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21 Overview

® Variational fracture and phase-field models
* Variational peridynamic fracture

* Quasi-brittle peridynamics

= Implications

What’s the difference?

—
)

phase-field peridynamics




3 | Variational fracture mechanics

Energetic competition between bulk strain energy and surface creation

pot(u, r) — e(r SU) dV"‘ GC dv

[ r Approximate surface integral
by a volume integral

Regularized potential energy:

(U, d) = e(r °u)dv + GeYi dv
[] >
Crack density:
1 [ -t
_ _d2 v d 2
MN=54 Q\V |

Stress degradation:

g=(1-d)

e
3

*The variational approach to fracture, Bourdin, Francfort, Marigo, 2008




4‘ Surface regularization intuition

y

:_
— |

d(x)—1?d"(x)=0 in &

(b)

d(x)=e I/

Regularized crack geometry

1
I(d)=> /g; (d*+17d?}dV with different length scales

I(d:e_|x|/l):ll“ Miehe, 2010

1 2 2 112
Crack “surface area”: 17(d):= 2_1 d=+1-d~}dv
B




5 1 Peridynamic overview

Integral formulation: O -1 A OH TEI# T d

“In peridynamics, cracks are part of the solution, not part of the problem”
- F. Bobaru

Convergence for 2D crack branching: Brittle and Ductile Failure in 3D:
(Ha, Bobaru 2010) (Parks 2012)




6 I Peridynamic overview

m Integral formulation of continuum mechanics originally proposed by
Stewart Silling in 2000.

m Stress is replaced with long-range forces, T & 1.
m Bond » := x%%# x.

Classical control volume, normal n and

. > Peridynamic bond » and bond-force T B1.
traction vector fn.

A R
fla= O -t fla= | TEBI#TH> d




71 Peridynamic overview

The horizon at x is given

H(x) =

)

!

A vector-state A[x] at a point x ceB is a function

Deformation vector-state:

A[x]El : H(x) & R®.

> eR*| b+ x) ®B, | <”

YIXIE/=y(x+))# y(x)

"> ceH(x).
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Peridynamic overview

Classical Continuum

Peridynamics

Deformation Measure

Conjugate Force

Angular Momentum

Elasticity

Kinematics

F = Oy

P(F)

PF" = FP'

P = OA(F)

det(F) > 0

Y

T(Y)

S . .
0= _TBIOCYBId

n

T="AY)

YBEiz0, for p|2 0




9 I Peridynamic bond-breaking (critical stretch)

§ 8 pcosTH(xy/€) G
/ / / w(€) € dO de dz = =<
0 Jx1 J—cos1(z1/£) 2

Q
(@]
L &
(@]
Y—
c
Rl
et
(@]
Sub-region of H (x) which ©
is across the fracture surface |t
Fracture surface
Schematic for the domain of integration (modified from Silling 2005).
Limitations

1. Discontinuous force-displacement response when
discretized ©
(@]
| -
2. Griffith fractureas § — 0 2
. . . . . c
(hotizon/dispersion tied to process zone size) S
(@)
. . . . (o]
3. Extension to state-based peridynamics not obvious =

> FPoster 2011 energy based bond-failure criterion
> Tupek 2014 instantaneous bond-energy failure criterion

° Tupek 2013 pairwise damage criterion
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10 I Nonlocal measure of crack surface area

Rethink as geometric regularization using damage “state” d<€>

/ / §) d€ dx
where
/ / /_COS ::;) (€) € df dé day = 1/2

Then solution d* = { inf A(_)} I

o dew

crack surface area T

satisfies A, <d*) =T

W:{Q

d(&) = 1 for bonds cut by surface

0<dg) <1, VEeH(x), Vx e Q}




11 I Variational peridynamic fracture (general statement)

{y*,d"} = arg{ inf ﬁ(y,d)} :

deD, y(x)=y for x€Qg
Llvid) = [ YD)V + GeAuld)
Q

D— {g |o <dg(€) <1, VEeH(x), Vx € Q}

Dynamics:

S(y,y,d) = /t2 [L(y,g)—/gng dV] dt

t1

PY () = =0y L(y(1),d(?),

d(t) = arg . (ltglg L (), d(?))




12 ‘ Specialization to bond-based

Bond-based peridynamic strain energy

' | atedg =1
b(y) =5 / 5(€) XE) d g
2 Jn le) = y' -yl - ¥ —x
- X x

Variational bond-based peridynamic fracture

vled) = § [ S(O20)de+ . [ aehae) de

H

Simplifies to bond-wise minimization problem

)= 2e%(€)
@ =arg min {59(d) + n(©)h(d) 1(6) = GeE




13 1 Degradation and surface potential options

1.0
0.8}
0.6 |
=
g
0.4+
— bond-break
0.2 — phase-field []
—— threshold
— damage-cap
00 | | | | | 1 |
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

strain

* Effectively a pair-wise potential

* Satisfy Lipton’s conditions for
convex-concave potentials?

Lipton, 2014

Degradation functions:
g1(d) =1-d
g2(d) = (1 - d)*

bond-break (critical stretch)
gi(d)=1—d, hi(d) =d

phase-field

g2(d) = (1 = d)?, ha(d) = d?

threshold
g2(d) = (1 = d)?, hy(d) =d

damage-cap

g1(d) = (1 = d), ha(d) = d*

Damage potentials:

hi(d) =d
ho(d) = d°
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force

force

Effective traction-separation for prescribed motion
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15 | Effective traction-separation for prescribed motion (coarse mesh)
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16 I Quasi-brittle variational peridynamic fracture
F,u

l

1000 mm

|
|
i
i
i
i
|
i

1100 mm

Y

Three-point bend test of concrete

Nominal bulk properties:
E=32GPa [=02 o0,=415MPa G.= 016 N/ mm

Critical stretch model says: ¢

Roesler et al., 2007

Geelen et al., 2018




17 1 Cohesive degradation functions
U

Bond-wise free energy: wg(d) — ¢ g(d) + g Gc d
SO / T U _
Stationarity: ¢£(d) =g (d) + 5 G.=0
Cohesive degradation: g (0) — —m, M= —
Veo
Quasi-linear degradation ~ Geelen eral,, 2018 Lorentz degradation Lorentz et al., 2011
1—d (1-d)*
gi(d) = gq(d) = 2
1 —d+md (1 —d)? +md(1 + pd)
50 T T T 0 T T T
— 6=1.0E-03 ’ — §=1.0E-03
— 0=3.2E-04 — 0=3.2E-04
20 — =1.0E-04 || — 6=1.0E-04 ||
— 6=3.2E-05 — 6=3.2E-05
— 6=1.0E-05 — 0=1.0E-05
— 6=3.2E-06 — 0=3.2E-06
: B
£ £
8.00 O.(I)Z 0.64 0.66 0.68 0.10 (()).00 0.62 0.64 0.66 O.(I)8 0.10
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reaction force

Three-point bend simulations (preliminary, 2D) ]

F,u
l A
}, 250 mm
| 250/ 3 mm |
AN @)
3 1000 mm i
1100 mm R
20 . . : : .
expl
exp2
exp3
15} — critical_stretch ||
10| |
5[ |
0 - | 1 L i
0.0 0.1 0.2 0.3 0.4 0.5 0.6

opening displacement

Implemented in Peridigm

initial state

final state
i

baseline 0 = 15 mm

smaller ¢ = 12 mm

baseline mesh: 55,000 particles
finer mesh: 98,000 particles




19‘ Practical considerations

Irreversibility:
> Bond-damage only increases

> Modify constraint on the damage-state evolution

D = {d|ldpq(€) > 0,0 < di(€) < 1, VE € H(x), yx € Q. }

Tension/compression asymmetry
> Decompose bond-strain into positive and negative energetic contributions

> Only degrade the tensile part and only damage when in tension

wed) =5 [ 5(0) (€ 9e) +2(0) e+ [ alehe) de

H

(6 = {§<£> for £(€) > 0

0 otherwise

I|0f)
™
||
[y
e
|
Q)
I
™
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State-based bond-breaking criterion

tréd 2+ﬁtré£ ‘

N —
I

Elastic free energy density: A(x) =

Bond integrity: B i = {1 for intact bonds, 0 for severed bonds}

T here are multiple ways to define the bond-energy:

Average bgnd-energy Instantaneoug bond-energy
= Vtre , A+, ABI S, Bl =strg , A+, ABI
Foster, et al. 2011 proposed the work dcye on the bond:
t
SyoBI(t):=  TBI-YBIadt.

We use the instantaneous bond-energy: Bi=A EI

—/nst

@ The instantaneous bond-energy is the energy dissipated when
severing a single bond (all other bonds held fixed).

Sandia
S . | National
S m Laboratones

@ In general: s, =




21 I Beyond bond-based

|

4in

W

&+

m Mode-l crack propagation for low ~
impact velocities

1 1

m Crack branching at higher
Projectile

velocities oin | |=
m fl= 1180 kg/ m®, E = 3.5 GPa,
« = 0.35,| G; = 400 J/m*

vo = 50.5 m/s Vo = 65.9m/s

Coherent gradient sensing: experimental results of Umberger and Love, 2010.




2 | Crack branching vs. impact velocity

Vo= 15 m/s

vo = 35m/s




23‘ Beyond bond-based peridynamics

Energies vs, time Energies vs. time

— Elastic — 9856
012 — Fracture | — 22176
— Kinetic nooal — 39424
— Total = — 61600 i
010 = — 108104 N
= :
g — 109867+ f
S 0.006
w
?
EUGDﬂ
®
=
]
0002
DB feon 0.0002 T0008 0.0005 00008 DooLn 0-08foon 00001 o002 0.0003 00004 00005

time [s] time [=]

Dissipated energy over time for varying particle densities, with vop = 15 m/ s.

number of discrete particles crack length dissipated energy  cohesive energy
9,856 4 mm 25J 620 J/ m*
22,176 12 mm 4.6 J 400 J/ m*
39,424 11 mm 4.4 J 420 J/ m*
61,600 11 mm 4.4 J 410 J/ m* ‘
2
2

109,104 10 mm 42 J 420 J/ m
109,867 (unstructured) 10 mm 4.1J 410 J/ m



24 | Kalthoff-Winkler Test

0.1m

A
Y

7oM ‘
0.2m 0.05m <0

m Based on experiments by Kalthoff, Winkler 1987.
m fl= 8000 kg/ m®, E = 190 GPa, « = 0.3 and G, = 22,000 J/ m?.
m Impact velocity: vp = 16 m/s.

m Experimental crack propagation angle of 707.




25 | Kalthoff-Winkler Validation

h= 1.2 mm h= 1.0 mm
= 5,0 mm = 5,0 mm
h= 0.8 mm h= 0.4 mm
”= 5.0 mm

= 1.8 mm




26 I Beyond bond-based peridynamics

Extension to state-based is obvious ... but o trivial to implement!

Most straightforward extension (linear peridynamic solid with damage):

wed =5 ([ a@aeaaende) +3 [ a©@aaede+ . [ a@nae)

H
v #

) d€
1

4
Requires solving a quadratic programming problem over each horizon!

Also seems to imply that neither

* Foster 2011 bond-work criterion
* Tupek 2014 instantaneous energy criterion

will asymptotically dissipate G, as 6 — 0 (under general loadings).




27 I Undiscussed features and opportunities

= Other features not covered
= Evidence of numerical convergence (more work needed)
= Obvious how to incorporate irreversibility

* Obvious how to decompose into positive and negative strains

= Opportunities (challenges)
= Leverage optimization structure for better performance/robustness
" Mathematical analysis
= Mixed-mode cohesive models
= Anisotropy
= Plasticity

Established a clear connection between peridynamic and phase-field
fracture modeling!

Developments in one field can now easily be ported to the other
Demonstrated how to decouple the horizon size from process zone size




A phase field cohesive model

* Regularized phase field model by Lorentz, et al. 2011
« Shown to converge to cohesive zone model as 1 — 0

pu=V-.-0 o=g(d) 5 Ove + &pe Momentum balance

)

g (VT +k=cVi Phase field equation
(1—d)°
(d) = .
N =T m—2)d+(+pmy@  Degradation

1

0.8

0,6

0.4

damage profile
traction

0,2

0 1 2 3 4 5 6

S 05 =

opening d1splacement x coordinate




Parameters of damage model

Depends on cohesive fracture parameters:

Physically justified constraints on the parameters ensure

« Regularization length scale resolves fracture process zone
3 EG,

2(p+2) o?
* Monotonic stress decay
p=1

L <

cohesive forces

EG.

fracture process zone length - —
o
C




.| Computational challenges of fracture

= Fracture is characterized by the separation/failure of material,
leading to the formation of new surfaces!

= Both the mechanics of fracture and the geometry of the cracks
are difficult to model and simulate with finite elements,
especially in three dimensions

Slide borrowed from Prof. John Dolbow




Numerical Fracture Renaissance

Several promising fracture methods have emerged in recent years

Dolbow, Stevens 2015

Duarte 2011 - Tupek 2014

GFEM / XFEM Peridynamics Phase field




122 1 Overview

Motivations for phase-field fracture
> Regularization of ill-posed local damage models

° Regularization of variational fracture mechanics

Connections to
> LEFM
> gradient damage models

o cohesive models
Some results

Ongoing work




Classical damage models: ill-posed

Fracture modeling is critical to predicting the performance and
reliability of many Sandia components and systems

Most local damage models used at Sandia (and elsewhere) are 1ll-
posed and non-convergent
Max principal stress criterion with element death shows significant mesh dependence

Coarse mesh Medium mesh Fine mesh




34 I Classical local damage model

Consider a purely local model of damage
Stress-strain relationship

o(x,t) = (1- d(x,t))C =x, t)
Strain-displacement

=X, t) = r u(x,t)




Classical local damage models:
33 1 non-convergent

o
“ I fp oy !
:: L ;-i-' u :.-i ;
F I I F=Ao
- - |
€, £, &
F
number of elements
E) L

u Jirasek, 2002




36 I Gradient damage

Basic idea: replace Y with a non-local version:

d: 1) =D max Y (x, &

Integral-type models (Pijaudier-Cabot and Bazant, 1987) employ a non-
local state variable, e.g.

Y(x,t)= [(x,2)Y(z t)dz
Vx
Gradient-type models (de Borst et.al, [995)

Y(x,t)- cAY(x,t)= Y(x,t) inE nrY=0 on@




37 1 Variational fracture mechanics

Direct extension of Griffith’s original idea
Emphasizes energy dissipation due to surface creation

(vs. fracture toughness)

pot(uyr) = e(r Su)dv+ G. da

Large literature with validation and existence/uniqueness proofs
Similar to max-energy-release-rate crack direction criteria
Generalizes to branching, discrete crack jumps, etc.

Reduces to LEFM in applicable cases

“The variational approach to fracture”, Bourdin, Francfort, Marigo, 2008




38

Phase field models

Phase field models are
mathematical models for solving
interfacial problems!

The method substitutes boundary
conditions at the interface by a
PDE for an auxiliary field, called
the phase field, that takes the role
of an order parameter!

Values of the phase field are used
to identify regions of the domain!

As the phase field is evolved in
time, the geometry of the interface
(or crack) is likewise evolved

's "

=t

¥

M
0 m
X

A two-phase microstructure (top)

and the phase-field variable along
a horizontal line (bottom)




39 I Phase field fracture

Variational fracture potential energy:

pot(U;r) = o(r Su)dv+ G.da
[ 0

Approximate surface integral
by a volume integral

Elliptically regularized potential energy: |,

(U, d) = o(r u)dv+ Gy dv

] £33 |

2,

Common crack density:

1 [
:_d2 v d2
N =g +2\V\

Stress degradation: | - ] ‘_
g=(1-4d) |



40‘ Surface regularization intuition

y

(b)

d(x)=e I/

d(x)—1?d"(x)=0 in &

(c) (d)

Regularized crack geometry

(d)= 2 g{ T } with different length scale
I(d=e ¥/ =T Miehe, 2010

1
Crack “surface area”: Fl(d)::z—l/{dz—l—lzd’z}dv
B




41 1 Relation to LEFM

« Example J integral calculation using phase field models |
« Stable propagation at J ~ G. = 1.5 (error decreasesas [, — () ) [
I
a b
5]
]
g 3
8 o
\ .:“)‘ 1+ , ux (analytical)
& ( :
Crack tip 2 ol ux(numerical)
0 0 10 20 30 40 s0
X
c d
3 60
o3 ux(numerical) 1.8 150 o
*é" H L ux(analytical) = 14l M {40 <
= % / |0 &
S 2 1 30 2
< o= -
'_'%‘ 1+ — ] 120 g
= 0.6 ?/t 110 ©
O 1 1 | 1 1 1
-10 -5 0 5 10 0'20 10 20 30 40 500
y Time, 7

Hossain, 2014



SM demo: Thick “Moon”

phase field

1.000e+00
7 500e-01
5.000e-01
2 500e-01
0.000e+00




SM demo: hollow cylinder

Time = 0.000020

phase_field

|
2.500e-01 i
0. 000e+00




44 ‘ Anatomy of a phase field model

Helmholtz free energy density:

G
U = g(d)yp + ¥ - :

/ damage potential damage gradient potential
degradation

h(d) + %Gcl Vd|?

Undamaged tensile
strain energy

Undamaged compressive
strain energy




s I Anatomy of a phase field model

Euler-Lagrange: g/(d)qu + %h/(d) — oG, ZVQd

A specific form of more general class of “gradient damage” models
A very classic gradient damage model: Pt Ine? 7
(related to integral nonlocal regularization) d — l v d — d

Proposed definition for phase field fracture models:

“A gradient damage model with a well defined surface energyas [, — () ”




«| Damage potential

Ge
U = g(dpd +¢r + —Sh(d) + %Gcl Vd|?

damage potential

d2
classical: h(d) — ? d — ZQVQd =0
threshold: h(d) = ’d’ 1 — 12v2d =

Surface geometry
Euler-Lagrange equations

0.6 |-

0.4}

Influences through crack
damage profile

0.2}

00 L L L
-1.0 -0.5 0.0 0.5 1.0




»| Degradation function

Ge
U = g +r + —h(d) + %Gcl Vd|?

degradation

classical: g(d) = (1 —d)?

Borden Hughes: ¢(d) = (1 — d)*

Lorentz: g(d) = 1—"

1+ (m—2)d+ (14 pm)d?
Newly proposed: ¢(d) = L —d

L+ (55 —-1)d

Influences stress decay shape




Limitations to standard phase field

» No threshold, some damage for any € # 0 9 JEG
 Regularization length scale tied directly to fracture properti@sy.x = 16V 6 LC

=9

velocity

Omax = 200e6 G, =100e3 E = 200e9




»| Relationship to cohesive zone models

3.6

branch\

u U,

Traction separation law Mesh dependence using cohesive networks




A phase field cohesive model

* Regularized phase field model by Lorentz, et al. 2011
« Shown to converge to cohesive zone model as 1 — 0

pu=V-.-0 o=g(d) 5 Ove + &pe Momentum balance

)

g (VT +k=cVi Phase field equation
(1—d)°
(d) = .
N =T m—2)d+(+pmy@  Degradation

1

0.8

0,6

0.4

damage profile
traction

0,2

0 1 2 3 4 5 6

S 05 =

opening d1splacement x coordinate




Parameters of damage model

Depends on cohesive fracture parameters:

Physically justified constraints on the parameters ensure

« Regularization length scale resolves fracture process zone
3 EG,

2(p+2) o?
* Monotonic stress decay
p=1

L <

cohesive forces

EG.

fracture process zone length - —
o
C




52 I Designing a phase field model

Given an extrinsic cohesive model,
can we design a phase field model?




53

Designing a phase field model

Given an extrinsic cohesive model,
can we design a phase field model?




54 | Kalthoff “validation”

Damage contour

Kalthoft Experiment

| 10 cm
Zoom I
a=5¢m| ~ 10 cm
| 15709
V 2-5 cIn q‘- “‘1‘
q T Tl  sEsEsEEE P

Achieves the expected crack
propagation angle: ~70°




55 1 Mesh insensitivity

Pressure contours for dynamic crack propagation

Medium mesh: 250k elements Fine mesh: 1,000k elements




s6 I Mode-l: Length scale refinement

Length-scale decreases with Ax

v=25m/s
A = =
\ 4
71.5 thousand elements 14.4 million
elements

G, = 4e5




57§ Accuracy

Total numerical energy is preserved Dissipated fracture energy error
30000 : 10° .
_ gzz:;z:zg‘; — Fixed lengthscale, reducing timestep
20000} — S::gfﬂgj:::g: | ~— Reducing lengthscale and timestep
— Total energy
10000 |
0
—10000 -
—20000 -
107+
—30000 -
=40000 L L L L L L L |
0.00000 0.00005 0.00010 0.00015 0.00020 0.00025 0.00030 0.00035 0.00040 103

Nodes X

« Convergence rate of ~1 for fixed length scale ‘
« Convergence rate of ~0.5 otherwise
» Dissipation due to viscous regularization is non-negligible |



Importance of fracture energy

Mode-I crack transition to branching

High G Low G, <

velo_Y

Branching is emergent, not prescriptive




s9 I Branching: mesh insensitivity

e
<l
N

1.4 million elements 4.1 million elements 11.8 million
elements

Runs in ~5 hours on 1 GPU




Thermally loaded glass-metal interface

Initial vertical crack fp ehtdlybbserved crack path

Evpnfnnnrr f1irnc tN 11N hnvn"n] tn f]nn n-]r)oe,mnfr)] ;nfnrrnrn

1.5 million element simulation runs in 6 hours on 1 GPU




Demonstrations in 3D

Ceramic impact Brittle torsion fracture

« Captures complex 3D crack patterns
* No explicit geometry representation
« Naturally predicts initiation, branching and coalescence




Brittle impact demonstration




Parabolic regularization

» For explicitly integrated dynamic problems, solving a
nonlinear phase field equation is VERY expensive

« Add a viscous regularization (e.g., Miehe 2010)

ng = —g (o)W —k+cV2p, >0

Integrate parabolic equation explicitly!

Hyperbolic time step constraint: At < gAm l

Parabolic time step constraint: At < Q (A:E)2 ‘
C
C 3G, L ‘

sAxZSSAx

Can use hyperbolic time step if: 7) =



Reintroducing the Lorentz model

An elliptic regularization of a cohesive zone model.
Has a natural critical strain energy criterion.

Decouples the regularization length scale from the process zone size (though
Lorentz argues on physical grounds that the regularization length scale must be
smaller than the process zone size).

Added the now standard decomposition into positive and negative strain energies.
Irreversibility introduces via $>0.

However, VERY expensive to solve a nonlinear inequality constrained elliptic PDE,
especially for explicitly integrated transient dynamics.




| Toward scalable multiscale failure modeling

The Problem: The Approach:
Potential pervasive fracture/failure of NASA Develop a multiscale fracture simulation capability
experimental equipment for accurately resolving fine-scale fractures at scale,
based on...
GFEMm#!

Scale-bridging framework

A
Figure D-3. The rtegrated spacecrs® with Camier and
Lander elements provides reconnaissance, safe landing,
and -8l sCeNCe In 8 single Mission

<

Phase field

Detailed fracture path prediction

XFEM

Discontinuity representation Cracked domain (Gupta et al. 2012, Tupek 2016)




66 I Poroelastic phase field fracture

Arpeggio coupled simulation:
pore pressure injection with pipe
leak

Mesh Convergence

Crack Opening (m)

'-—-‘“—_-ﬂ-‘
300000 400000 500000
Number of Elements

Work with UC-Boulder collaborators, notably student David Culp




-1 Research on ductile phase field fracture

Components:
> Fel'p hyperelastic plasticity model

> Driving energy:
max(undamaged strain energy + undamaged plastic work)

° Linear hardening model

Two models coded:
o “Classical”

P =c?x max (1/7‘3(86) + 1/5?’(8”)) + i—;((l —c)? +412(Vc)?)
o “Threshold”
P =c?x max (l/;e(é‘e) + 'ﬁp(é‘p)) + YPerie(2(1 — ¢) + 412 (Ve)?)

G
l/)crit = 4_(1:




8 I Output - Fields

Deformed View (Visual threshold at c=0.5):

Y Y
- Z—X
Phase Field - Coherence EQPS
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Phase Field EQPS




6o I Output - Fields

Undeformed View (Visual threshold at c=0.5):

Undeformed View (No visual threshold, zoomed):

Phase Field EQPS



70 I Preliminary Results

Working toward getting convergent force-displacement results

4500 Force vs. Displacement 30 Fracture Energy vs. Displacement
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* There are a lot of caveats here that are still being worked out
* |llustrates the ultimate goal: convergent ductile fracture




71 1 Preliminary Results

Working toward getting convergent force-displacement results

Force vs. Displacement

4500 Fracture Energy vs. Displacement

30

40001 ... P L esanes .......... SO S S S— : E 3 : : : :
: : ] 5 ; 5 5 25 — A— SN S— S —

3300 [ ff N A

sl N\

2800 v fi e N

Force (Ibf.)

2000}/ S— .......... ......... .......... ..........

1500 |- hcnssasanssnsos bisssosr Rsasessefsnsissopessosseofrisssneo

Fracture Energy (lbf.-in.)

1000 | i N

BP0 A U, WS SV S S S

0 | | | | | | | 0 | | | | | | |
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 o0.08 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 o0.08
Displacement [Pins] (in.) Displacement [Pins] (in.)

e.g. is this left over stress acceptable?

* There are a lot of caveats here that are still being worked out
* |llustrates the ultimate goal: convergent ductile fracture




Conclusions and future work

Advantages

*Simple to implement

*Efficient phase-field models can be constructed which are either cohesive or LEFM
*Method 1s trivially thread scalable (and MPI scalable)

*Explicit time integration 1s possible and reasonably efficient

*No need for J-integrals or auxiliary propagation direction criterion

*Crack propagation, branching, coalescence is a prediction (not a prescription) of the
model




Conclusions and future work

Disadvantages
*  No explicit surfaces created

*  Surprisingly significant dependence on
* Degradation and damage potential model forms
¢ Tensile/compressive strain energy split
* Solver strategies (staggered, monolithic, etc.)
¢ Conditioning coefficient

*Numerical damage smearing

*Requires resolving damage length scale
* May be fracture process zone size, then similar or just slightly more expensive than other methods
¢ If process zone size is small, length must be small compared to geometry

*Computationally expensive?




