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21 Outline

Problem Setup

o Conditions

o Geometry

o Mesh topology

o Solver

O Inlet condition specification

Nominal Solutions

o Case 1 — Air 0.86 MW/m2

o Case 18 — Air 5 MW/m2

o Case 19 — Air 10 MW/m2

Solver variations

o Viscosity Model

o 3 temperature thermal non-equilibrium

O Frozen flow



3 Problem Setup

Arcjet conditions: Nominal test conditions

Chosen to sample a range of heating rates in air

. Fluid runs serve as a preparation for running coupled problems

. Simulation in both L2K and L3K

Test Run # DSTL
Test #

Sample Facility Atmosphere Heat
flux rate

Test
duration

[MW/rni [s]

01 .11 110917 02 8 PSG00042899C KUair 0.89 80.3

18 026175L 17 PSG00042899C L3K Air 5 60.6

19 027175L 19 PSG00042899B L3K Air 10 20.9
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Geometries

L2K and L3K nozzles have a similar setup, both use exit
diameters of 50 mm

' Sample holder set a distance from the nozzle exit to 18 5 160
obtain the desired heat flux

Case Targeted Heat Distance from
Flux (MW/m2) Nozzle (mm)

1 0.89 160

L2K facility

CN ci

19 10 80

L3K facility



51 Problem Setup

Topology: Multi-block, structured

• Simple wrap of cells around the sample
Contains bow shock on the front face

• Clustered to nozzle wall and Sample
Smaller clustering for higher heat flux cases

o No wrap of nozzle wall cells into test section
Grid cells are simply expanded into the test section

inlet
condition

Reservoir
Nozzle

Case Targeted Heat
Flux (MW/m2)

Distance from
Nozzle (mm)

Grid Size
(cells)

1 0.89 160 66,240

18 5 160 71,040

19 10 80 67,360

Test Section

Buffer

Distance from
Nozzle

Sample



6 I Problem Setup

Solver: SPARC

Solves the compressible, reacting Navier-Stokes equations

o Second order MSW inviscid fluxes, viscous flux gradients using weighted least squares

method

o Transport models

O Sutherland, Keyes, VSS, Blottner, Gupta viscosity models

O Prandtl number, Eucken relation, or Gupta model for thermal conductivity

O Constant Lewis number for diffusivity

o Thermochemical non-equilibrium

O T-Tv or T-Tr-Tv temperature non-equilibrium

O Captures effects of finite-rate real gas effects including:

O Chemical dissociation, recombination, and exchange

O Surface catalycity

O Molecular ionization

o Designed for use on next generation heterogeneous architectures

o Scalability, performance portability
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Initial condition specification

Follow procedure laid out by Prabhu et al.*
Use pressure, enthalpy, gamma=1.2, isentropic relations, and mass conservation to determine reservoir velocity and
static conditions

- Iterate reservoir Mach number until system of equations converges

Solve for thermochemical equilibrium composition using NASA CEA

Determine the temperature that matches the pressure and enthalpy within CEA

- Create supersonic condition for nozzle exit and test section
- Calculate exit Mach number using isentropic flow and maintain mass fractions

Reservoir Gas State

Case Total Total Mass Total Density Temperature Velocity
Pressure Enthalpy Flux Temperature (kg/m3) (K) (m/s)
(hPa) (MJ/kg) (kg/s) (K)

1 960 7.5 .036 4035 0.0715 4011 133

18,19 3750 15.9 .101 6506 0.1503 6501 167

Reservoir Mass Fractions

Case N2 02 NO

1 0.74337 0.03724 0.04877 0.00086 0.16975

18,19 0.63972 0.00059 0.01565 0.11998 0.224063

*Prabhu et al. "CFD Analysis Framework for Arc-Heated Flowfields,I:
Stagnation Testing in Arc-jets at NASA ARC," AIAA 2009-4080



I8 Nominal Solutions: Case I — 0.89 MW/m2

Simulation results

• Reasonable stagnation agreement with
ablation properties

• Near constant properties across half the
face

• Mach 5 flow at the bow show of the
sample

• Post-shock temperature —4340K
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I9 Nominal Solutions: Case 2 — 5.0 MW/m2
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Simulation results

• Reasonable stagnation agreement with
ablation properties

• Near constant properties across half the
face

• Mach 5 flow at the bow show of the
sample
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10 Nominal Solutions: Case 3 — 10.0 MW/m2

Simulation results

• Reasonable stagnation agreement with
ablation properties

• Near constant properties across half the
face

• Mach 3.7 flow at the bow show of the 1111
sample
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11 Nominal Solutions: Non-equilibrium
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, Vibrational temperature freezes out for
samples 160 mm from nozzle

, 160 mm sample location has a greater
degree of non-equilibrium due to lower
pressure and increased shock strength

, Similar features and magnitudes of non-
equilibrium over the nozzle
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12 Nominal Solutions: Non-equilibrium
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13 Nominal Solutions: Non-equilibrium

Thermal non-equilibrium

, Vibrational temperature freezes out for
samples 160 mm from nozzle

, 160 mm sample location has a greater
degree of non-equilibrium due to lower
pressure and increased shock strength

, Similar features and magnitudes of non-
equilibrium over the nozzle
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14 Nominal Solutions: Non-equilibrium

Chemical non-equilibrium

' Chemical composition approximately
constant through reservoir and between
nozzle exit and the sample

, Similar composition profiles for L3K
cases with the exception of a thinner
boundary layer

.__
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1 5 Nominal Solutions: Non-equilibrium

E 10-3

Chemical non-equilibrium

' Chemical composition approximately
constant through reservoir and between
nozzle exit and the sample

, Similar composition profiles for L3K
cases with the exception of a thinner
boundary layer
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16 Solver Variations

Variations in heat flux

, Blottner/Eucken model reduces heat flux —10 %

o 3 Temperature non-eq. has a small effect

o Wall catalysis varies depending on condition

o Non-reacting reduces heat flux by half
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17 Solver Variations

Variations in heat flux

, Blottner/Eucken model reduces heat flux —10 %

o 3 Temperature non-eq. has a small effect

o Wall catalysis varies depending on condition

o Non-reacting reduces heat flux by half
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1 8 Solver Variations

Effect of third temperature

o Rotational temperature remains in near
equilibrium from the reservoir to the bow
shock, — 10 K difference

, Shock layer has thin layer of 3 temperature
non-equilibrium
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Effect of third temperature

o Rotational temperature remains in near
equilibrium from the reservoir to the bow
shock, — 10 K difference

, Shock layer has thin layer of 3 temperature
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20  Summary

Reasonable agreement with expected heat flux for nominal solver options

Simulation setup ready for couple flow simulations

o Need to bring in more data to anchor flow simulations

o Currently working on verifying fully coupled method in SPARC

Variations in solver options

o Flow chemistry/wall catalycity has a strong impact on calculated heat flux

o Need to better quantify sensitivities in heat flux to chemical reactions and transport model
parameters



21 Backup slides



22 Solver Variations

Catalytic Efficiency

Catalytic wall drives changes throughout
the boundary layer
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23 Solver Variations

Catalytic Efficiency

Catalytic wall drives changes throughout
the boundary layer
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