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2 Overview

Variational fracture and phase-field models

Variational peridynamic fracture

Quasi-brittle peridynamics

Implications

What's the difference?

r

phase-field

)

peridynamics



3 Variational fracture mechanics

Energetic competition between bulk strain energy and surface creation

pot(u, —

Regularized potential energy:

e(r su) dv + Gc dv

r Approximate surface integral

by a volume integral

(u - e(r su) dv Gcyi dv

Crack density:

1
= —

2/ 
d2 + —

2
1Vc/12

Stress degradation:

g = (1 — c)2

Wft

.r2

=

=

*The variational approach to fracture, Bourdin, Francfort, Marigo, 2008



4 Surface regularization intuition

1

(a)

d(x)

(b) X 
I
X 

I
X

d (x) =

d(x) —12 d" (x)= 0 in

I (d 
1 

)= - {d2-02d2Idv
2 i/

I (d =e-lx111) =1F

1
Crack "surface area": F1 (d) :=

21

(a) (b)

4d)

Regularized crack geometry
with different length scales

d2+12d2}dV

Miehe, 2010



5 Peridynamic overview

Integral formulation: A %-)H T  Šio -rcto)i cb

"In peridynamics, cracks are part of the solution, not part of the problem"
- F. Bobaru

Convergence for 2D crack branching:
(Ha, Bobaru 2010)

•Ea

Brittle and Ductile Failure in 3D:
(Parks 2012)



6 Peridynamic overview

• Integral formulation of continuum mechanics originally proposed by
Stewart Silling in 2000.

D Stress is replaced with long-range forces, T 6 f.
J Bond ) := x°0 x.

Classical control volume, normal ii and
traction vector :h.

Peridynamic bond ) and bond-force T 6 i.

fli.1 = sfri T 610 Tc&)id)



7 Peridynamic overview

The horizon at x is given

H(x) = 
) 
) ceR3 I () + x) ceB, l) I < "

A vector-state A [x] at a point x ceB is a function

A [x] 8i : H(x) R3.

Deformation vector-state: 1( [x]È i = y(x + ) ) 0 y(x)

*

' ) ceH (x).



8 Peridynamic overview

Classical Continuum Peridynamics

Deformation Measure F = C5y Y 

Conjugate Force P(F) T  (Y  )

Angular Momentum PFT = FP T 0 = sH T  610 Y  El d)

Elasticity P = C5A(F) T = -i4(Y  )

Kinematics det(F) > 0 Y  6i il- O, for 1)1 11 0



9 I Peridynamic bond-breaking (critical stretch)

f8 icos-1(xig)

JO x1 (I— cos-1(xig)

w(0 e dz =

Sub-region of H (x) which
is across the fracture surface

Fracture surface

G,

2

Schematic for the domain of integration (modified from Silling 2005).

Limitations

1. Discontinuous force-displacement response when
discretized

2. Griffith fracture as 6 0
(horizon/dispersion tied to process zone size)

3. Extension to state-based peridynamics not obvious
▪ Foster 2011 energy based bond-failure criterion

▪ Tupek 2014 instantaneous bond-energy failure criterion

Tupek 2013 pairwise damage criterion
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10 Nonlocal measure of crack surface area

Rethink as geometric regularization using damage "state" d()

16 .Q 14 (x)Ac,(d) d(*) cl.() cl' dx

where

f6 f6 icos 1(xig)
d(0 a ck dxi

JO x1J—cos i(xi/e)

Then solution

satisfies

d* = arg { inf A(d)
dEIN

w { d
Ac(ak) = F

1/2

0 < cl() < 1, \v/. E 7-1(x), ex E S2,

d() = 1 for bonds cut by surface

crack surface area F



11 Variational peridynamic fracture (general statement)

{y*, e} = arg { inf ,C(y, d)
deD, y(x)=ST for xEQE

L(y, d)

D = {d

Dynamics:

lo /P(Y, d) dV + G ,A,,(d) ,

,

0 < d[xX < 1, \Vi . E 74(x), V x E Q. }

t2

S(y, Sr, d) := f [L(y, d) — f 12ST2 dll dt
1 

Q 2

PS  r m(t) = — i Oy L (y (t) , d(t);

d(t) = arg inf £ (y (t) , d(t))
d(t) ED



12 Specialization to bond-based

Bond-based peridynamic strain energy

tp(Y) — —; 11
,--,(e),_2() cl

Variational bond-based peridynamic fracture

0 (fl IL) = z ft cD(0 e() :9' (L1()) ck + G c

Simplifies to bond-wise minimization problem

d* = arg min {/P:q(d) + 77(61\-t(d) 1
dlo<d<1



13 Degradation and surface potential options

1.0

0.8

0.6

0.4

0.2

0.0

bond-break

phase-field

threshold

damage-cap

0.0 0.5 1.0 1.5 2.0

strain

2.5

• Effectively a pair-wise potential

• Satisfy Lipton's conditions for

convex-concave potentials?

Lipton, 2014

3.0 3.5 4 0

bond-break (critical stretch)
gi (d) = 1 — d, hi(d) = d

phase-field
g2(d) = (1 — d)2 , h2(d) = d2

threshold
g2(d) = (1 — c)2 , h1(d) = d

damage-cap
(d) = (1 — d), h2(d) = d2

Degradation functions: Damage potentials:

g 1(d) = 1 — d h 1 (d) = d

g 2 (d) = (1 — d)2 h 2 (d) = d2



14 Effective traction-separation for prescribed motion
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15 Effective traction-separation for prescribed motion (coarse mesh)

80

70

60

50

4-1

0 40

t-1-1
30

20

10

0
0.00

80

70

60

50

30

20

10

0
0.00

8 particles

0.02

14 

0.04 0.06

u

5=3.2E-03

5=1.0E-03

5=3.2E-04

6=1.0E-04

6=3.2E-05

45=1.0E-05

0.08 0.10

- 5=3.2E-03

- 5=1.0E-03

- 5=3.2E-04

- 6=1.0E-04

- 6=3 .2 E-05

- 5=1.0E-05

threshold

70

60

50

3-1 40

t-1-1
30

20

10

0
0.00

5=3.2E-03

6=1.0E-03

- 6=3.2 E-04

- 45= 1.0E-04

- 3=3 .2 E-05

5=1.0E-05

phase-field

80

70

60

50

4-1 40

30

20

10

0
0.00

0.02 0.04

u
0.06 0.08 0.10

- 5=3 .2 E-03

- 5=1.0E-03

- 5=3.2E-04

- 6= 1.0E-04

6=3.2 E-05

- 45=1.0E-05

damage-cap

0.02 0.04 0.06

u
0.08 0.10 0.02 0.04 0.06

u
0.08 0.10



Quasi-brittle variational peridynamic fracture

F, u

1100 mm

Three-point bend test of concrete

Nominal bulk properties:

E = 32 GPa = 0.25 ci, = 4.15 M Pa Gc= 0.16 N/ mm

Criti 
5G, 

cal stretch model says: E
2 
=  -.-

► 6 = 248 mm
c 90

Roesler et al., 2007

Geelen et al., 2018



17 1 Cohesive degradation functions

Bond-wise free energy: r0 (d) = ftP g (d) 11!5 G d

Stationarity: ftP(d) = ftP g1 (d) G — 0
c —

Cohesive degradation: g/(0) = —m, m = 
10c6

Quasi-linear degradation Geelen et al., 2018
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18 Three-point bend simulations (preliminary, 2D)
F, u

Implemented in Peridigm

initial state

8

20

15

0
0.0 0.1 0.2 0.3 0.4

opening displacement

250 mm

1 250/ 3 mm
io

1
14

1000 mm I

-,

Al

'IWO min
.-

expl

exp2

exp3

criticalstretch

0.5 0.6

final state

baseline 6 = 15 mm

smaller 6 = 12 mm

baseline mesh: 55,000 particles

finer mesh: 98,000 particles

1
1



19 Practical considerations

Irreversibility:

Bond-damage only increases

Modify constraint on the damage-state evolution

D = 
{d d[x]() ? C]0 < d[x]() < 1, V c 7-t(x), Vx E Q.1

Tension/compression asymmetry

Decompose bond-strain into positive and negative energetic contributions

o Only degrade the tensile part and only damage when in tension

0(c, d) = ii Lc:)(0 (c2+().-,c(d(» +c2()) ck+GcL d(Oh(L1 ))ck

E K) = 
{Elp()

for E( .) > o

otherwise

L_K) = L-K) — f+Ke).



20 State-based bond-breaking criterion

— ! !
. . ,,,, . ii

, !
Elastic free energy density: Ai(x) = 

1 
trt „ A + ptrt „ A2

Bond integrity: „ 6 i = {1 for intact bonds, 0 for severed bonds}

T here are multiple ways to define the bond-energy:

Average bqnd-energy l nst ant aneoup bond-energy
ktrt „ Á + 1.1„ yetŠi Ši:=/trt „ Á + Ti„ yetŠisave 61 := Sinst

Foster, et al. 2011 proposed the work done on the bond:

/ t

T Š i -)? Š i dt.SworkE 1 (t) :=

We use the instantaneous bond-energy:

0

s.nst Ši := A Ši—i ,

J The instantaneous bond-energy is the energy dissipated when
severing a single bond (all other bonds held fixed).

j In general: Sinst E Swork •
I

Sandia
Piniional
labratories



21 Beyond bond-based

• Moded crack propagation for low
impact velocities

j Crack branching at higher
velocities

• fl = 1180 kg/ m3, E = 3.5 GPa,

= 0.35, G, = 400 J/ m2

vo = 50.5 m/ s

.I. in

A

FT 1-1
illi

Fri:4mile(= iii
>

ji4 in ncierch

1 1 1 i

vo = 65.9 m/ s

Coherent gradient sensing: experimental results of Umberger and Love, 2010.

•



22 Crack branching vs. impact velocity

vo = 15 m/ s

7

vo = 35 m/ s

vo = 25 m/ s

vo = 50 m/ s

❑



23 Beyond bond-based peridynamics

CAA
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2217G

39424

G15.00

109104

109867*

Erie eiesvs, time

0.0002 cimos
tlme [s]

0.00.01

Dissipated energy over time for varying particle densities, with vo = 15 m/ s.

number of discrete particles
9,856
22,176
39,424
61,600
109,104

109,867 (unstructured)

crack length
4 mm
12 mm
11 mm
11 mm
10 mm
10 mm

dissipated energy
2.5 J
4.6 J
4.4 J
4.4 J
4.2 J
4.1 J

cohesive energy
620 J/ m2

400 J/ m2
420 J/ m2
410 J/ m2
420 J/ m2
410 J/ m2



24  Kalthoff-Winkler Test

0.2m

0.1m

0.05m
I

—Vo

J Based on experiments by Kalthoff, Winkler 1987.

j fl = 8000 kg/ m3, E = 190 GPa, ( = 0.3 and Gc = 22, 000 J/ m2.

J Impact velocity: vo = 16 m/s.

j Experimental crack propagation angle of 701.



25 Kalthoff-Winkler Validation

h = 1.2 mm
" = 5.0 mm

h = 0.8 mm
" = 5.0 mm

h = 1.0 mm
" = 5.0 mm

h = 0.4 mm
" = 1.8 mm



26 Beyond bond-based peridynamics

Extension to state-based is obvious ... but not trivial to implement!

Most straightforward extension (linear peridynamic solid with damage):

7/)(L, LT) = -; (4 -c3 (-) E(') 'j(d()) dO 2 + _A2 Lc.--0(,,f2,,, .Aq de)) ci . + G, L ai()ii(iil(e)) de
v /

Requires solving a quadratic programming problem over each horizon!

Also seems to imply that neither

• Foster 2011 bond-work criterion

• Tupek 2014 instantaneous energy criterion

will asymptotically dissipate G, as 6 0 (under general loadings).

1

4



27 Undiscussed features and opportunities

Other features not covered
Evidence of numerical convergence (more work needed)

Obvious how to incorporate irreversibility

Obvious how to decompose into positive and negative strains

• Opportunities (challenges)
• Leverage optimization structure for better performance/robustness

• Mathematical analysis

• Mixed-mode cohesive models

• Anisotropy

Plasticity

Established a clear connection between peridynamic and phase-field

fracture modeling!

Developments in one field can now easily be ported to the other

Demonstrated how to decouple the horizon size from process zone size



A phase field cohesive model

• Regularized phase field model by Lorentz, et al. 2011
• Shown to converge to cohesive zone model as L o

pu = V • 0, a = q(d)   Momentum balance

Phase field equation

Degradation

d
a
m
a
g
e
 p
ro

fi
le

 

gi(d*e+ + k = CV2¢

(1— d)2
(d)g =

1 + - 2)(71 + (1 + pm)d2

0,8

0,6

0,4

0,2

0
-1 -0,5 0 0,5

opening displacement
1 2 3 4

x coordinate
5



Parameters of damage model

Depends on cohesive fracture parameters:

3 Ge 3 EG,
k = 

4 L 
c = —

3
LG, =  

8 2

Physically justified constraints on the parameters ensure

• Regularization length scale resolves fracture process zone
3 EG„

L < 
2(p + 2) a e2

• Monotonic stress decay
p > 1

cohesive forces

1 11.
  t t

fracture process zone length
EG,



301 Computational challenges of fracture

• Fracture is characterized by the separation/failure of material,
leading to the formation of new surfaces!

• Both the mechanics of fracture and the geometry of the cracks
are difficult to model and simulate with finite elements,
especially in three dimensions

Slide borrowed from Prof. John Dolbow
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32 Overview

Motivations for phase-field fracture

. Regularization of ill-posed local damage models

. Regularization of variational fracture mechanics

Connections to

. LEFM

. gradient damage models

. cohesive models

Some results

Ongoing work



Classical damage models: ilI-posed

Fracture modeling is critical to predicting the performance and
reliability of many Sandia components and systems

Most local damage models used at Sandia (and elsewhere) are ill-
posed and non-convergent

Max principal stress criterion with element death shows significant mesh dependence

Fine mesh



34 Classical local damage model

Consider a purely local model of damage

Stress-strain relationship

a(x, t) = (1 — d(x, 0)C -(x, 0

Strain-displacement

-(x, t) = r su(x, t)



Classical local damage models:
35  non-convergent

L u

F F=A o

Cr A

ft

E
0 

6
f
 8

number of elements

1

-

u Jirasek, 2002



36 Gradient damage

Basic idea: replace Y with a non-local version:

d(: , t)) = D 1m, T( 4(x, ,

Integral-type models (Pijaudier-Cabot and Bazant, 1987) employ a non-
local state variable, e.g.

i4(x, t) = (x, z) Y(z, t) dz

v,

Gradient-type models (de Borst et. al, 1995)

S-4(x, 0 — cA Y(x, 0 = Y(x, t) in E nr Y = 0 on



37 Variational fracture mechanics

Direct extension of Griffith's original idea

Emphasizes energy dissipation due to surface creation

(vs. fracture toughness)

pot(U, I-) - e(r su) dv + G, da

r

Large literature with validation and existence/uniqueness proofs

Similar to max-energy-release-rate crack direction criteria

Generalizes to branching, discrete crack jumps, etc.

Reduces to LEFM in applicable cases

"The variational approach to fracture", Bourdin, Francfort, Marigo, 2008



38 Phase field models

• Phase field models are
mathematical models for solving
interfacial problems!

• The method substitutes boundary
conditions at the interface by a
PDE for an auxiliary field, called
the phase field, that takes the role
of an order parameter!

• Values of the phase field are used
to identify regions of the domain!

• As the phase field is evolved in
time, the geometry of the interface
(or crack) is likewise evolved

1

X.
A two-phase microstructure (top)
and the phase-field variable along
a horizontal line (bottom)



39 Phase field fracture

Variational fracture potential energy:

pot(u, — e(r su) dv + Gc da

r

Elliptically regularized potential energy:

i(u,d) -

Approximate surface integral
by a volume integral

e(r su) dv + Gcy, dv

Common crack density:
0

= + c112
21 2

Stress degradation:

g = (1 — d)2

c = 1

c = 0



40 Surface regularization intuition

1 d(x)

(a)

d(x)

(b) X
1
X 

I
X

d(x)=e-Ixo

d(x) —12d" (x) = 0 in /
1 2

I (d) = {d- +1- d -} dV
2 ,4

I (d =e-lx71) =1F

1
Crack "surface area": F 1(d) :=

b)

Regularized crack geometry
with different length scale

Miehe, 2010

d2 +12d2} dV



41 Relation to LEFM

• Example J integral calculation using phase field models

• Stable propagation at J - Gc = 1.5 (error decreases as L 0 )

a b

c

Di
sp

la
ce

me
nt

, 
ux
 

3

2

1

- ux(numerical)

- ux(analytical)

o i
-10 -5 0

y

5 1 0

d

5
), 4

ux (analytical)

ux(numerical)

-10 0 10 20 30 40 50
x

60

50

40 i

30 a)
,-

20 0ct
10 c i-5

0.   0
20 10 20 30 40 50

Time, t

Hossain, 2014



1 SM demo: Thick "Moon"

phase_teld

1 000e+00

7 500e-01

5 000e-01

2 500e-01

0 000e+00



1 SM demo: hollow cylinder

1.0000+00
7 500e-01
5 000e-01
2 500e-01
000e+00



44  Anatomy of a phase field model

Helmholtz free energy density:

g(d)e + IP, + 
Ge 

h(d) + c GCeW / 1VC/12
/

/

degradation
damage potential damage gradient potential

Undamaged tensile
strain energy

Undamaged compressive
strain energy



45 Anatomy of a phase field model

Euler-Lagrange:
G, 

gi 
(, , , 

(d 
,,

c1)1P-eF +  h
1 )

aGelV2d

A specific form of more general class of "gradient damage" models

A very classic gradient damage model: j /2v2ci
(related to integral nonlocal regularization) a

Proposed definition for phase field fracture models:

d

"A gradient damage model with a well defined surface energy as L 0 "



46 Damage potential

W g (d) 0-eF

classical: h (d)

threshold: h (d)
1.0

0.8

0.6

0.4

0.2

0.0
—1.0

+ f0 + 
G, 

h(d) + c
2
Gellycl12 1

1
Idamage potential

i

d2

2

d

A
—

  Classical

Threshold

—0.5 0.0 0.5 1.0

d 12 v2 d o

1 12v2d o

i
Surface geometry
Euler-Lagrange equations

Influences through crack
damage profile

1

I

I
1
I



471 Degradation function

g(c1)4i,F tO 
2

 h(d) (Gcl c112
degradation

classical: g (d) = (1 — d)2

Borden Hughes: g (d) = (1 — d)3

(1 — d)2
Lorentz: g (d) =  

1 (m — 2)d + (1 + pm)d2

1 — d
Newly proposed: g(d) =  

1 + (,cb̀-Tc ei 1)d
Influences stress decay shape



48 Limitations to standard phase field

• No threshold, some damage for any e 1 0

• Regularization length scale tied directly to fracture propertie5nax =

Standard phase field

1
t

L - 0.015

amax

9

16 6L

Lorentz gradient damage

250e6 Gc = 100e3 E — 200e9



491 Relationship to cohesive zone models

t

7.2

u Uc

3.6

branch

kink

0.053

0.04

•.„, „ 1111 r; ; h;

0 01

0.04

• ,..4 ,4
1100.11ii..11,0 11.

0.04

0.06

Traction separation law Mesh dependence using cohesive networks



A phase field cohesive model

• Regularized phase field model by Lorentz, et al. 2011
• Shown to converge to cohesive zone model as L o

pu = V • 0, a = q(d)   Momentum balance

Phase field equation

Degradation

d
a
m
a
g
e
 p
ro

fi
le

 

gi(d*e+ + k = CV2¢

(1— d)2
(d)g =

1 + - 2)(71 + (1 + pm)d2

0,8

0,6

0,4

0,2

0
-1 -0,5 0 0,5

opening displacement
1 2 3 4

x coordinate
5



Parameters of damage model

Depends on cohesive fracture parameters:

3 Ge 3 EG,
k = 

4 L 
c = —

3
LG, =  

8 2

Physically justified constraints on the parameters ensure

• Regularization length scale resolves fracture process zone
3 EG„

L < 
2(p + 2) a e2

• Monotonic stress decay
p > 1

cohesive forces

1 11.
  t t

fracture process zone length
EG,



52 Designing a phase field model

t

Given an extrinsic cohesive model,
can we design a phase field model?



53 Designing a phase field model

t

Given an extrinsic cohesive model,
can we design a phase field model?

g (d) =
1 + (

u

1 — d

uc

h(d) =

(0)0-,F Gle = 0

g, (1)0;F GIG 0

1)d

=

  V),±/2 = const



54 Kalthoff "validation"

Kalthoff Experiment

10 cm

Damage contour

Achieves the expected crack
propagation angle: -70°



55 Mesh insensitivity

Pressure contours for dynamic crack propagation

Medium mesh: 250k elements Fine mesh: 1,000k elements



56 Mode-I: Length scale refinement

v = 25 m/s
Length-scale decreases with Ax

0.05 m

71.5 thousand elements

Gc = 4e5

14.4 million
elements

damage
1.000e+00

0.75

-0.5

(D.25

0.000e+00



57 Accuracy

30000

20000

10000

—10000

—20000

—30000

—40000
0.00000 0.00005 0.00010 0.00015 0.00020 0.00025 0.00030 0.00035 0.00040

Total numerical energy is preserved

— Elastic energy

— Kinetic energy

— Damage energy

— External energy

— Total energy
---_______

--------------

______________-----------

10°

10-1

Dissipated fracture energy error

— Fixed lengthscale, reducing tirnestep

— Reducing lengthscale and tirnestep

103

Nodes X

• Convergence rate of -1 for fixed length scale

• Convergence rate of -0.5 otherwise

• Dissipation due to viscous regularization is non-negligible



I Importance of fracture energy
Mode-I crack transition to branching

High Gc

velo_ Y
40-i

120

40

Branching is emergent, not prescriptive

-0

1-20



59 Branching: mesh insensitivity

------___:,---- -\___fv--

1.4 million elements 4.1 million elements 11.8 million
elements

Runs in -5 hours on 1 GPU



Thermally loaded glass-metal interface

Lo:

Mc

Initial verticai crack itropmpi%4.avratopserved crack path
Evi=.4-1 1-11 ri llcT 1-1 1 -ers c ft-A .1^111-1 4'1 cl Yral A A-rl 41 i=. Crl el C C t'Y'l F.-1-rd 1 In -1-i=. -efri r-i=.

1.5 million element simulation runs in 6 hours on 1 GPU



Demonstrations in 3D

Ceramic impact Brittle torsion fracture

• Captures complex 3D crack patterns

• No explicit geometry representation

• Naturally predicts initiation, branching and coalescence



1 Brittle impact demonstration



• Can use hyperbolic time step if: 77 >  

Parabolic regularization

• For explicitly integrated dynamic problems, solving a
nonlinear phase field equation is VERY expensive

• Add a viscous regularization (e.g., Miehe 2010)

1/700 gi(0)/1eF  k + cV20, i)0> 0
• Integrate parabolic equation explicitly!

1
• Hyperbolic time step constraint: At < —Ax

s

\• Parabolic time step constraint: At < Ti —tLAx)2
c
c 3 GC L

sAx 8 s Ax



Reintroducing the Lorentz model

An elliptic regularization of a cohesive zone model.

Has a natural critical strain energy criterion.

Decouples the regularization length scale from the process zone size (though
Lorentz argues on physical grounds that the regularization length scale must be
smaller than the process zone size).

Added the now standard decomposition into positive and negative strain energies.

Irreversibility introduces via ¢ > 0 .

However, VERY expensive to solve a nonlinear inequality constrained elliptic PDE,
especially for explicitly integrated transient dynamics.



651 Toward scalable multiscale failure modeling
The Problem:
Potential pervasive fracture/failure of NASA

experimental equipment

GFEM0
Scale-bridging framework

Flgra• Dv rteDaerd mammal ear Caner an]
Lander Ilerearet pavan naanrealanar Were,
and nate Yana A • smile maw

XFEM
Discontinuity representation

The Approach:
Develop a multiscale fracture simulation capability

for accurately resolving fine-scale fractures at scale,

based on...

Cracked domain

fro

Phase field
Detailed fracture path prediction

(Gupta et al. 2012, Tupek 2016)



66 Poroelastic phase field fracture

Arpeggio coupled simulation:
pore pressure injection with pipe
leak

0.00178

0.00176

0.00174

0 100000

Mesh Convergence

2001E0 300000 400000

Number of Elements

Work with UC-Boulder collaborators, notably student David Culp

500000



67 1 Research on ductile phase field fracture

Components:
o FeFp hyperelastic plasticity model

, Driving energy:
max(undamaged strain energy + undamaged plastic work)

, Linear hardening model

Two models coded:
, "Classical"

0 = c2 * mex (ilie (ee) + ilip (ep)) + _GLIci (0_ — c)2 
+ 442 (VC)2)

o "Threshold"

ii) = c2 * max (11; e (E e) + 11iP (EP)) + 11)crit (2 (1- — c) + 442 (V02)

11) ' =crit 41



68 Output - Fields

Deformed View (Visual threshold at c=0.5):

AY

Phase Held - Coherence EQ S
5.0e-01 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1.0e+00

Phase Field

-7.0e-02 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.9e+00

EQPS



Undeformed View (Visual threshold at c=0.5):

Undeformed View (No visual threshold, zoomed):

Phase Field EQPS



70 Preliminary Results

Working toward getting convergent force-displacement results

4500
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o
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Force vs. Displacement
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0   0
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Displacement [Pins] (in.) Displacement [Pins] (in.)

Fracture Energy vs. Displacement

• There are a lot of caveats here that are still being worked out
• Illustrates the ultimate goal: convergent ductile fracture
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71  Preliminary Results

Working toward getting convergent force-displacement results
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4000

Force vs. Displacement
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0
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0
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Fracture Energy vs. Displacement

e.g. is this left over stress acceptable?

• There are a lot of caveats here that are still being worked out
• Illustrates the ultimate goal: convergent ductile fracture



Conclusions and future work

Advantages

' Simple to implement

Efficient phase-field models can be constructed which are either cohesive or LEFM

•Method is trivially thread scalable (and MPI scalable)

•Explicit time integration is possible and reasonably efficient

•No need for J-integrals or auxiliary propagation direction criterion

•Crack propagation, branching, coalescence is a prediction (not a prescription) of the
model



Conclusions and future work

Disadvantages

No explicit surfaces created

• Surprisingly significant dependence on
• Degradation and damage potential model forms

• Tensile/compressive strain energy split

• Solver strategies (staggered, monolithic, etc.)

• Conditioning coefficient

Numerical damage smearing

-Requires resolving damage length scale
• May be fracture process zone size, then similar or just slightly more expensive than other methods
• If process zone size is small, length must be small compared to geometry

•Computationally expensive?


