image) in the x-direction

1. M. Arienti et al. 2016



25 I 2D Simulation Predictions
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oMorphology begins to appear near T = 0.8.
oSecondary droplets appear earlier as Weber number increases.
oSimulations with Galinstan properties show semi-spherical secondary droplets.



26 I Digital In-line Holography

Laser

x

v y

Particle Field
1

• Holography records the full field information (amplitude and phase), proposed by D. Gabor in 1948
• Digital In-line holography (DIH) compares interference of diffracted and un-diffracted light, proposed by

U. Schnars and W. Juptner in 1994
• Light propagation is described by the diffraction integral equation (Rayleigh-Sommerfeld diffraction kernel)

1 e-jkr
E(Xly,z)=—ffE(j,i-hz=0) . djdri where: r=V(j—x)2 +fri—A2 +z2ii 

E(x,y,0) = h(x,y)•Er* is the complex amplitude at hologram plane, h(x,y) is the hologram,
Er* is the planar reference wave, E(x,y,z) is the refocused complex amplitude at optical depth z

Fast convolution GPU solver codes for flow diagnostics are being developed by D. Guildenbecher at Sandia



2 7 3D Breakup model and Experiment
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28 1
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29 . Experimental Setup

Shock Tube Top View - Digital In-line Holography Shock Tube Side View - Fluid Delivery System
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30 Experimental Setup
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31 Backlit Breakup Morphology
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32 Breakup Morphologies
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34 Digital In-line Holography of Droplets

Galinstan Waz 13



35 I 3D Droplet Distribution Reconstruction
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36 I Diameter and Velocity
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37 1 Probability Densities
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38 I Size-velocity Correlation and Drop-Size Modeling
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