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Outline

Problem Setup
> Conditions
> Geometry
> Mesh topology
° Solver

> Inlet condition specification

Nominal Solutions
o Case 1 — Air 0.86 MW /m?
o Case 18 — Air 5 MW /m?
o Case 19 — Air 10 MW /m?

Solver variations
> Viscosity Model
° 3 temperature thermal non-equilibrium

° Frozen flow




31 Problem Setup

Arcjet conditions: Nominal test conditions

> Chosen to sample a range of heating rates in air

° Fluid runs serve as a preparation for running coupled problems

o Simulation in both 1.2K and 1.3K

Test Run # DSTL Sample Facility | Atmosphere | Heat Test
Test # flux rate | duration
[MW/m?] [s]
01 [110917_02| 8 PSG00042899C | L2K air 0.89 80.3
18 | 026175L 17 | PSG00042899C | L3K Air 5 60.6
19 | 027175L 19 | PSG00042899B | L3K Air 10 20.9




+1 Problem Setup

Case Targeted Heat Distance from

Geometries Flux (WW/m?)  Nozzle (mm)
o L2K and L3K nozzles have a similar setup, both use exit 1 s 180
diameters of 50 mm :
° Sample holder set a distance from the nozzle exit to 18 5 160
obtain the desired heat flux
19 10 80
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Problem Setup

Case Targeted Heat Distance from Grid Size
T i Muddblock d Flux (MW/m?2) Nozzle (mm) (cells)
H t1- tr tur
opology: Multi-block, structure : 0.89 160 66,240
> Simple wrap of cells around the sample
o Contains bow shock on the front face 18 5 160 71 ;040
° Clustered to nozzle wall and Sample 19 10 80 67,360
° Smaller clustering for higher heat flux cases
> No wrap of nozzle wall cells into test section
Guid cells are simply expanded into the test section TeSt S e Cti on
Buffer
Reservoir
Nozzle
Inlet
condition Sample
< >
Distance from

Nozzle
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Solver: SPARC
> Solves the compressible, reacting Navier-Stokes equations

> Second order MSW inviscid fluxes, viscous flux gradients using weighted least squares
method

° Transport models
o Sutherland, Keyes, VSS, Blottner, Gupta viscosity models
° Prandtl number, Eucken relation, or Gupta model for thermal conductivity
> Constant Lewis number for diffusivity
° Thermochemical non-equilibrium
o T-Tv or T-Tr-Tv temperature non-equilibrium
o Captures effects of finite-rate real gas effects including:
> Chemical dissociation, recombination, and exchange
° Surface catalycity
° Molecular ionization

> Designed for use on next generation heterogeneous architectures

° Scalability, performance portability




71 Problem Setup

Initial condition specification
> Follow procedure laid out by Prabhu et al.*

> Use pressure, enthalpy, gamma=1.2, isentropic relations, and mass conservation to determine reservoir velocity and

static conditions

o Iterate reservoir Mach number until system of equations converges

> Solve for thermochemical equilibrium composition using NASA CEA

> Determine the temperature that matches the pressure and enthalpy within CEA

> Create supersonic condition for nozzle exit and test section

> Calculate exit Mach number using isentropic flow and maintain mass fractions

Reservoir Gas State

Case Total Total Mass Total Density = Temperature Velocity
Pressure Enthalpy Flux  Temperature (kg/m3) (K) (m/s)
(hPa) (MJ/kg) (kg/s) (K)
1 960 7.5 .036 4035 0.0715 4011 133
18,19 3750 15.9 .101 6506 0.1503 6501 167
Reservoir Mass Fractions
Case N, o, NO N o)
1 0.74337 0.03724 0.04877 0.00086 0.16975
18,19 0.63972 0.00059 0.01565 0.11998 0.224063

*Prabhu et al. “CFD Analysis Framework for Arc-Heated Flowfields,I:
Stagnation Testing in Arc-jets at NASA ARC,” AIAA 2009-4080



Recovery Enthalpy (MJ/kg)

Nominal Solutions: Case | — 0.89 MW/m?

Simulation results

> Reasonable stagnation agreement with

ablation properties

> Near constant properties across half the

face

o Mach 5 flow at the bow show of the

sample

° Post-shock temperature ~4340K
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Nominal Solutions: Case 2 — 5.0 MW/m?2

Simulation results
> Reasonable stagnation agreement with
ablation properties
°> Near constant properties across half the
e - |
o> Mach 5 flow at the bow show of the )

sample B .

° Post-shock temperature ~8050K T: 200 1000 1800 2600 3400 4200 5000 5800 6600 7400 8200
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Recovery Enthalpy (MJ/kg)

Nominal Solutions: Case 3 — 10.0 MW/m?

Simulation results
> Reasonable stagnation agreement with
ablation properties
> Near constant properties across half the
o ‘
o Mach 3.7 flow at the bow show of the
sample BN [ | .
° Post-shock temperature ~7590K T: 200 980 1760 2540 3320 4100 4880 5660 6440 7220 8000
60000 1D Thermal Analysis Pressure VBB i 5 o 2 1 = o B i S Targeted Heat Flux _
1.6E+07 - Stagnation Heat Flux 7 B
50000 = B Measured Average Heat Flux
N 8E+06 [~
1.55E407 E I s |
| ;40000 i § o0 L
I ? i = I
1.5E407 g 30000 u_=_‘ I
i = : = 4E406
_3720000 5 i’ -
I w
1.45E+07 u B
| 10000 s 2E+06 ,_
TAE07,; —e o o — o — o 502
Radial Distance (m) Radial Distance (m) Radial Distance (m)

Recovery Enthalpy Edge Pressure Heat Flux



1 I Nominal Solutions: Non-equilibrium

Thermal non-equilibrium

° Vibrational temperature freezes out for
samples 160 mm from nozzle

> 160 mm sample location has a greater
degree of non-equilibrium due to lower
pressure and increased shock strength

° Similar features and magnitudes of non-
equilibrium over the nozzle
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Temperature (K)

12 I Nominal Solutions: Non-equilibrium

Thermal non-equilibrium

° Vibrational temperature freezes out for
samples 160 mm from nozzle

> 160 mm sample location has a greater
degree of non-equilibrium due to lower
pressure and increased shock strength

° Similar features and magnitudes of non-
equilibrium over the nozzle
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13 I Nominal Solutions: Non-equilibrium

Thermal non-equilibrium

° Vibrational temperature freezes out for
samples 160 mm from nozzle

> 160 mm sample location has a greater
degree of non-equilibrium due to lower M
pressure and increased shock strength
___ Ul

° Similar features and magnitudes of non-
equilibrium over the nozzle (T-TV)(T): -3 -26-22-1.8-1.4 -1 -0.6-0.2 0.2 0.6

Case 1

(T-TVI(T): -3 26-22-18-14 -1 -0.6-0.2 02 0.6 (FTvD): -3 26221814 1 060202 08

Case 19 Case 18




14 I Nominal Solutions: Non-equilibrium

102
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s | Nominal Solutions: Non-equilibrium
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Solver Variations

Variations in heat flux

Heat Flux (W/m?)

o Blottner/Fucken model reduces heat flux ~10 %
° 3 Temperature non-eq. has a small effect

> Wall catalysis varies depending on condition

> Non-reacting reduces heat flux by half
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Solver Variations

Variations in heat flux
o Blottner/Fucken model reduces heat flux ~10 %
° 3 Temperature non-eq. has a small effect
> Wall catalysis varies depending on condition

> Non-reacting reduces heat flux by half
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Solver Variations

ffect of third temperature

Rotational temperature remains in near

equilibrium from the reservoir to the bow
shock, ~ 10 K difference
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201 Summary

Reasonable agreement with expected heat flux for nominal solver options
° Simulation setup ready for couple flow simulations
°> Need to bring in more data to anchor flow simulations

° Currently working on verifying fully coupled method in SPARC

Variations in solver options
° Flow chemistry/wall catalycity has a strong impact on calculated heat flux

> Need to better quantify sensitivities in heat flux to chemical reactions and transport model
parameters
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Solver Variations

Catalytic Efficiency

o Catalytic wall drives changes throughout
the boundary layer
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Solver Variations

Catalytic Efficiency

o Catalytic wall drives changes throughout
the boundary layer
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Catalytic Efficiency

> Boundary condition working as
expected

o Catalytic wall drives changes throughout
the boundary layer
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