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Abstract

In the Target-matrix Optimization Paradigm (TMOP), it’s long been un-
derstood that one must create a set of target matrices before the mesh can
be optimized. But there is still no general method to create correct, effective
targets in response to a specific mesh quality improvement goal. The TMOP
literature describes how certain sets of target matrices can be used to control
the shape or size of mesh elements, but those examples address only a frac-
tion of the problems that can occur in mesh quality improvement and were
not derived from a general framework for target matrix construction. In this
work, a general method of target construction is introduced based on an in-
dependent set of geometric parameters which are intrinsic to the Jacobian
matrices upon which TMOP is based. The parameters enable a systematic
approach to target definition and construction. The approach entails two
parts. The first part defines correspondences between available raw data
(stuff about the mesh and/or the physical solution) and intermediate data
(e.g., a field of error estimates). Once the correspondences are established,
the raw data is processed into intermediate field data existing on mesh sam-
ple points. The second part is to create a model that represents the values of
the geometric target parameters as functions of the intermediate data. The
model is then tested numerically to establish model constants and effective-
ness. This systematic approach to target construction is illustrated in a set
of examples to show how it can be applied to common problems in mesh
optimization such as equidistribution of geometric properties, preservation
of existing good quality, and adaptation of the mesh to the solution. The
result is a systematic method of target construction for TMOP which can be
applied to a wide variety of planar and volume mesh quality improvement
tasks.



Chapter 1

Introduction

Mesh quality may be defined as those features of a mesh which impact simu-
lation robustness, accuracy, and efficiency. Features such as mesh resolution,
the spatial distribution of the nodes, mesh geometry, mesh smoothness, mesh
topology, the type of elements in the mesh, and order of the element basis
functions (if any), can all be considered to be aspects of mesh quality. In
any simulation, the practitioner should be concerned with the quality of the
meshes they are using. The quality of meshes can sometimes be assessed vi-
sually, through the use of mesh diagnostics, and/or values of quality metrics.
Sometimes a mesh quality issue is first noticed through the examination of
the numerical solution. If a quality issue is identified by any of these means
one most likely will want to consider methods for improving the mesh qual-
ity. Mesh optimization via node-movement strategies (such as TMOP) is
one option.

1.1 Introduction to Mesh Quality Improvement

Mesh generation is a numerical procedure used to create meshes on a given
physical domain. Often these meshes lack sufficient ‘quality’ according to
one measure or another. In mesh quality improvement (MQI), one pre-
supposes the existence of an initial mesh whose quality is to be improved,
through various methods. Two basic categories of mesh quality improve-
ment methods are mesh topology changes and node movement. In general,
the term ‘mesh optimization’ is often used inter-changeably with the term
‘mesh quality improvement’ and can include both topology changes and
node-movement. However, for our purposes, we refer to mesh optimization
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as a numerical optimization method in which the initial mesh vertex coordi-
nates are changed (thus creating node-movement) in order to minimize an
objective function that is a function of the coordinates and which represents
a measure of global mesh quality.

A considerable number of mesh optimization methods have been proposed
over the years. One of the more famous methods is the variational method
leading to the Winslow smoothing procedure [16]. In this procedure, the
Euler-Lagrange equations of the variational principle consist of a homoge-
nous, quasi-linear, second-order elliptic set of partial differential equations.
The method yields smooth, non-inverted meshes on any given physical do-
main. The method has been extended to multi-block structured and finite
element meshes.

Winslow is an example of an unweighted optimization method, i.e., a method
which does not employ problem-specific weightings. Unweighted mesh opti-
mization methods essentially provide a ‘generic’ mesh optimization method
in which details of the mesh improvement problem are not taken into ac-
count. There is only one solution to the Winslow equations and thus only
one optimal mesh exists for a given domain. If the Winslow mesh lacks suf-
ficient quality with respect to a particular application, there is nothing one
can do. To address this issue, many mesh optimization methods introduce
weighting functions to create weighted methods that can potentially control
the properties of the optimal mesh. In the case of Winslow, for example,
weighting functions P and Q convert the set of elliptic equations to a set
of Poisson equations [15]. By selecting appropriate forms and values for the
weighting functions one can control additional properties of the mesh in ad-
dition to smoothness (e.g., clustering of mesh vertices towards a particular
point in the domain).

Ever since the introduction of such weightings, a major issue in mesh op-
timization has been to find weighting functions (forms) and values which
achieve the desired quality improvement. To this point, success has been
rather mixed and so efforts continue to strengthen this aspect of mesh op-
timization. This situation was a major motivation for the creation of the
Target-Matrix Optimization Paradigm (TMOP) [11]. In order to address
the full range of situations in which the issue of mesh quality arises, TMOP
introduces weighting functions in the form of ‘target-matrices’ which, unlike
P and Q, have a well understood geometric meaning. While the P and Q
functions appear in the equations as ‘source’ terms, the target-matrices in
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TMOP are more akin to matrix coefficients, as in the Harmonic mapping
approach. A major thrust in TMOP is to describe not only the targets but
the entire process of target-matrix construction, in which one starts with a
specific mesh quality improvement problem and proceeds through various
steps until a full set of target-matrices has been determined, prior to numer-
ical optimization. This report summarizes what is currently known about
the targets and this procedure.

Mesh quality improvement is desired when one or more features of the ex-
isting mesh is judged inadequate. There are a surprising number of different
mesh quality improvement goals and contexts in which these goals arise,
as can be seen in the following non-exhaustive list. Each of these goals
requires an appropriate set of target-matrices, along with proper selection
of quality metrics, objective functions, and other tools in mesh optimization.

Common mesh quality improvement goals:

1. Geometric mesh improvement:

(a) Make the initial mesh smoother,

(b) Fix locations in the initial mesh having negative volumes or in-
verted elements,

(c) Improve excessively small or large angles within the initial mesh,

(d) Increase the length of ‘short’ edges in the initial mesh,

(e) Improve the mesh quality in some transition region (e.g., between
regions having different element types),

(f) Improve inter-element orthogonality and/or volume ratios,

(g) Improve just the worst-quality elements in the initial mesh,

(h) Ensure that the improved mesh has quality at least as good as
the initial mesh,

(i) Remove any oscillations or wriggles in the mesh lines of the initial
mesh,

(j) Remove any element ‘hour-glassing’ present in the initial mesh,

(k) Improve the mesh quality but don’t let the vertices move too far
from their initial position,

(l) Adapt local element areas/volumes of a surface mesh according
to surface curvature or other geometric criterion,
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(m) Increase the planarity of elements in a surface mesh or the pla-
narity of faces of 3D hexahedral elements,

(n) Maintain initial mesh quality (and features) as the domain on
which the mesh resides is deformed,

(o) Improve mesh quality on or near the mesh boundary,

(p) Slide mesh vertices tangentially along an internal interface within
the domain.

2. Mesh improvement by adapting the mesh to the physical solution or
to discretization error:

(a) Improve mesh quality in some physical transition region (e.g.,
between boundary layer and far-field),

(b) Adapt local element area/volume according to one or more ma-
terial indicator or volume fraction functions,

(c) Adapt local element area/volume according to a posteriori error
estimates or to the interpolation error,

(d) Adapt inter-element spacing to match jump in density across ma-
terial interface,

(e) Create properly oriented, anisotropic elements according to some
feature of the physical solution (e.g. a shock),

(f) Alignment of mesh elements with a physical vector field (e.g.,
velocity field, electric field, magnetic field).

Various combinations of the above goals are often needed as well. To fully
exploit the Target-Matrix Paradigm one must understand how to construct
a set of target-matrices for each of these goals. Some of these goals require
not only the right set of target-matrices but also the correct metric type,
objective function template, and/or tradeoff coefficients.

1.2 Introduction to the Target-Matrix Paradigm

The basic objects and concepts used in the Target-matrix Optimization
Paradigm (TMOP) are reviewed in order to set the stage for this study on
target-construction.
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1.2.1 Sample Points

TMOP assumes that, for each mesh element, there is a map from a logical
element to the physical element. The basis of the map is specified prior
to optimization, and can be low-order (i.e., first-order) or high-order (or-
der greater than first). The logical element is determined by the element
type (e.g., triangle, quadrilateral, tetrahedron, hexahedron, etc.). So, unless
the mesh is a hybrid mesh, there is only one logical element for the entire
mesh. In contrast, there are usually many different physical elements in the
mesh on the physical domain. For each physical element, one map from
the logical element to the physical element is defined. The basis of each
element map is usually the same, but the mappings differ because the map
is also defined in terms of the coordinates of physical nodes within each
element. The nodal coordinates are different on each element. Moreover,
the numbering scheme for each element is important. In particular, the cor-
respondence between the first logical and first physical node is important
in creating anisotropic elements in the correct direction. A point within a
two-dimensional logical element has logical coordinates (ξ, η) while a point
within a three-dimensional logical element has logical coordinates (ξ, η, ζ).
A sample point is a fixed point within the logical element at which we wish
to measure local quality. Prior to mesh optimization, a set of sample points
within the logical element is selected and remains fixed throughout the opti-
mization procedure. This set of sample points could be, for example, the set
of Gaussian integration points within the element. Let the sample points be
denoted by (ξi,j , ηi,j) for 2D elements and (ξi,j,`, ηi,j,`, ζi,j,`) for 3D elements.
The sample points can also be assigned a global index k so that (ξk, ηk)
indicates the k-th sample point within a 2D mesh. Each sample point has
a corresponding location (xk, yk) or (xk, yk, zk) in physical space. Unlike
the logical coordinates, the coordinates of the physical sample points may
change during the optimization procedure when a node-movement strategy
is applied.

1.2.2 Active-Matrices

Basic facts concerning active-matrices are given here, which apply to any
active-matrix no matter the situation or context. At every sample point,
TMOP requires both an active and a target matrix. For meshes in <d, the
active matrix is a d × d matrix and thus has d2 elements. 1 The active-

1The active-matrix is 3× 2 for a mesh on some surface.
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matrix is denoted by A and the active-matrix at sample point k (a global
index) is Ak. In general, then, the active-matrix can vary from one sample
point to the next. The d2 elements of A are Ai,j with i = 1, . . . , d and
j = 1, . . . , d. The active-matrix represents the Jacobian of the map from
the logical element to a physical element of the active mesh. The active ma-
trix is a function of the nodal coordinates of the element and thus changes
during the mesh optimization procedure. The determinant of A is denoted
by α. An important goal of mesh optimization is to ensure that, in the
optimal mesh, α > 0 at each sample point. Occasionally we make use of
the notation A = [a1,a2] in which the two vectors are the column vectors
of A2×2 or A = [a1,a2,a3] when d = 3. The collection of active-matrices
{A} is the set of all active-matrices in the mesh; thus Ak ∈ {A} for all k.
We call {A} the Active-matrix Set. In general, Ak changes as the mesh is
optimized, which is why the terminology ‘active matrix’ is used.

1.2.3 Target-Matrices

Basic facts concerning target-matrices are given here, which apply to any
target-matrix no matter the situation or context. At every sample point,
TMOP requires both an active and a target matrix. For meshes in <d, the
target matrix is a d×d matrix and thus has d2 elements.2 The target-matrix
is denoted by W and the target matrix at sample point k (a global index) is
Wk. In general, then, the target-matrix can vary from one sample point to
the next. The d2 elements of W are Wi,j with i = 1, . . . , d and j = 1, . . . , d.
The target matrix represents the ideal Jacobian matrix towards which the
active matrix will evolve during the mesh optimization procedure. The de-
terminant of W is denoted by ω. A fundamental assumption we make is that,
by construction, ω > 0. This ensures that the target-matrix represents a
location in the mesh at which the ideal Jacobian determinant is positive and
that W−1 exists. Occasionally we make use of the notation W = [w1,w2] in
which the two vectors are the column vectors of W2×2 or W = [w1,w2,w3]
when d = 3. There is no essential difference between targets for low-order
meshes and targets for high-order meshes. Targets can provide a specific
problem-dependent definition of mesh quality.

The collection of target-matrices {W} is the set of all target-matrices in the
mesh; thus Wk ∈ {W} for all k. We call {W} the Target-matrix Set. The

2The target-matrix is 3× 2 for a mesh on some surface.
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target-matrix set need not be self-consistent, i.e, the set does not necessar-
ily imply that a corresponding mesh exists. This is not a major difficulty
because in mesh optimization the objective function implicitly defines a
‘compromise’ between inconsistent sets of targets (e.g. as in Least Squares
methods). However, the more the targets can be made to correspond to a
mesh which exists, the more the optimal mesh will improve quality. This is
one reason why the target-construction phase is so important. The target-
matrix set is defined prior to the beginning of the mesh optimization proce-
dure. In general, the set will be different for every particular mesh and every
mesh quality improvement goal. Target-matrix set ‘smoothness’ (however
that is defined) is necessary if the optimal mesh is to be smooth.

The target-matrix set remains unchanged as mesh nodes move because each
target-matrix in the set is associated with a particular sample point in log-
ical space. On the other hand, as the mesh is optimized, the image of each
sample point in physical space changes due to node-movement. There are
thus two kinds of target-matrices. The first kind is the logical target-matrix,
whose value remains unchanged as mesh nodes move. Logical targets are
useful when one is concerned with mesh quality improvement of a particular
element. The second kind of target-matrix is the physical target-matrix. In
this situation the value of the target-matrix changes as the mesh is moved
because its value depends on the physical coordinate of the sample point
rather than on its logical coordinate. To evaluate a physical target-matrix
one often must interpolate its value from values on the unchanging target-
matrix set. Physical targets are useful when one is concerned with mesh
quality improvement at particular physical points within the physical do-
main.

1.2.4 Local Quality Metrics

To measure mesh quality, TMOP uses local quality metrics. Local quality
metrics are functions from a matrix to a scalar. The value of a local quality
metric is measured at sample points of the mesh. Two common forms of
local quality metrics are µ = µ(T ) and ν = ν(A,W ), with T = AW−1 the
weighted Jacobian matrix. The values of these metrics are µk = µ(Tk) and
νk = ν(Ak,Wk), where k is the global sample point index. Local quality
metrics are well-posed if they satisfy a certain set of requirements such as
continuity, differentiability, and more. Important categories of local quality
metrics are barrier, non-barrier, pseudo-barrier, and shifted-barrier. Barrier
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metrics are used to ensure that the element mappings remain non-singular
when the initial mappings are non-singular. Pseudo-barrier and shifted-
barrier metrics are used when the initial mappings contain singular points;
their purpose is to simultaneously untangle and optimize the mesh. Sets
of local quality metrics can be combined (via a norm or average) to create
element quality metrics, local patch objective functions, and global objec-
tive functions. Local quality metrics also come in a variety of metric types;
metric types in TMOP will the subject of a follow-on document.

1.2.5 Sets of Matrices

Certain sets of matrices in connection with TMOP have been defined pre-
viously. The main matrix set with which we are concerned is

• Md, the set of d× d matrices with real elements.

The cases d = 2 and d = 3 are important in planar and volume meshing,
respectively. The following subsets of Md also play an important role:

• Ms
d, the set of singular matrices,

• M∼sd =Md \Ms
d, the set of non-singular matrices,

• Mp
d, the set of matrices whose determinant is positive,

• Md
d, the set of degenerate matrices.

Definition.
A matrix X ∈Md is degenerate if one or more of its column vectors is zero.
Define M∼dd to be the set of non-degenerate matrices.

Clearly, Md
d ⊂Ms

d.

1.3 Development of the Target-Matrix Paradigm

Methods for mesh quality improvement via node movement must, in some
fashion, define relations between a definition of mesh quality and the mesh
geometry. For example, if mesh quality is defined to be a solution-adapted
mesh, then various solution-based quantities such as gradient, Hessian, flow-
vectors, error estimates, etc. must be connected to the mesh geometry (i.e.,
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to volume, shape, and orientation). The exact manner in which these rela-
tions are made varies from one MQI method to the next.

While the Target-matrix Paradigm has been studied for some time, the
theory outlined in Section 1.2 is incomplete, particularly with regard to a
general description of how the connection between mesh quality and mesh
geometry is made for each of the mesh quality improvement goals listed in
Section 1.1. This research monograph is a major step in filling this gap.

In Chapter 2, various analytic relationships between mesh geometry and
the Jacobian matrix are explored in order to understand how they can be
exploited in target construction. Section 2.1 deals with the case of planar
meshes whose vertices lie in <2 and A ∈ M2. Section 2.2 deals with the
case of volume meshes whose vertices lie in <3 and A ∈M3. Sections 2.1.1
and 2.2.1 define a standard set of scalar geometric parameters that can be
derived from the Jacobian matrix. Sections 2.1.2 and 2.2.2 deal with the
problem of extracting these parameters from a given matrix so that local
quality metrics may be evaluated. Various geometric extraction vectors and
matrices in Sections 2.1.3 and 2.2.3 are defined; these are also used in the
assessment or evaluation of mesh quality. Taking the opposite point of view,
Sections 2.1.4 and 2.2.4 show how one defines the target matrix given the
values of these geometric parameters. Next, Sections 2.1.5 and 2.2.5 give
a matrix decomposition of the Jacobian matrix in terms of ‘size’, ‘shape’,
and ‘orientation’ factors. The matrix factors motivate a definition (in Sec-
tions 2.1.6 and 2.2.6) of certain relevant matrix sets in addition to those of
Section 1.2.5. In Sections 2.1.7 and 2.2.7 it is shown that if an extracted
matrix belonging to one of these sets is equal to the corresponding target
matrix factor, then the scalar geometric parameters in the extracted matrix
are equal to the scalar geometric target parameters. This type of result is
needed in the definition of quality metrics of a given type. Sections 2.1.8
and 2.2.8 provide a summary of the application of these ideas to the active
and target matrices.

Prior to numerical optimization of the active mesh, one must endow the
targets at every sample point with numerical values by some algorithm. In
the case that no algorithm is available, one must be devised. The process
by which this is done, described in Chapter 3, is called Target Construction.
There are three phases in Target Construction, beginning with formulating a
strategy which takes into account the mesh simulation and context (section
3.1.1), continuing with a determination on which geometric parameters are
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the most important to control (section 3.1.2), and finally, establishing corre-
spondences between raw data and particular geometric parameters (section
3.1.3). In the second phase of Target Construction one identifies sources of
raw data and devises algorithms for converting the raw data to intermediate
data. Intermediate data consists of either mesh functionals (section 3.2.1)
or simulation functionals (section 3.2.2). In the final stage of Target Con-
struction one develops various models relating the functionals to values of
the target geometric parameters (sections 3.3.1 and 3.3.2). In sections 3.5
and 3.6 examples of Target Construction are provided which illustrate how
the construction of targets depends on the mesh quality improvement goal.
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Chapter 2

Relations Between Matrices
& Geometric Parameter Sets

In this chapter a standard set of geometric parameters is defined. The pa-
rameters are related to the elements of any 2×2 or 3×3 matrix, whether or
not the matrix represents the Jacobian of some map. When applied to A,
the parameters represent the local geometry of the active mesh at the sam-
ple point. When applied to W , the parameters represent the local geometry
of the target mesh at the sample point. Various relationships between the
TMOP matrices and their geometric parameters are explored.

From an abstract point of view, the geometric target parameters can be
regarded as a vector p belonging to a subset PW of <d2 , with d = 2 or
3. The matrix W belongs to a subset SW of Md. It is shown that there
exists a mapping F from the set PW to the matrix set SW . The mapping
has an inverse and the mapping is one-to-one and onto when the sets SW
and PW are properly defined. In addition, the active matrix A belongs to
a subset SA of Md; there exists a one-to-one and onto mapping F̃ from SA
to a subset PA of <d2 , again provided the two sets are properly defined. In
general, SW ⊂ SA. We show that, on the set SW , F̃ = F−1, and likewise for
the set SA.

When applied to the active matrix, the mapping F̃ is used to find the local
quality of the active mesh in terms of the geometric parameters. That is,
the active geometric parameters p̃ are regarded as functions of the elements
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of the matrix A. In this case, we write p̃ = F̃(A), and say that the active
geometric parameters have been extracted from the active Jacobian matrix.
This extraction process can be applied to (1) mesh quality assessment, (2)
target construction, and (3) to the evaluation of local quality metrics during
the mesh optimization process.

The mapping F is used to analytically define the target-matrix in terms of
the target geometric parameters, p. That is, given p, the elements of W are
given as functions of the geometric parameters. We can write Wij = Fij(p)
or W = F (p).

2.1 Planar Meshes in <2

Planar meshes contain two-dimensional mesh elements such as triangles,
quadrilaterals, or polygons. While planar meshes can exist in both <2 and
<3, it shall be assumed in this report that a planar mesh belongs to <2. Any
planar mesh in <3 can be transformed into a planar mesh in <2. Each trian-
gular or quadrilateral element in <2 has a mapping from a two-dimensional
logical space to points within the element. The boundaries of the physical
elements can be curved in the high-order element case. Rather than try to
characterize the quality of a planar element directly, TMOP first measures
local quality at sample points within the element. The set of sample points
within an element can then be combined via some averaging technique to
create an element quality metric. The present section, however, is concerned
with the definition and construction of targets at a given sample point of a
planar mesh element.

Before elaborating on the active and target-matrices, it is useful to gather
together some important geometry-related facts about square matrices with
real elements. Geometry is emphasized because mesh quality improvement
generally involves controlling geometric properties of a given mesh. Let
X ∈ Md. Section 2.1 deals with the case d = 2. In terms of application to
mesh optimization, it may be helpful to think of X as the active matrix A
in the previous chapter.
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2.1.1 Geometric Parameters for Meshes in <2

At a given sample point in a 2D mesh element, there exists the two tangent
vectors to the element mapping. From the two tangent vectors, various
geometric quantities can be defined: the lengths of the two tangents, the
angle between them, the two angles between the tangents and the x-axis,
the aspect ratio, and the area of the parallelogram between the two tangents.
Let us use the following symbols to denote these quantities: `1, `2, φ, θ, θ′,
ρ, and υ. Various relations between these quantities exist,

φ = θ′ − θ

ρ =
`2
`1

υ = `1`2 sinφ

It is also useful to define a ‘size’ quantity ζ by

ζ = `1`2

We will call these quantities the geometric parameters of planar mesh qual-
ity. In general, at every sample point, the value of each parameter can be
different from its value at another sample point (e.g., area will differ from
one sample point to the next).

Due to the relations above, only four of the parameters are needed to create a
parameter set p2 in which each of the parameters in p2 is fully independent
of the others in the set and from which a Jacobian matrix can be fully
determined. We elect to define p2 ∈ <4 as follows

p2 = (υ, θ, φ, ρ)

We call p2 the standard independent geometric parameter set for planar
mesh quality. The non-standard parameters may be calculated from the
parameters in p2,

The two tangent vectors at a sample point can thus be used to define the
standard geometric parameter set at the sample point. We use the notation

p2(k) = (υk, θk, φk, ρk)

to indicate the values of the standard parameters at sample point k.
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2.1.2 Geometric Extraction Functions for Meshes in <2

We have already seen in TMOP many examples of scalar functions whose
argument is a matrix. For example, there are the functions |X|, tr(X), and
det(X). Other important functions of matrices are themselves matrices. For
example, the function F (X) = X−1. For convenience, let X be alternatively
represented not in terms of its elements Xij , but in terms of column vectors,
as in X = [x1,x2] when d = 2 and X = [x1,x2,x3] when d = 3. Represen-
tation of X in terms of its column vectors (instead of its elements) allows
one to consider the ‘geometry’ of X in terms of the geometry of its column
vectors. This is important because the first-order aspects of local mesh qual-
ity can be measured in terms of the geometry of the column vectors of the
Jacobian matrix.

In this section scalar functions of 2 × 2 matrices which are related to the
geometry of the column vectors are considered. These functions are called
Geometric Extraction Functions. Given X2×2, the functions extract infor-
mation from X concerning the geometry of its column vectors. Extraction
functions for length, size, area, orientation, skew, and aspect ratio are de-
fined. In TMOP, exaction functions are used to (1) evaluate, using the
Jacobian matrix, the local geometric quality of a mesh at a given sample
point and (2) assist in the construction of the target matrix. In both of
these uses, the matrix of interest is X = A, the active matrix. A tilde over
a given geometric parameter signifies an extraction function.

The geometric properties of the column vectors are expressed as functions of
the matrix X. Assume that X is non-degenerate. Two functions to extract
the length of the column vectors are given by

˜̀
1(X) ≡ |x1|

˜̀
2(X) ≡ |x2|

These two functions are defined for X ∈M2. For i = 1, 2, we have ˜̀
i(X) ≥ 0

for any X ∈M2. If X ∈M∼d2 , then ˜̀
i(X) > 0.

Next, define the ‘size’ function by

ζ̃(X) ≡ ˜̀
1(X) ˜̀

2(X)

for X ∈M2. Clearly, ζ̃(X) > 0 for all X ∈M∼d2 .
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The ‘volume’ (or area) function is

υ̃(X) ≡ det(X)

For X ∈M2, −∞ < υ̃(X) <∞, but for X ∈Mp
2, υ̃(X) > 0.

For X non-degenerate define the ‘orientation’ functions θ̃(X), θ̃′(X) by

cos θ̃ ≡ X11

˜̀
1(X)

sin θ̃ ≡ X21

˜̀
1(X)

and

cos θ̃′ ≡ X12

˜̀
2(X)

sin θ̃′ ≡ X22

˜̀
2(X)

The range of the orientation function is taken to be −π < θ̃ ≤ π.

Define the ‘skew’ function φ̃(X) for X non-degenerate by

cos φ̃ ≡ X11X12 +X21X22

ζ̃(X)

sin φ̃ ≡ det(X)

ζ̃(X)

One can show that φ̃(X) = θ̃′(X) − θ̃(X). The range of the skew function
is taken to be −π < φ̃(X) ≤ π.

Define the ‘aspect ratio’ function ρ̃(X) for X non-degenerate by

ρ̃(X) ≡
˜̀
2(X)

˜̀
1(X)

Because X ∈M∼d2 , ρ̃(X) > 0.

Scalar extraction functions ˜̀
1(X), ˜̀

2(X), ζ̃(X), υ̃(X), θ̃(X), θ̃′(X), φ̃(X),
and ρ̃(X) have been defined. Functions ˜̀

i(X), ζ̃(X), and υ̃(X) exist for
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every X ∈M2. On the other hand, functions θ̃(X), θ̃′(X), φ̃(X), and ρ̃(X)
require X ∈ M∼d2 . Thus, all of the extraction functions exist on the set
of non-degenerate 2× 2 matrices. These functions correspond to geometric
properties of the matrix column vectors: length, size, volume, orientation,
skew, and aspect ratio. Because of the relationship between the orientation
and skew extraction functions, the function θ̃′(X) will not be used very often.

Relating back to the mapping F̃ mentioned at the start of this Chapter, we
see that

p̃2(X) =
(
υ̃(X), θ̃(X), φ̃(X), ρ̃(X)

)
is the standard set of geometric parameters extracted from X.

Table 2.1 gives the image of three commonly used matrix sets under the vari-
ous scalar extraction functions. The images are intervals [Ik], k = 1, 2, 3, 4 on
the real line. Each interval gives the range of one of the extraction functions
as X varies over the indicated matrix set. In the table, U means that there
exist elements of the matrix set for which the selected extraction function
is undefined; in that case, the image is also undefined. Because cos θ and
sin θ are periodic functions of θ, with period 2π, we can restrict the range
of the orientation function to be any interval of length 2π. This range is
given by the interval [I3](a), where the real number ‘a’ is to be determined
later. The same situation holds for the skew parameter, but only when
X ∈ M∼d2 . The image of each matrix set under the extraction vector p̃2 is
the Cartesian Product of the intervals in the appropriate column of the table.

Function X ∈Mp
2 X ∈M∼d2 X ∈M2

υ̃(X) [I2] [I1] [I1]

θ̃(X) [I3](a) [I3](a) U

φ̃(X) [I4] [I3](b) U

ρ̃(X) [I2] [I2] U

Table 2.1: Maximum Range of Each Extraction Function Given X2×2

Intervals: [I1] = (−∞,∞); [I2] = (0,∞); [I3](a) = (a − π, a + π];
[I4] = (0, π).
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2.1.3 Geometric Extraction Matrices for Meshes in <2

One can factor X ∈M∼d2 in terms of extraction matrices as follows

X =
√
ζ̃(X) R̃(X) Q̃(X) D̃(X)

=
√
ζ̃(X) R̃(X) S̃(X)

= R̃(X) Ũ(X)

with extraction matrices R̃(X) (a rotation matrix), given by

R̃(X) ≡
(

cos[θ̃(X)] − sin[θ̃(X)]

sin[θ̃(X)] cos[θ̃(X)]

)

and Q̃(X) (a skew matrix), given by

Q̃(X) ≡
(

1 cos[φ̃(X)]

0 sin[φ̃(X)]

)

and D̃(X) (an aspect ratio matrix), given by

D̃(X) ≡
( 1√

ρ̃(X)
0

0
√
ρ̃(X)

)

Further, S̃(X) ≡ Q̃(X)D̃(X), and Ũ(X) =
√
ζ̃(X)S̃(X).

Extraction matrices are useful when defining various metric types.

The matrix X can be expressed in terms of its own geometric extraction
functions, as seen the the proposition below. The identity is important
mainly in motivating the construction of the target matrix in the next sub-
section.

Proposition.
Given matrix X ∈ M∼d2 , the following 2D geometric extraction identity
identity holds

X ≡
√
ζ̃(X)

 1√
ρ̃(X)

cos[θ̃(X)]
√
ρ̃(X) cos[θ̃(X) + φ̃(X)]

1√
ρ̃(X)

sin[θ̃(X)]
√
ρ̃(X) sin[θ̃(X) + φ̃(X)]

 (2.1)

This can be verified by directly substituting the function definitions into the
right-hand-side.
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2.1.4 A Parametric Definition of 2× 2 Matrices

In section 2.1.2 the problem of extracting geometric information from the
column vectors of a given 2 × 2 matrix was considered. In the present sec-
tion, the inverse problem is considered, namely, given values of the geometric
parameters in p2, define a matrix Y2×2 such that the parameter values can
be recovered using the previously defined extraction functions applied to Y .
In terms of mesh optimization, one can think of Y as the Target-Matrix W .

Using the geometric extraction identity from the last section as motivation,
and given size, orientation, skew, and aspect ratio parameters ζ > 0, θ, φ,
and ρ > 0, define a 2× 2 matrix Y as follows

Y (ζ, θ, φ, ρ) =
√
ζ

( 1√
ρ cos θ

√
ρ cos(θ + φ)

1√
ρ sin θ

√
ρ sin(θ + φ)

)
(2.2)

Equation 2.2 is called the standard parametric definition of Y .1 In terms of
the mapping F, Y = F(p2)

Proposition.
Given Y constructed as above, Y is non-degenerate. If, in addition, sinφ 6=
0, then Y is non-singular.
Proof.
The length of the first column vector of Y is

√
ζ
ρ and the length of the second

column vector of Y is
√
ρ ζ. By assumption, ζ > 0 and ρ > 0, thus Y is non-

degenerate. Moreover, the determinant of Y is ζ sinφ, so Y is non-singular
provided sinφ 6= 0 §

Given Y defined as above, the extraction functions ζ̃, θ̃, φ̃, and ρ̃ can be ap-
plied to Y because Y is non-degenerate. The following Proposition is easily
verified.

Proposition.
Evaluating the four extraction functions on the Y constructed as above, we
find ζ̃(Y ) = ζ, θ̃(Y ) = θ, φ̃(Y ) = φ, and ρ̃(Y ) = ρ.

The parametric definition is thus consistent with the results of applying the
scalar extraction functions to the target matrix. In terms of the mapping,

1The matrix Y can be parameterized in other ways, but this particular parameterization
is good for our purpose.
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F̃(Y ) = p2.

2.1.5 The Parametric Matrix Factors of Y2×2

The parametric representation of Y in Equation (2) has the following matrix
factorization (or decomposition):

Y (ζ, θ, φ, ρ) =
√
ζ R(θ)Q(φ)D(ρ) (2.3)

where

R(θ) ≡
(

cos θ − sin θ
sin θ cos θ

)

Q(φ) =

(
1 cosφ
0 sinφ

)

D(ρ) =

(
1√
ρ 0

0
√
ρ

)

This is called the parametric factorization of Y2×2. The matrix factors exist
because ρ > 0. Notice that each factor is a function of a single geometric
parameter. The matrix R(θ) is called the orientation matrix; R is a rota-
tion matrix (i.e., det(R) = 1, RtR = I). The matrix Q(φ) is called the
skew matrix; Q is upper triangular with unit column vectors. The matrix
D(ρ) is called the aspect ratio matrix; D is diagonal, with unit determinant.
Taking the determinant of both sides of the factorization relation, one finds
υ = ζ sinφ, as expected.

We also define the shape matrix S by S ≡ QD and the shape+size matrix
U by U =

√
ζ S. Thus

Y =
√
ζ R(θ)Q(φ)D(ρ)

=
√
ζ R(θ)S(φ, ρ)

= R(θ)U(ζ, φ, ρ)

The matrix S is upper triangular with determinant equal to sinφ. The ma-
trix U is upper triangular with determinant υ.
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Proposition.
The previously defined extraction matrices applied to Y yield R̃(Y ) = R(θ),
Q̃(Y ) = Q(φ), D̃(Y ) = D(ρ), S̃(Y ) = S(φ, ρ) and Ũ(Y ) = U(ζ, φ, ρ). The
proof is straight-forward.

The parametric matrix factors defined in this section are used later in this
series of reports to define local quality metrics of various types.

In terms of well-known matrix decompositions, Y = RU is closely related to
the well-known ‘QR’ factorization from linear algebra. In general, the QR-
decomposition of a real matrix Y is the product of a real orthogonal matrix
R and a real upper triangular matrix U . In QR, one commonly chooses
the diagonal entries of U to be positive. In that case the determinant of
Y depends on the determinant of R (either 1 or -1) and the determinant
of U . With that convention, the factorization is unique [8]. In this report
we’ve used an alternative convention in which the determinant of R is al-
ways 1 (i.e., the matrix is always a rotation) and the determinant of U is not
necessarily positive. In the latter convention the determinant of Y depends
only on the determinant of U . This convention is used because in mesh
optimization it is usual to consider the local volume to be a signed quantity
and, since det(U) = υ, it is U that needs a signed determinant, not R.

It is not suggested that one use the numerical QR algorithm in TMOP to
find the matrices R and U . There is no need for that because one can ex-
press both matrices (and the other matrices mentioned in this report) in
analytic form. The analytic forms are used primarily to develop the rela-
tions between the geometric parameters and the Jacobian matrices, along
with the extraction functions and targets. This motivates another reason
we’ve used the alternative convention for QR in this report. The alternative
is used because it simplifies the analytic representation of the matrices R
and U . For example, the analytic matrix R(θ) given in the previous section
can always be used in the alternative convention, whereas in the standard
QR convention this analytic formula could not be used if the determinant
of Y were negative. This need for switching analytic formulas depending on
the sign of the determinant of Y arises in the standard QR convention, but
not in the alternative. With the alternative, the switching is more easily
accomplished analytically via sinφ, which appears in U and can be either
positive or negative.
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2.1.6 Matrix Types and Sets of 2× 2 Matrices

The matrices R(θ), Q(φ), and D(ρ) appearing in the geometric factorization
of Y2×2 ∈M∼d2 have certain properties of note.

Definition.
Define Mrot

2 to be the set of all 2 × 2 rotation matrices. For example,
R(θ) ∈Mrot

2 .

Definition.
If Q2×2 is upper triangular and has column vectors all with unit length, then
Q is a skew matrix. Define Mskw

2 to be the set of all 2 × 2 skew matrices.
For example, Q(φ) ∈Mskw

2 .

Definition.
If D2×2 is a positive definite diagonal matrix whose determinant is 1, then
D is an aspect ratio matrix. Define Masp

2 to be the set of all 2 × 2 aspect
ratio matrices. For example, D(ρ) ∈Masp

2 .

Definition.
If S2×2 is upper triangular and the product of the lengths of its column
vectors is 1, then S is a shape matrix. DefineMshp

2 to be the set of all 2× 2

shape matrices. For example, S(φ, ρ) ∈Mshp
2 .

Definition.
If U2×2 is upper triangular, then U is a shape+size matrix. Define Mshs

2 to
be the set of all 2× 2 shape+size matrices. For example, U(ζ, φ, ρ) ∈Mshs

2 .

The identity matrix I2×2 belongs to all of the sets defined above. All pair-
wise intersections of the three setsMrot

2 ,Mskw
2 , andMasp

2 yields the identity

matrix. Further, Mskw
2 ⊂Mshp

2 ⊂Mshs
2 .

2.1.7 Equality of Geometric Parameters for Meshes in <2

The following Propositions justify many of the local quality metrics used in
TMOP. Each metric depends on the active matrix and a target. The matri-
ces X and Y below are placeholders for these two matrices, respectively.

Proposition.
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Let X,Y ∈ M∼d2 and let Y have the factorization (2.3). If Q̃(X) = Q(φ),
then φ̃(X) = φ.
Proof.
Equality of the two matrices requires

cos
[
φ̃(X)

]
= cosφ

sin
[
φ̃(X)

]
= sinφ

The Proposition immediately follows. §

Similarly, if R̃(X) = R(θ), then θ̃(X) = θ. If D̃(X) = D(ρ), then ρ̃(X) = ρ.

Proposition.
Let X,Y ∈ M∼d2 and let Y have the factorization (2.3). If S̃(X) = S(φ, ρ),
then φ̃(X) = φ and ρ̃(X) = ρ.
Proof.
Equality of the two matrices requires equality of their elements. This yields√

ρ̃(X) =
√
ρ

i.e., ρ̃(X) = ρ. Then we must also have φ̃(X) = φ, proving the result. §

Corollary.
If S̃(X) = S(φ, ρ), then Q̃(X) = Q(φ) and D̃(X) = D(ρ).

Similar propositions can be proved for the shape+size and other matrices
like the product of rotation and skew matrices.

2.1.8 Application to the 2× 2 Active and Target-Matrices

The previous developments are applied to the 2×2 active and target-matrices
in TMOP.

The target-matrix W can be usefully represented parametrically, as in equa-
tion (2.2), given parameters υ, θ, φ, and ρ. Values of these parameters must
be supplied at every sample point in order to construct the set {W} prior
to mesh quality assessment and improvement. The process of determining
these values is called target-parameter construction; this process is discussed
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in the next Chapter. Each target-matrix is required to be in Mp
2; there-

fore, we require υ > 0. By construction, p2 ∈ W 4
a ⊂ <4, where W 4

a is the
Cartesian Product of the intervals in the first column of Table 2.1, i.e.,

W 4
a ≡ [I2]× [I3](a)× [I4]× [I2]

= (0,∞)× (a− π, a+ π]× (0, π)× (0,∞)

In terms of the discussion at the beginning of this chapter, we have SW =
Mp

2 and PW = W 4
a , which results in the one-to-one, onto mapping F from

PW to SW .

Unlike the target-matrix, the active matrix is not constructed; rather, it is
given. The only thing we can be sure of is that A ∈M2. But, if A is degen-
erate, parameters θ̃(A) and φ̃(A) are undefined. Although the occurrence
of degenerate A may be rare, robust practical algorithms must account for
this possibility in some way. Thus, we restrict SA toM∼d2 . The mapping F̃
is then well-defined and

PA ≡ [I1]× [I3](a)× [I3](b)× [I2]

with a and b some selected values.

2.2 Volume Meshes

Volume meshes contain three-dimensional mesh elements such as tetrahe-
drons, hexahedrons, pyramids, prisms, or polyhedra. Volume meshes be-
long to <3. Each 3D element in <3 has a mapping from a three-dimensional
logical space to points within the physical element. The boundary faces of
the elements can be curved in the high-order element case and even in the
low order case for some element types. Rather than try to characterize the
quality of a volume element directly, TMOP first measures local quality at
sample points within the element. Section 2.2 is concerned with target def-
inition and construction for volume meshes.

The analysis of Section 2.1 is repeated, where needed, for the case X ∈M3.

2.2.1 Geometric Parameters for Volume Meshes

At a given sample point in a 3D mesh element, there exists three tangent
vectors to the element mapping. From the three vectors various geometric
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quantities can be defined: the lengths `1, `2, `3 of the vectors; the three
included angles φ12, φ13, φ23 between pairs of the vectors; and the volume υ
of the parallel-o-piped enclosed by the vectors. In addition, there are three
dihedral angles χ1, χ2, and χ3, giving the angles between the three planes
that the pairwise combinations of the vectors make. There are also three
aspect ratios ρ1, ρ2, ρ3 and three pairs of spherical coordinates (θ1, ψ1),
(θ2, ψ2), and (θ3, ψ3) defining the directions of the vectors.

Quite a few relations exist between these 19 quantities, i.e., they are not
completely independent of one another. Due to these relations, only nine
parameters are needed to create a parameter set p3 in which each of the
parameters in p3 is fully independent of the others in the set. We elect to
define p3 as follows

p3 = (υ, θ, ψ, β, φ12, φ13, χ, ρ1, ρ2)

This is called the standard independent geometric parameter set for volume
mesh quality. The other geometric parameters may be calculated from the
parameters in p3. Here, χ = χ1 (the dihedral angle between the normals to
the 1,2-plane and the 1,3-plane).

The set pori3 = (θ, ψ, β) is called the orientation parameter set, with θ, ψ
and β to be defined later. The set pskw3 = (φ12, φ13, χ) is called the skew
parameter set. The set pasp3 = (ρ1, ρ2) is called the aspect ratio parame-

ter set. The shape parameter set is pshp3 = pskw3 ∪ pasp3 . The shape+size

parameter set if pshs3 = (ζ) ∪ pshp3 . Define psso3 = pshs3 ∪ pori3 to be the
shape+size+orientation parameter set. Finally, p3 = [psso3 \ (ζ)] ∪ (υ).

The values of the nine geometric parameters at a sample point k are denoted
by

p3(k) = (υk, θk, ψk, βk, φ12(k), φ13(k), χk, ρ1(k), ρ2(k))

The three tangent vectors form the columns of the 3 × 3 Jacobian matrix.
Consequently, given a non-singular Jacobian matrix at a sample point, one
can extract values of the parameters in p3. The volume extraction functions
are given in Sections 2.2.2 and 2.2.3. In Section 2.2.4 a 3 × 3 ‘target’ ma-
trix is defined in terms of the parameters in p3. Section 2.2.5 discusses an
analytic matrix decomposition representing the Jacobian matrix in terms of
rotation, skew, and aspect ratio matrices.
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Section 2.2.6 defines certain matrix types and sets thereof. These are used
in the theory of metric types presented in this series of reports. Section 2.2.7
contains several Propositions on the consequences of certain equalities re-
lating active parameters or matrices to target parameters or matrices. The
Propositions help us later in stating the global minimums of local quality
metrics. Finally, Section 2.2.8 concerns the application of the ideas in Sec-
tion 2.2 to the active and target matrices or parameters.

2.2.2 Geometric Extraction Functions for Volume Meshes

This section gives geometric extraction functions for the caseX3×3 = [x1,x2,x3]
related to the geometry of the column vectors.

There are three length functions on M3, defined by

˜̀
i(X) ≡ |xi|

for i = 1, 2, 3. For X non-degenerate, ˜̀
i(X) > 0.

The ‘size’ function, defined on M3, is

ζ̃(X) ≡ ˜̀
1(X) ˜̀

2(X) ˜̀
3(X)

with ζ̃(X) > 0 when X ∈M∼d3 .

The ‘volume’ function, defined on M3, is

υ̃(X) ≡ det(X)

If X ∈Mp
3, then υ̃(X) > 0.

If X is non-degenerate, there exist the unit vectors

x̂i ≡
xi

˜̀
i(X)

The unit vectors allow the definition of three ‘skew angle’ extraction func-
tions φ̃12(X), φ̃13(X), and φ̃23(X) by

cos φ̃12 ≡ x̂1 · x̂2

cos φ̃13 ≡ x̂1 · x̂3

cos φ̃23 ≡ x̂2 · x̂3
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and by

sin φ̃12 = |x̂1 × x̂2|
sin φ̃13 = |x̂1 × x̂3|
sin φ̃23 = |x̂2 × x̂3|

With this definition, the skew angles obey 0 ≤ φ̃ij ≤ π. If, in addition, X is
non-singular, then 0 < φ̃ij < π.

If X is non-singular, one can define the dihedral angle extraction function
χ̃(X) given by

cos χ̃ ≡ x1 × x2

|x1 × x2|
· x1 × x3

|x1 × x3|

=
cos φ̃23 − cos φ̃12 cos φ̃13

sin φ̃12 sin φ̃13

sin χ̃ =
det(X)

ζ̃ sin φ̃12 sin φ̃13

The dihedral angle is well-defined provided x1 × x2 6= 0 and x1 × x3 6= 0.
Since X is non-singular, this is guaranteed. Also in that case, ζ̃ > 0,
sin φ̃12 > 0 and sin φ̃13 > 0, and thus sin χ̃ > 0 if and only if det(X) > 0.

For X non-degenerate, define three ‘aspect ratio’ functions ρ̃1(X), ρ̃2(X),
and ρ̃3(X) by

ρ̃1(X) =
˜̀
1√

˜̀
2
˜̀
3

ρ̃2(X) =
˜̀
2√

˜̀
3
˜̀
1

ρ̃3(X) =
˜̀
3√

˜̀
1
˜̀
2

With these definitions of aspect ratio one finds

ρ̃1 ρ̃2 ρ̃3 = 1

and

˜̀
i =

(
ζ̃ ρ̃2i

) 1
3
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There are three scalar extraction functions which define the orientation of
X. The first two extraction functions, θ̃(X) and ψ̃(X), are introduced by
writing the unit vector x̂1 in spherical coordinates:

x̂1 =

 cos θ̃ sin ψ̃

sin θ̃ sin ψ̃

cos ψ̃


The two scalar extraction functions are thus given by

cos θ̃(X) =
X11√

X2
11 +X2

21

sin θ̃(X) =
X21√

X2
11 +X2

21

and

cos ψ̃(X) =
X31

˜̀
1(X)

sin ψ̃(X) =

√
X2

11 +X2
21

˜̀
1(X)

Finally, we define the extraction function β̃(X) by

cos β̃(X) ≡ r̃2(X) · ã⊥(X)

sin β̃(X) ≡ r̃3(X) · ã⊥(X)

with extraction vectors

r̃2(X) =
x̂2 − (cos φ̃12)x̂1

sin φ̃12

r̃3(X) =
x̂1 × x̂2

sin φ̃12

and

ã⊥(X) ≡

 − sin θ̃(X)

+ cos θ̃(X)
0


Scalar extraction functions ˜̀

i(X), ζ̃(X), υ̃(X), φ̃12(X), φ̃13(X), φ̃23(X),
χ̃(X), ρi(X), θ̃(X), ψ̃(X), and β̃(X) have been defined for the case d = 3.
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All of these functions are well-defined when X is non-singular. These func-
tions correspond to geometric properties of the three column vectors of X:
length, size, volume, skew, aspect ratio, and orientation.

Table 2.2 shows the range or image of each extraction function as X ranges
over four commonly used matrix sets. The images are intervals [Ik], k =
1, 2, . . . , 8 on the real line. In the Table, ‘U’ means that there exist elements
of the matrix set for which the selected extraction function is undefined; in
that case, the image is also undefined. The image of each matrix set under
the extraction vector p̃3 is the Cartesian Product of the intervals in the
appropriate column of the table.

Parameter X ∈Mp
3 X ∈M∼s3 X ∈M∼d3 X ∈M3

υ̃(X) [I2] [I8] [I1] [I1]

φ̃12(X) [I4] [I4] [I7] U

φ̃13(X) [I4] [I4] [I7] U

φ̃23(X) [I4] [I4] [I7] U

χ̃(X) [I4] [I4] U U

ρ̃i(X) [I2] [I2] [I2] U

θ̃(X) [I5] [I5] [I5] U

ψ̃(X) [I6] [I6] [I6] U

β̃(X) [I6] [I6] U U

Table 2.2: Range of Each Geometric Parameter Given X3×3.

Intervals: [I1] = (−∞,∞); [I2] = (0,∞); [I3](a) = (a − π, a + π];
[I4] = (0, π); [I5] = [0, 2π); [I6] = [0, π); [I7] = [0, π]; [I8] = (−∞, 0)∪(0,∞).
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2.2.3 Geometric Extraction Matrices for Volume Meshes

Given non-singular X3×3 = [x1,x2,x3], we define the following extraction
matrices, whose elements are given in terms of the previously-defined scalar
extraction functions.

First, let R̃(X) = [r̃1(X), r̃2(X), r̃3(X)] be the rotation matrix which ex-
tracts orientation information from X. The column vectors of R̃ are the
extraction vectors

r̃1(X) = x̂1

r̃2(X) =
x̂2 − (cos φ̃12)x̂1

sin φ̃12

r̃3(X) =
x̂1 × x̂2

sin φ̃12

This matrix can be factored into two other extraction matrices such that

R̃(X) = R̃2(X)R̃1(X)

with

R̃1(X) ≡
[
x̂1, ã⊥, x̂1 × ã⊥

]
and

R̃2(X) ≡
[
cos β̃(X)

]
I3 +

[
1− cos β̃(X)

]
(x̂1 ⊗ x̂1)−

[
sin β̃(X)

]
ε(x̂1)

ε(v) is the matrix

ε(v) =

 0 −vz vy
vz 0 −vx
−vy vx 0


where v = (vx, vy, vz) is any vector.

Second, let Ũ(X) be the upper triangular matrix which extracts shape+size
information from X. Explicitly, in terms of the scalar extraction functions

Ũ(X) =

 ˜̀
1(X) ˜̀

2(X) cos[φ̃12(X)] ˜̀
3(X) cos[φ̃13(X)]

0 ˜̀
2(X) sin[φ̃12(X)] ˜̀

3(X) sin[φ̃13(X)] cos[χ̃(X)]

0 0 ˜̀
3(X) sin[φ̃13(X)] sin[χ̃(X)]


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The shape+size extraction matrix can be factored as

Ũ(X) =
[
ζ̃(X)

] 1
3 S̃(X)

where S̃(X) is the shape extraction matrix given by

S̃(X) =

 [ρ̃1(X)]
2
3 [ρ̃2(X)]

2
3 cos[φ̃12(X)] [ρ̃3(X)]

2
3 cos[φ̃13(X)]

0 [ρ̃2(X)]
2
3 sin[φ̃12(X)] [ρ̃3(X)]

2
3 sin[φ̃13(X)] cos[χ̃(X)]

0 0 [ρ̃3(X)]
2
3 sin[φ̃13(X)] sin[χ̃(X)]


In turn, the shape extraction matrix can be factored into skew and aspect
ratio extraction matrices as

S̃(X) = Q̃(X) D̃(X)

with skew extraction matrix

Q̃(X) =

 1 cos[φ̃12(X)] cos[φ̃13(X)]

0 sin[φ̃12(X)] sin[φ̃13(X)] cos[χ̃(X)]

0 0 sin[φ̃13(X)] sin[χ̃(X)]


and aspect ratio extraction matrix

D̃(X) =

 [ρ̃1(X)]
2
3 0 0

0 [ρ̃2(X)]
2
3 0

0 0 [ρ̃3(X)]
2
3


From these results,

X = R̃(X) Ũ(X)

=
[
ζ̃(X)

] 1
3 R̃(X) S̃(X)

=
[
ζ̃(X)

] 1
3 R̃(X) Q̃(X) D̃(X)

We shall call these the 3D geometric extraction identities.

2.2.4 A Parametric Definition of 3× 3 Matrices

There are nine geometric parameters required to define a matrix Y3×3 rep-
resenting a target matrix. The nine parameters are taken to be those in p3.
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First, given the parameters (θ, ψ, β) in pori3 , define a rotation matrix R =
R(θ, ψ, β) = [r1, r2, r3] to indicate the orientation of matrix Y . The param-
eters (θ, ψ) are to be the spherical coordinates of r1; thus

r1 =

 cos θ sinψ
sin θ sinψ

cosψ


with the requirement that 0 ≤ ψ ≤ π and 0 ≤ θ < 2π. To define the vectors
r2 and r3, use the projection of r1 onto the xy-plane to create the unit vector
a = (cos θ, sin θ, 0). Define a⊥ = k̂× a, so that

a⊥ = (− sin θ, cos θ, 0)

Then r1 · a⊥ = 0. Define unit vector n = r1 × a⊥. The matrix R1(θ, ψ) =
[r1,a

⊥,n] is a rotation. Explicitly, the elements of R1 are

R1(θ, ψ) =

 cos θ sinψ − sin θ − cos θ cosψ
sin θ sinψ cos θ − sin θ cosψ

cosψ 0 sinψ


This matrix depends only on (θ, ψ) and is thus not completely general.

To define a fully general rotation describing the orientation of Y , introduce
another rotation R2 using the parameter β, given by

R2(β) ≡ (cosβ)I3 + (1− cosβ) (r1 ⊗ r1)− (sinβ)ε(r1)

R2 shall be used to rotate R1 about the axis r1. This yields the final orien-
tation matrix R(θ, ψ, β) = R2(β)R1(θ, ψ). We have

R(θ, ψ, β) = R2R1

= R2

[
r1,a

⊥,n
]

=
[
R2 r1, R2 a⊥, R2 n

]
=

[
r1, (cosβ)a⊥ − (sinβ)n, (sinβ)a⊥ + (cosβ)n

]
=

 cos θ sinψ − sin θ cosβ + cos θ cosψ sinβ − sin θ sinβ − cos θ cosψ cosβ
sin θ sinψ cos θ cosβ + sin θ cosψ sinβ cos θ sinβ − sin θ cosψ cosβ

cosψ − sinψ sinβ sinψ cosβ


The vectors r2, r3, and a⊥ all belong to the plane defined by r1. Further,
r2 · a⊥ = cosβ and r3 · a⊥ = sinβ. The orientation matrix R is related to
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the matrix Y by Y = RU , with the latter yet to be defined.

The last six parameters, ζ, φ12, φ13, χ, ρ1, and ρ2, are called shape+size
parameters. These are used to define a matrix U3×3 representing the shape
and size of the column vectors of Y . Specifically, define U by

U(ζ, φ12, φ13, χ, ρ1, ρ2) =

 `1 `2 cosφ12 `3 cosφ13
0 `2 sinφ12 `3 sinφ13 cosχ
0 0 `3 sinφ13 sinχ


with lengths `i ≡

(
ζρ2i

) 1
3 and ρ1 ρ2 ρ3 = 1. The parameters must obey ζ > 0,

0 < φ12 < π, 0 < φ13 < π, 0 < χ < π, and ρi > 0, so that det(U) > 0.

Finally, the matrix Y representing the target-matrix is defined as

Y ≡ RU

Expressing Y in terms of its column vectors we have Y = [y1,y2,y3], with

y1 = `1 r1

y2 = (`2 cosφ12) r1 + (`2 sinφ12) r2

y3 = (`3 cosφ13) r1 + (`3 sinφ13 cosχ) r2 + (`3 sinφ13 sinχ) r3

These results give the standard parametric definition of Y3×3 in terms of p3.
In terms of the mapping F we have Y = F(p3).

Proposition.
Given Y3×3 defined as above, Y is non-degenerate and non-singular.
Proof.
Since Y = RU , the determinant of Y is det(Y ) = (detR)(detU) = det(U).
But det(U) = ζ sinφ12 sinφ13 sinχ = υ. For the required range of these
parameters, υ is positive and therefore Y is non-singular. Since Y is non-
singular, it is also non-degenerate. §

Proposition.
Evaluating the nine extraction functions defined in Section 2.2.2 on the
Y defined above, we find that the nine geometric target parameters are
recovered.
Proof.
First, we have ˜̀

i(Y ) =| yi |= `i. Then ζ̃(Y ) = ˜̀
1(Y )˜̀

2(Y )˜̀
3(Y ) = `1`2`3 =
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ζ. Next,

ŷ1 = r1

ŷ2 = (cosφ12) r1 + (sinφ12) r2

ŷ3 = (cosφ13) r1 + (sinφ13 cosχ) r2 + (sinφ13 sinχ) r3

Therefore,

cos φ̃12(Y ) = ŷ1 · ŷ2

= cosφ12

cos φ̃13(Y ) = ŷ1 · ŷ3

= cosφ13

cos χ̃(Y ) =
y1 × y2

|y1 × y2|
· y1 × y3

|y1 × y3|
= r3 · [(cosχ) r3 − (sinχ)r2]

= cosχ

and

sin φ̃12(Y ) = |ŷ1 × ŷ2|
= sinφ12

sin φ̃13(Y ) = |ŷ1 × ŷ3|
= sinφ13

sin χ̃(Y ) =
det(Y )

ζ̃(Y )
[
sin φ̃12(Y )

] [
sin φ̃13(Y )

]
= sinχ

The three aspect ratio extraction functions applied to Y give

ρ̃i(Y ) ≡
˜̀
i(Y )√

˜̀
i+1(Y )˜̀

i+2(Y )

=
`i√

`i+1`i+2

=
(ζρ2i )

1
3√

(ζρ2i+1)
1
3 (ζρ2i+2)

1
3

=
ρ

2
3
i

ρ
1
3
i+1ρ

1
3
i+2

= ρi
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The orientation of Y is recovered as follows:

cos θ̃(Y ) =
Y11√

Y 2
11 + Y 2

21

=
cos θ sinψ√

(cos θ sinψ)2 + (sin θ sinψ)2

= cos θ

Similarly, sin θ̃(Y ) = sin θ, cos ψ̃(Y ) = cosψ, and sin ψ̃(Y ) = sinψ.

Lastly,

cos β̃(Y ) = r̃2(Y ) · ã⊥(Y )

=
ŷ2 −

[
cos φ̃12(Y )

]
ŷ1

sin φ̃12(Y )
· ã⊥(Y )

=
ŷ2 − [cosφ12(Y )] ŷ1

sinφ12(Y )
· ã⊥(Y )

= r2 · ã⊥(Y )

= r2 · a⊥

= cosβ

and

sin β̃(Y ) = r̃3(Y ) · ã⊥(Y )

=
ŷ1 × ŷ2

sin φ̃12(Y )
· ã⊥(Y )

=
ŷ1 × ŷ2

sinφ12
· a⊥

= r3 · a⊥

= sinβ

Thus, all nine parameters are recovered by the extraction functions when
applied to Y . §

The parametric definition is consistent with the results of applying the
scalar extraction functions to the target matrix. In terms of the mapping,
F̃(Y ) = p3.

34



2.2.5 The Parametric Matrix Factors of Y3×3

The parametric representation of Y in the Section 2.2.4 has the following
factorization

Y (psso3 ) = ζ
1
3 R(pori3 )Q(pskw3 )D(pasp3 ) (2.4)

where R(pori3 ) = R(θ, ψ, β) and

R(θ, ψ, β) = R2(β)R1(θ, ψ)

and Q(pskw3 ) = Q(φ12, φ13, χ) with

Q (φ12, φ13, χ) =

 1 cosφ12 cosφ13
0 sinφ12 sinφ13 cosχ
0 0 sinφ13 sinχ


and D(pasp3 ) = D(ρ1, ρ2, ρ3)

D(ρ1, ρ2, ρ3) =


ρ

2
3
1 0 0

0 ρ
2
3
2 0

0 0 ρ
2
3
3


The result of taking the determinant of both sides of the factorization rela-
tion is υ = det(Y ), with

υ = ζ sinφ12 sinφ13 sinχ

Note that (1) the three orientation matrices R are each rotations, (2) Q
is upper triangular with unit column vectors, and (3) D is diagonal and

positive definite. Define the shape matrix S(pshp3 ) = Q(pskw3 )D(pasp3 ) and

the shape+size matrix U(pshs3 ) = ζ
1
3S(pshp3 ), giving

Y = R(θ, φ, β)U(ζ, φ12, φ13, χ, ρ1, ρ2)

Proposition.
From the last proposition in Section 2.2.4, one can show that the extraction
matrices applied to Y as constructed in this section obey R̃(Y ) = R(θ, ψ, β),
Q̃(Y ) = Q(φ12, φ23, χ), D̃(Y ) = D(ρ1, ρ2, ρ3), etc.
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2.2.6 Matrix Types and Sets of 3× 3 Matrices

The definitions of the matrix sets Mrot
2 , Mskw

2 , etc. given in Section 2.1.6
are easily extended to three dimensions. Thus, define the setsMrot

3 ,Mskw
3 ,

Masp
3 , Mshp

3 , and Mshs
3 . Then R(θ, ψ, β) ∈ Mrot

3 is a rotation matrix,
Q(φ12, φ13, χ) ∈Mskw

3 is a skew matrix, etc.

2.2.7 Equality of Geometric Parameters for Volume Meshes

The following Propositions justify many of the local quality volume metrics
used in TMOP. Each metric depends on the active matrix and a target.
The matrices X and Y below are placeholders for these two matrices, re-
spectively.

Proposition.
Let X,Y ∈ M∼s3 and let Y have the factorization in Section 2.2.4. If
Q̃(X) = Q(φ12, φ13, χ), then φ̃12(X) = φ12, φ̃13(X) = φ13, and χ̃(X) = χ.
Proof.
The proof equates each element of Q̃(X) to the corresponding element of
Q(φ12, φ13, χ). The result follows quickly. §

Similarly, if R̃(X) = R(θ, ψ, β), then θ̃(X) = θ, ψ̃(X) = ψ, and β̃(X) = β.

Proposition.
Let X,Y ∈ M∼s3 and let Y have the factorization in Section 2.2.4. If
S̃(X) = S(φ12, φ13, χ, ρ1, ρ2, ρ3), then φ̃12(X) = φ12, φ̃13(X) = φ13, χ̃(X) =
χ, ρ̃i(X) = ρi.

Corollary. If S̃(X) = S(φ12, φ13, χ, ρ1, ρ2, ρ3), then Q̃(X) = Q(φ12, φ13, χ)
and D̃(X) = D(ρ1, ρ2, ρ3).

Similar propositions can be given for the shape+size and other matrices such
the product of the rotation and skew matrices.

2.2.8 Application to the 3× 3 Active and Target-Matrices

The previous developments are applied to the 3×3 active and target-matrices
in TMOP.
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The target-matrix W can be usefully represented parametrically, as in Sec-
tion 2.2.4, given the parameters in p3. Values of these parameters must
be supplied at every sample point in order to construct the set {W} prior
to mesh quality assessment and improvement. The process of determin-
ing these values is called target-parameter construction. Each target-matrix
is required to be in Mp

3; therefore, υ > 0 is required. By definition,
p3 ∈ W 9 ⊂ <9, where W 9 is the Cartesian product of the nine intervals
in the first column of Table 2.2. In terms of the mapping discussed at the
beginning of this chapter, one has SW =Mp

3 and PW = W 9, which results
in the one-to-one, onto mapping F.

Unlike the target-matrix, the active matrix is not constructed; rather, it is
given. The only thing we can be sure of is that A ∈M3. But, if A is degen-
erate, parameters χ̃(A) and β̃(A) are undefined. Although the occurrence of
degenerate A may be rare, robust practical algorithms must account for this
possibility in some way. Thus, SA is restricted to M∼s3 . The mapping F̃ is
then well-defined, with PA being the Cartesian product of the nine intervals
in the second column of Table 2.2.
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Chapter 3

Target Construction

To review briefly, in the previous chapter a standard set of geometric pa-
rameters p was identified for both planar and volume meshes. These pa-
rameters can be grouped into (i) volume/size, (ii) orientation, (iii) skew,
and (iv) aspect ratio parameters. Values of these geometric parameters at
every sample point can be obtained by applying ‘extraction functions’ to
the active mesh Jacobian matrix. Such parameters are called active mesh
parameters. Further, given ‘target’ values of the geometric parameters at
the sample points, one has target mesh parameters and can obtain target-
matrices W (p), R(pori), U(pshs), if needed. TMOP requires the existence,
at every sample point in the mesh, of values of the active mesh parameters
and corresponding values of the target mesh parameters. The values of these
parameters and/or their corresponding matrices are used to evaluate the lo-
cal mesh quality metrics and, in numerical mesh optimization, the objective
function. The values of the target mesh parameters must be determined
before the numerical mesh optimization procedure can begin.

A critical issue in TMOP is to understand, in a general way, how to assign
values to the target mesh parameters. In the ideal situation, one can use
either a published method to assign the values or an existing algorithm in a
mesh optimization code. If neither is available, one can consider developing
their own method for assigning the target parameter values. This chapter
describes the process by which a new method for assigning the target pa-
rameter values can be devised.1 We call this process Target Construction

1It is expected that, over time, more and more methods for assigning target parameter
values will be developed so that one will not have to develop a new method each time a
mesh is to be optimized.
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(or Target-Parameter Construction).

Definition.
Target Construction is a process by which one develops a numerical algo-
rithm which takes raw data and converts it into values of the target param-
eters at every mesh sample point.2 The process takes into account the mesh
quality improvement goal, facts about the mesh, and the simulation. The
resulting numerical algorithm is called a Target Construction Method.

One can, of course, develop a Target Construction Method without fol-
lowing the process to be described. However, a general description of the
Target Construction process should help those who wish to create an effec-
tive method appropriate to the given mesh quality improvement goal and
the problem context.

At the present time there exists only a few proven Target Construction Meth-
ods (e.g. shape improvement and shape improvement with size equidistribu-
tion). In the long term, one or more Target Construction Methods for each
of the mesh quality improvement goals listed in Section 1.1 are envisioned.
In this vision, the practitioner with a mesh quality issue would be able to
consult the list of quality improvement goals to find an appropriate target
construction method which they could use directly or adapt to their specific
problem. In the meantime, barring the existence of an appropriate Target
Construction Method, one must devise their own method. The purpose of
this chapter is to assist and encourage the development of new methods.

Three sequential phases within Target Construction are proposed:

1. Target Construction Strategy

2. Intermediate Data Algorithms

3. Target Parameter Model Development

In Target Construction Strategy one develops an approach to the problem
of obtaining values of the target parameters. In this phase one assesses the
quality of the initial mesh to be improved, formulates a mesh quality im-
provement goal, determines the relevant target parameters and how they
will be treated, and examines the raw data. At the end of this stage, one
should have a plan or strategy as to how the mesh quality improvement

2We shall discuss what we mean by raw data in Section 3.1.3.
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goal will be addressed and how the values for the target parameters will be
obtained. In the Intermediate Data Algorithms phase one determines the
algorithms by which raw data will be converted into intermediate data at
the mesh sample points. In the last phase, one develops a model or algo-
rithm by which the intermediate data will be converted into values of the
target parameters. These stages are described in Sections 3.1, 3.2, and 3.3.

3.1 Target Construction Strategy

In the first phase of Target Construction one develops an overall Target
Construction Strategy to determine the mesh quality improvement goal and
to sketch an approach to the problem of assigning appropriate values of the
target parameters. It is assumed that at this point the practitioner has as-
sessed the quality of their meshes, found them lacking, and determined a
mesh quality improvement goal. He has determined that there is no appro-
priate Target Construction Method that already exists and has decided to
develop a new method.

Strategy development itself entails a number of sub-phases which are de-
scribed in 3.1.1 - 3.1.3. Section 3.1.1 considers the mesh and simulation
context, i.e., facts about the mesh and the simulation that pertain to Tar-
get Construction. Section 3.1.2 discusses the Parameter Control Decision,
in which it is determined what subset of the target geometric parameters
should be controlled in order to achieve one’s mesh quality improvement
goal. Finally, Section 3.1.3 discusses the correspondences between particu-
lar raw, intermediate, and parameter data that need to be established.

3.1.1 Mesh and Simulation Context

As background information for the Target Construction process it is helpful
to determine the mesh and simulation context. This information can bear
on the approach selected at various stages in the Target Construction pro-
cess.

The mesh context concerns basic facts about the initial mesh to be opti-
mized. Because node-movement methods are to be used, the context is the
same for the optimal mesh. A mesh consists of a collection of vertices, edges,
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Mesh Examples

Embedding <2, planar in <3, surface in <3, volume

Type structured, unstructured
conformal, non-conformal

hybrid, non-hybrid
static, moving

high order/low order

Elements triangle, quadrilateral, polygonal
tetrahedral, hexahedral, prisms, pyramids, polyhedral

Table 3.1: Mesh Context Characterization

faces, and elements connected to one another. Table 3.1 shows basic infor-
mation needed to characterize the mesh context. In addition, one might ask
for the following information:

1. What is the typical number of mesh nodes or elements?

2. What are the mesh sample points?

3. Are there special regions in the domain which need to be treated dif-
ferently from the rest?

4. Are there mesh nodes having a special valence?

5. Will the mesh nodes on the mesh boundary be allowed to move?

6. Does the mesh possess special fixed nodes in its interior?

7. Does the mesh have one or more internal interfaces to which nodes are
constrained?

8. Does the optimal mesh need to be symmetric in some way?

9. Will negative Jacobian determinants at some initial mesh sample points
occur?

10. In terms of mesh quality, what is good about the initial mesh and what
is not so good?

The simulation context concerns basic facts about the simulation code and
the particular simulation. Table 3.2 shows basic information needed to char-
acterize the simulation context. In addition, one might ask for the following
information:
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Simulation Examples

Physics Thermal, Fluid, Electromagnetic

PDE Elliptic, Parabolic, Navier-Stokes, Maxwell

Boundary Conds. Dirichlet, Neuman, No-slip

Disc. Method Finite Difference/Volume/Elements, Spectral

Dependent Variables density, pressure, velocity, temperature

Functionals Flux, Discretization Error, Lift

Table 3.2: Simulation Context Characterization

1. How does the problem domain change with time?

2. What PDE coefficients are involved and what is the spatial variation
in their values?

3. How do the values of the boundary conditions vary spatially?

4. Is there a time-step restriction? If so, how is it defined?

5. What is roughly the size of the physical domain?

6. Is the mesh to be adapted to the physical solution and, if so, how?

Obtaining answers to these questions before engaging in Target Construc-
tion is a good idea because it can clarify the optimization goal, identify
possible sources of raw data, and assist in target model development.

3.1.2 Target Parameter Control Decision

As noted previously, there are four groups of target parameters: volume, ori-
entation, shape, and aspect ratio. In the volume mesh case, there are several
target parameters within each of these groups. In this phase of developing
a Target Construction Strategy, one decides which target parameter groups
will be controlled and which will not. Parameters within a particular pa-
rameter group are controlled if values of the target parameters in the group
are or will be assigned (at all the sample points) in Target Construction.3

If, on the other hand, values are not assigned for a particular parameter

3If one wants to control a particular parameter within a parameter group, one will
usually want to control all the other parameters in the group as well. There may be the
rare occasions where one wants to control only some of the parameters within a group.
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group, then the group is not controlled.

It would seem at first thought that one would always want to control all
four parameter groups in order to achieve the highest mesh quality. The
four groups are not equally important, however. Volume is perhaps the
most important parameter, closely followed by skew. Aspect ratio is only
important if the physics of the problem is anisotropic. Control over orienta-
tion is probably the least often required. Overall, the relative important of
the groups depends on the particular simulation at hand and on the mesh
optimization goal. In addition, assigning values at every mesh sample point
to a parameter or parameter group can be challenging, especially when the
physics does not dictate that the parameter needs to be controlled. Thus, it
is fortunate that there exist mesh quality metrics which allow one to abstain
from controlling a particular parameter group if desired. One cannot abstain
on too many parameters at once, however, so a balance between controlling
and abstaining is needed.

The decision to control or not control the parameter groups can be repre-
sented by a sequence of four letters, one for each of the groups, i.e., volume,
orientation, skew, and aspect ratio. Each group can only be assigned the
letters C or A, standing for ‘control’ and ‘abstain’ (i.e., not control). There
are thus 24 = 16 possible combinations of these letters, yielding 16 possible
decisions one can make. If one only wants to control volume, for example,
the Control Decision is represented as CAAA. The Control Decision de-
termines (a) which target parameter groups need to be assigned values in
Target Construction and (b) the metric type. Metric type refers to local
quality metrics which control only the parameters one has decided to con-
trol; in the example CAAA one controls only the volume parameter and thus
the required metric type is a Volume Metric. Volume metrics are functions
of the active and target parameters corresponding to υ. There are thus 16
metric types. Some of the 16 metric types are not recommended for use in
mesh optimization. About 5 metric types are very effective in improving
mesh quality. This topic is discussed in detail in a subsequent report.

So, how does one make the Control Decision? Basically, the decision is made
in light of the identified mesh quality improvement goal, the mesh and simu-
lation context, and the available raw data. If, for example, the mesh quality
improvement goal is to improve the shape of the mesh elements, then one
needs to control the skew and aspect ratio parameters. Such a goal tacitly
implies that the volume and orientation parameters are not particularly im-
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portant (except for keeping the volume positive) and thus one can abstain
on those parameters. The Control Decision for Shape Improvement is thus
AACC. In general, one might wish to abstain on a parameter group be-
cause (i) it is unimportant with respect to the mesh quality improvement
goal or (ii) it is important but there is no raw data that can be converted
into appropriate values of the particular parameter. By abstaining on a
particular parameter group, the optimization procedure should be able to
produce an optimal mesh more in tune with the controlled parameters (and
the quality improvement goal) than otherwise. Although a Control Decision
always results in one of the 16 combinations of A and C, the decision should
be restricted so that the corresponding metric type is one of the 5 effective
types mentioned above.4

Once the Control Decision has been made one need consider only the con-
trolled parameter groups in the rest of the Target Construction process.

3.1.3 Establishing Data Correspondences

As noted earlier, Target Construction results in an algorithm (or series of
algorithms) which takes raw data and converts it into values of the target
parameters. As an intermediate stage, one frequently converts the raw data
into intermediate data and subsequently converts the intermediate data into
target parameter data.

Definition.
Raw Data primarily consists of geometric data and simulation data that is
available prior to Target Construction. See Table 3.3 for examples.

Definition.
Intermediate Data primarily consists of data which is computed from the
raw data and can be considered as ‘functionals’ of the raw data. See Table
3.4 for examples.

Definition.
Parameter Data consists of values of the controlled target parameters over

4It is recognized that, in more complex situations, the mesh quality improvement goal
may require one to make multiple Control Decisions, for example, one for each sub-region
of the physical domain.
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the set of sample points and which is computed from Intermediate Data.

In this section some ideas are presented concerning potential sources of raw
data which may be accessible to the optimization code. Raw data generally
comes from two kinds of sources: (1) geometric sources and (2) simulation
sources. Geometric data sources consist of items that are available inde-
pendently of any physical information and independently of the simulation
which is to be performed using the mesh. This includes information and
data concerning the physical and computational domain, the mesh type,
the mesh topology, element type, the coordinates of the initial mesh, and
the coordinates of any reference meshes. Simulation data sources consist of
items that are available from physical information and the simulation itself.
Simulation data can be used as raw data for target-matrix construction at
the beginning of the simulation or as the simulation proceeds, while geomet-
ric data is generally available prior to the simulation. An exception to the
latter might be the case in which the domain deforms with time.

3.1.3.1 Geometric Raw and Intermediate Data

There are three potential sources of geometric raw data. First, there is the
physical domain on which the computation is to take place. The user has
high-level knowledge of the domain concerning its dimension (2D/3D), topol-
ogy, symmetries, sub-regions on which important physics takes place, and
whether it is deforming or static. Although some of this information may be
difficult to quantify, it may bear upon the algorithms used in constructing
the target-matrices. In addition, the physical domain is represented dis-
cretely in the computer by nodes, curves, surfaces, volumes, and regions.
This raw data can potentially be processed to find intermediate quantities
such as a domain bounding box and centroid, a ‘diameter’, a rough measure
of aspect ratio and/or orientation (with respect to the coordinate system),
and finally, a set of domain sub-region indicators which indicate either geo-
metric sub-regions or physical sub-regions.

The second potential source of geometric raw data is the initial mesh, i.e.,
the mesh whose quality is to be improved via node-movement (or other) tech-
niques. The initial mesh contains raw data concerning the mesh type (struc-
tured/unstructured, planar/surface/volume, low/high order, conformal/non-
conformal, moving/static, etc.), mesh connectivity, element type, the vertex
coordinates, and whether or not a vertex is on the domain boundary. From
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these quantities one can calculate the area or volume of the computational
domain and thus an average local or cell area/volume. From the boundary
discretization one can determine a boundary parameterization or arclength.
From element type one can determine ideal element shape (skew and aspect
ratio). One can also compute the initial mesh Jacobian matrix (and deter-
minant) at every sample point. One can calculate the initial mesh quality
using various metrics. One can calculate mesh statistics (e.g., average, min-
imum, maximum, variance) on such quantities as length or area/volume.
One can compute a local ‘sizing’ function [14]. The initial mesh can thus
be used to calculate a wealth of intermediate data valuable in constructing
target-matrices.

The third potential source of geometric raw data is a reference mesh, i.e., a
mesh whose connectivity can be put into a one-to-one correspondence with
the initial mesh. Reference meshes can be obtained from: (1) the initial or
computational mesh at an earlier time in the simulation (applies to mov-
ing mesh or deforming domain problems) or (2) a mesh generated ‘from
scratch’ on a similar domain with the same mesh topology (applies mainly
to structured meshes). As with the initial mesh, the vertex coordinates of
the reference mesh can be used to calculate the reference Jacobian-matrix
and to calculate reference mesh statistics on length or area/volume.

3.1.3.2 Simulation Raw and Intermediate Data

Raw data that is created by the physical simulation consists primarily of
the numerical solution to the governing equations. The numerical solution
is the values of the dependent variables in the equations at some discrete
set of points, perhaps along with interpolated values (as in FEM). Often the
numerical solution includes velocities or fluxes, too. The numerical solution
gives rise to scalar and vector fields as intermediate data.

Other fields can be obtained from the coefficients of the governing partial
differential equations. As an example, in Darcy flow the permeability tensor
appears as a PDE coefficient and determines principle flow directions. An
anisotropic permeability tensor may call for an anisotropic optimal mesh.
Material indicators are an example of a scalar field that can help determine
target-matrix input parameters. Each type of physics simulation will have
its own set of raw data which can perhaps help determine the input param-
eters in the target-matrix set.
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Source Raw Data Intermediate Data

Physical Domain Geometric Description: Bounding Box & Centroid
(CAD data, etc.) Domain ‘Diameter’

(Domain Topology) Aspect Ratio
(Domain Symmetries) Orientation

(Dimension) Sub-region Indicators

Initial Mesh Mesh Type Domain area or volume
Mesh connectivity Boundary parameterization
Element type(s) Ideal element shape

Vertex coordinates Mesh Jacobian
Boundary Flags Local quality metrics

Mesh statistics
Sizing functions

Reference Mesh Vertex coordinates Reference Jacobian
Mesh Statistics

Table 3.3: Geometric Raw and Intermediate Data

The raw data present in the simulation can be further processed to create
intermediate data. From symmetric-matrix data one can obtain real eigen-
vectors and eigenvalues which, in turn are useful for determining directions
and aspect ratios. From vector fields one obtains directions and lengths.
Raw solution data can be used to recover the solution Hessian matrix and
to create spatially dependent a posteriori error estimates. The literature
describes many different methods for creating some types of intermediate
data (e.g., Hessian recovery methods [6], a posteriori error estimates [17],
and interpolation error [7], [4]).

3.1.3.3 Correspondences Between Raw, Intermediate, and Pa-
rameter Data

The raw and intermediate data mentioned in Tables 3.3 and 3.4 only iden-
tifies what kinds of data can potentially be of use in Target Construction.
In practice one needs to identify the specific raw data and the specific in-
termediate data which will be used in Target Construction. Specifying raw
or intermediate data includes determining the form of the data and the lo-
cations of the data on the mesh or physical domain. Specific raw data may
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Source Raw Data Intermediate Data

Scalar Fields The Solution Gradient, Hessian
Material Indicator Function Error Estimates

Streamlines

Vector Fields Solution Gradient or Flux Directions, Lengths
Velocity

Electric and Magnetic Fields

Matrix/Tensor Fields Permeability Matrix Eigenvectors, Eigenvalues
Stress Tensor

Table 3.4: Simulation Raw and Intermediate Data

depend on the particular simulation code that is used.

Beyond identification of the specific raw and intermediate data that will be
used, one needs to determine a Correspondence Chain between the raw and
target data.

Definition.
A Correspondence Chain is a mapping which identifies, for a controlled tar-
get parameter, (a) the specific intermediate data which will be used to com-
pute the controlled parameter data and (b) the specific raw data which will
be used to compute the specific intermediate data.

One correspondence chain is needed for each target parameter that is to be
controlled. As an example, one might define a correspondence chain between
a particular simulation density field (the raw data), a particular error esti-
mator (the intermediate data), and the volume parameter. In this example,
the local volume in the optimal mesh is to be adapted to the simulation
densify field.

Note that, if multiple correspondence chains are needed, one is free to choose
the raw data sources for each chain independently of what the raw data is
in a different chain. For example, the skew angles can be constructed from
the raw data ‘element type’ while the area/volume parameter can be con-
structed from raw data consisting of the initial mesh vertex coordinates. At
the same time the direction parameter group could be constructed from raw
data corresponding to a simulation-produced vector field. As long as the
raw data is accessible, one can mix and match the raw data sources when
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constructing the full set of correspondence chains. This flexibility is quite
important in being able to find appropriate values for the target parameters.

3.1.3.4 The PIE Decision

When creating correspondence chains which identify specific data, it is help-
ful to keep in mind what can be referred to as the PIE-decision. For each
of the parameter groups one has basically four options in defining how the
group will be constructed. The four options are: (P) preserve, (I) improve,
(E) equidistribute, or (A) abstain. In the preserve option, one seeks to re-
tain the quality present in the initial mesh, with respect to the given input
parameter. Thus, the specific raw data in the correspondence chain will be
the initial mesh if one chooses the preserve option. In the improve option,
the parameter group is constructed so-as to improve upon the quality exist-
ing in the initial mesh because the existing initial mesh quality is inadequate
(with respect to the given parameter). In the equidistribute option, the pa-
rameter group is constructed by assigning a value which is constant over all
sample points. In this way, quantities such as area, volume, or size can be
equidistributed over the mesh. Strictly speaking, one would only do this in
an attempt to improve the quality of the mesh with respect to the given
parameter group, so equidistribution can be viewed as a special case of the
improve option. Finally, the abstain option is used when there is no good
raw data source for creating acceptable values for a given parameter group.
This option was discussed in section 3.1.2.

As an example, consider the area/volume parameter group. In r-adaptivity,
one often seeks to adapt (improve) mesh quality by varying the area/volume
of mesh elements according to some scalar quantity such as an a posteriori
error estimate. In mesh generation one often equidistributes cell area/volume
in the absence of any specific knowledge about the particular physical sim-
ulation which the mesh will facilitate. In some mesh quality improvement
problems, the area/volume of mesh elements has already been adapted to
the solution; in that case, one wants the area/volume construction procedure
to preserve the existing area/volume, i.e., not obliterate it during mesh op-
timization. Finally, it is often the case in mesh generation in the absence of
simulation information to be indifferent or neutral to element area/volume,
as in shape optimization. In this case, one abstains from constructing the
area/volume parameter. One also abstains when there is no relevant raw
data for the construction of the parameter group.
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The ‘preserve’ option, if selected, usually calls for extracting values of geo-
metric parameters from the reference mesh, so the latter becomes the specific
raw data in the correspondence chain. The ‘equidistribute’ option most of-
ten calls for constants available or computable from mesh and simulation
data. The skew parameter is very often determined by the ideal element
data; this would fall under the equidistribute option. ‘Improve’ is the most
difficult option to effect since it often requires model development. These
options are illustrated in section 3.3.

In the PIE decision, one assigns to each correspondence chain (representing
one target-parameter) either P, I, or E. Including the control/abstain op-
tion there are, in theory, 44 = 256 possible PIE-A combinations that can
be made, ranging from P-P-P-P (preserve everything) to A-A-A-A (abstain
from all). In practice, the number of useful combinations is probably much
smaller. Never-the-less, the large number of combinations provides a great
deal of flexibility.

Finally, note that most often if a particular set of PIE-A decisions is made,
it usually applies to every sample point of the mesh. For example, if one
chooses to preserve the area parameter, one wants to preserve it at every
mesh sample point. However, in some cases it may be desire-able to preserve
area on one set of sample points and to equidistribute it on the remaining
sample points. The flexibility to do this should be available in any general
optimization code.

Having identified the mesh and simulation context, made the Parameter
Control Decision, and established the necessary Correspondence Chains, one
now has a complete Target Construction Strategy. Note that a correspon-
dence chain only defines the mapping between the various levels of data; it
does not tell one how the data is to be converted. The latter question is
addressed in section 3.2.

3.2 Raw to Intermediate Data Conversion Algo-
rithms

The purpose of the algorithms mentioned in this section is to convert raw
mesh or simulation data into values of one or more mesh or solution func-
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tionals over the mesh. The correspondence chains determine exactly which
raw data and which intermediate data will be the input and output of each
algorithm needed in this phase. The intermediate data must ultimately be
defined at the mesh sample points. If not, then the interpolation of the in-
termediate data to the sample points must be done in the target parameter
calculation phase. The algorithms in this section provide examples as to
how the raw data is converted.

3.2.1 Algorithms for Mesh Functionals

Examples of raw mesh data includes mesh connectivity, vertex or nodal
coordinates, and element types. Examples of intermediate mesh data in-
cludes ideal element coordinates, the Jacobian matrix of a reference mesh,
and mesh statistics. Algorithms for calculating the latter are described next.

3.2.1.1 Ideal Element Coordinates from Element Type

This sub-section covers a rather trivial but important example. The most
commonly used mesh elements are the triangle, quadrilateral, tetrahedron,
hexahedron, triangular prism, and the pyramid. An ideal element is a
straight-sided isotropic element for which all angles within a given face are
equal. The ideal forms of the first four element types are the equilateral
triangle, the square, the equilateral tetrahedron, and the cube. Ideal ele-
ments define the desired shape of an element but not its size or orientation.
The raw data in this example is the element type. If the mesh is a hybrid
mesh then each element will likely have a flag associated with it that tells
the element type; this flag is the raw data. If the mesh consists of only
one element type, then one has (in principle) just one flag per mesh. Given
the element type, one can define (as intermediate data), the vertex coordi-
nates of the ideal element (see Tables 3.5 and 3.6).5 Ideal elements need not
have unit edge lengths. However, in terms of defining vertex coordinates
for the ideal element, assuming unit edge length is convenient. Thus, the
vertex coordinates in the table have been defined for ideal elements with
unit edge lengths. Note that there is no conversion algorithm involved in
this example, only a look-up table. One can, of course, provide their own
definition of the coordinates of an ideal element. From the coordinates of

5These coordinates are not unique, but uniqueness is not needed for the present pur-
pose.
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an ideal element one can calculate the corresponding target skew and aspect
ratio parameters, but this activity does not conceptually belong to the calcu-
lation of intermediate data (we discuss this latter activity in section 3.3.1.1).

Ideal Element Vertex Coordinates

Equilateral Triangle 0 (0,0)
1 (1,0)

2
(
1
2 ,
√
3
2

)
Unit Square 0 (0,0)

1 (1,0)
2 (1,1)
3 (0,1)

Table 3.5: Two-dimensional Ideal Elements
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Ideal Element Vertex Coordinates

Equilateral Tetrahedron 0 (0,0,0)
1 (1,0,0)

2
(
1
2 ,
√
3
2 , 0

)
3

(
1
2 ,

1
2
√
3
,
√

2
3

)
Unit Cube 0 (0,0,0)

1 (1,0,0)
2 (1,1,0)
3 (0,1,0)
4 (0,0,1)
5 (1,0,1)
6 (1,1,1)
7 (0,1,1)

Triangular Prism 0 (0,0,0)
1 (1,0,0)

2
(
1
2 ,
√
3
2 , 0

)
3 (0,0,1)
4 (1,0,1)

5
(
1
2 ,
√
3
2 , 1

)
Pyramid 0 (0,0,0)

1 (1,0,0)
2 (1,1,0)
3 (0,1,0)

4
(
1
2 ,

1
2 ,

1√
2

)
Table 3.6: Three-dimensional Ideal Elements

3.2.1.2 Reference Mesh Jacobian from a Reference Mesh

A reference mesh is a mesh that exists and has the same topology (con-
nectivity) as the mesh that is to be optimized. An important example of
a reference mesh is the initial mesh; this is the mesh whose quality is to
be improved via optimization. Another example of a reference mesh occurs
in deforming domain problems: in that context, the reference mesh can be
the active mesh a some earlier time in the deformation process. As a third
example of a reference mesh, one may be able to use a moving mesh at
an earlier time as the reference mesh. In many optimization problems the
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initial mesh has quality that is, in part, adequate or compatible with the
optimization goal. When that is the case, we can use the local Jacobian
matrices of the reference mesh to calculate all or part of the target-matrix.
Suppose the element mapping has the form

x(ξ1, ξ2, ξ3) =
N∑
n=1

pn φn(ξ1, ξ2, ξ3)

with N the number of element nodes (or control points), pn the coordinates
of the n-th node in the reference mesh, and φn the n-th basis function. Then
the element reference Jacobian matrix at the point (ξ1, ξ2, ξ3) has elements

Arefi,j (ξ1, ξ2, ξ3) ≡
∂xi
∂ξj

=
N∑
n=1

pn,i
∂φn
∂ξj

The element reference Jacobian matrix at the sample points can be found
by evaluation of the above at the logical sample points.

In this example of raw to intermediate data coversion, the reference mesh
nodal coordinates are the raw data and the reference mesh Jacobian matrix
(which can be considered to be a mesh functional) is the intermediate data.
Once the reference mesh Jacobian is calculated one can use it to compute
values of the target parameters at the sample points. This latter step con-
verts intermediate data into parameter data and is discussed in section 3.3.1.

3.2.2 Algorithms for Simulation Functionals

Raw data related to the simulation is commonly available in the form of
scalar and vector fields for the dependent variables in the PDE, along with
PDE coefficients related to material properties. This data can be used to
compute intermediate data (i.e.,solution/simulation functionals) such as gra-
dients, flux, Hessians, error indicators, interpolation error, and a posteriori
error estimates. Methods for doing so are better known to the simulation
community than to the meshing community. Here we only provide some
references to methods for converting simulation raw data into intermediate
simulation data. For gradient recovery methods see [5], [9], [12], [17]. For
an introduction to Hessian recovery methods see [6], [10], [13]. For interpo-
lation error see [2], [3], and [7].
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3.3 Target Parameter Model Development

The final phase of target construction is concerned with the conversion of
intermediate data into target parameter data. Because the final phase often
entails devising an ad-hoc model of target parameter behavior as a func-
tion of intermediate data, complete with arbitrary constants whose values
must be determined, it is referred to as Target Parameter Model Develop-
ment. As an example, one might wish to devise a model which relates local
a posteriori error estimates to the target volume parameter υ. Clearly, in
that case, one wants a function which decreases monotonically as the error
increases. Beyond that, it is often unclear what type of function or model
is most useful, so numerical experiments may be warranted. In such cases,
Model Development is clearly an art, not a science.

Each correspondence chain identified in the first phase pairs some specific
intermediate data with specific geometric target parameters, so multiple
models may be necessary, one for each chain. On the other hand, there are
cases in which models do not need to be developed because the relationship
between the geometric parameter and the intermediate data is unambigu-
ous. This is especially true when the intermediate data consists of mesh
functionals.

3.3.1 Converting Mesh Functionals into Parameter Data

We give three examples of converting intermediate data in the form of mesh
functionals into values of target parameters.

3.3.1.1 Skew and Aspect Ratio Parameters from Ideal Element
Coordinates

Ideal elements can be used to find target parameter values for the skew
and aspect ratio groups, but not the volume or orientation groups. The
intermediate data in this case consists of the coordinates of the ideal element
(see Tables 3.5 and 3.6). For the triangle element, let (u, v) be a point in the
ideal triangle. For 0 ≤ ξ ≤ 1 and 0 ≤ η ≤ 1 − ξ, the points in the triangle
are

u(ξ, η) = ξ u1 + η u2 + (1− ξ − η)u0

v(ξ, η) = ξ v1 + η v2 + (1− ξ − η) v0
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with (uk, vk) the coordinates at vertex k = 0, 1, 2. In that case the target-
matrix corresponding to the ideal element is

W =

(
uξ uη
vξ vη

)

=

(
u1 − u0 u2 − u0
v1 − v0 v2 − v0

)

=

(
1 1

2

0
√
3
2

)

The skew angle is found via the dot product w1 ·w2, giving

cosφ = (1, 0) ·
(

1

2
,

√
3

2

)

=
1

2

Then sinφ =
√
3
2 and φ = π

3 . Since all the lengths in the equilateral triangle
are equal, the aspect ratio parameter is ρ = 1. Proceeding similarly for the
unit square element, one finds cosφ = 0, sinφ = 1, and φ = π

2 . Note that
the Jacobian matrix of these ideal elements is a constant over the element,
thus so are the skew and aspect ratio parameters.

Table 3.7 gives the skew angles for the ideal elements in <3, as computed
from their vertex coordinates. For the triangular prism element it is as-
sumed that the mapping is such that the ζ = 0 face corresponds to points
on the lower triangle and ζ = 1 to points on the upper triangle. For the
pyramid element it is assumed that the points on the base of the pyramid
correspond to ζ = 0 and the apex point is at ζ = 1. For the 3D element
types define cosφ12 = uξ · uη, cosφ13 = uξ · uζ , and cosφ23 = uη · uζ . The
Jacobian matrix of the ideal elements is constant over all the ideal elements
except the pyramid, however the skew and aspect ratios are constant over
all the element types including the pyramid. The aspect ratios of the ideal
3D elements are all 1.0.

In this ideal element example, the raw data is element type, the intermediate
data are the vertex coordinates of the ideal element, while the final data is
the face and dihedral angles φ12, φ13, and χ1. The raw data is defined on the
element, the intermediate data on the element vertices, and the final data
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Element φ12 φ13 φ23 χ

Tetrahedron π
3

π
3

π
3 cos−1(13)

Hexahedron π
2

π
2

π
2

π
2

Tri-Prism π
2

π
2

π
3

π
3

Pyramid π
2

π
3

π
3 cos−1( 1√

3
)

Table 3.7: Skew Angles for Ideal 3D Elements

at the sample points (because the angles are constant over the ideal element).

Of course, in this example, the computation of the ideal skew and aspect
ratio parameters does not change from mesh to mesh or from problem to
problem. One can simply use the results given in this section as the target
values of the skew and aspect ratio parameters, going directly from the ele-
ment type indicator to the target values.

3.3.1.2 Target-Parameter Values from a Reference Mesh Jaco-
bian

Another example of using mesh functionals to find target parameter values
is that of using a reference mesh (see section 3.2.1). The intermediate data
in this example is the set of Jacobian matrices that can be computed at the
sample points of the reference mesh. Values of the target parameters can be
found by applying the matrix extraction functions defined in sections 2.1.3
and 2.2.3 to the Jacobian matrix. Or, one can apply the extraction functions
defined in sections 2.1.2 and 2.2.2.

As an example, in many optimization problems the initial mesh has quality
that is, in part, adequate or compatible with the optimization goal. When
that is the case, one can use the local Jacobian matrices of the reference
mesh to calculate all or part of the target-matrix. Let Aref be the Jaco-
bian matrix of the reference mesh at some given sample point (or just A
when the context is clear). Then, if one wants to create values at every
sample point for the area or volume parameter υ from the reference mesh,
they simply let υ = υ̃(Aref ). Using these values as target parameter values
implies that one finds the corresponding reference mesh values acceptable,
or that one wants to preserve those values in the optimal mesh to be created.
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Note that the target-parameters calculated from the reference mesh may not
always satisfy the requirements of a valid target-matrix input parameter. For
example, if the reference mesh has poor quality, one might encounter sample
point locations for which `i = ˜̀

i(Aref ) = 0 or for which υ = υ̃(Aref ) ≤ 0.
If the reference mesh contains such points, the reference mesh cannot be
used, at least not at the sample points where these issues occur. Thus the
reference mesh should have good quality, at least with respect to the target-
parameters of interest.

In the reference mesh example of target-matrix input parameter construc-
tion, the reference mesh vertex coordinates are the raw data, the reference
Jacobian matrix is the intermediate data, and the target-parameter data
extracted from the matrix is the final parameter data.

3.3.1.3 Reference Mesh Statistics

As a third exmple of converting intermediate mesh data into target param-
eter values, consider again the Jacobian matrix computed on the reference
(or initial) mesh. For any given target parameter p, one can form the set
{pk} of values over the set of reference mesh sample points by using the
extraction functions. Then, given values {pk}, one can calculate parameter
statistics over the sample points: the average,

p̄ =
1

K

K∑
k=1

pk

the minimum,

pmin = min
k
{pk}

the maximum,

pmax = max
k
{pk}

the standard deviation,

σ(p) =

√√√√ 1

K

K∑
k=1

(pk − p̄)2

and other statistics.
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Mesh statistics can be useful in Target Parameter Model Development. An
important example occurs in the area or volume equi-distribution problem
where the goal is to create equal area or volume elements throughout the
mesh. In that case, the local area parameter υ should be constant, so one
can set υ = ῡref at all sample points. In this example, the vertex coordinates
of the reference mesh are the raw data and the reference mesh Jacobian and
the parameter values calculated therefrom, are the intermediate data. The
final parameter data is based on a model which relates a mesh statistic (or,
more generally, some function of a mesh statistic) to a set of target param-
eter values.

3.3.2 Converting Simulation Functionals into Parameter Data

This topic is illustrated with an example in which the model is relatively
simple. Suppose one wants to adapt a 2D quadrilateral mesh to the principle
axes of the permeability tensor K (a symmetric, positive definite matrix) in
a subsurface Darcy flow simulation. The first column of the active Jacobian
matrix is to be aligned with the principle flow direction to improve simula-
tion accuracy. The mesh spacing in that direction should be small compared
to the normal direction. The raw data is the permeability tensor K. The
intermediate data consists of the unit eigenpairs of K; let those be referred
to as (λ, e) and (λ⊥, e⊥), with e = (cosu, sinu) and e⊥ = (− sinu, cosu)
and u the angle between the x-axis and the direction of e. Define the ratio

r ≡
(
1
λ

)
λ⊥. If r ≤ 1 align the first column of the active matrix with e,

so the orientation, skew, and aspect ratio target parameters can be chosen
to be θ = u, φ = π

2 , and ρ = 1
r . On the other hand, if r > 1, align the

first column of the active matrix with e⊥, so the orientation, skew, and as-
pect ratio target parameters can be chosen to be θ = u+ π

2 , φ = π
2 , and ρ = r.

Three of the four target parameters were defined in the Darcy flow example
above. If the permeability tensor is not a constant, then the orientation
and aspect ratio parameters will vary from one sample point to the next.
The remaining target parameter, corresponding to the volume υ, can also
be defined using the tensor. It is reasonable to expect that the local mesh
volume would be a function of the determinant of K, i.e., υ = υ(λλ⊥).
Here is where model development is needed. It seems clear that the volume
should be a decreasing function of the determinant because a relatively large
determinant means greater flows and thus requires smaller element areas.
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Many functions, of course, satisfy this condition, for example

υ = υo exp−aλλ
⊥

and

υ = υo

{
1− 2

π
arctan

(
a λλ⊥

)}
with constants υo, a to be determined. Both functions obey υ = υo when the
determinant is zero and monotonically decrease to zero as the determinant
approaches infinity. Two issues arise in this kind of model development (1)
what is a good functional form and (2) what values should be given to the
constants? From experience, the answer to the first question seems to be
that the particular functional form is often not critical, as long as it is mono-
tonically decreasing. However, in practice, trying several functional forms
is advisable. Answering the second question generally requires numerical
experimentation using the simulation of interest. In this example a PDE
coefficient matrix and its eigenvalues/vectors were used as the intermediate
data. Other sources of intermediate data that might be useful in a simula-
tion were given in Table 3.4.

In this Darcy flow example, there are four correspondence chains, one for
each of the four geometric parameters associated with meshes in <2. All
four chains began with the Permeability Tensor K over the domain as the
raw data. The first chain connects K to the intermediate data det(K) and
then to the volume parameter υ. Since in this chain there was no use of
a reference mesh nor of any constant data, the chain is an ‘improve’ chain
with respect to the PIE decision. The second chain connects K to the inter-
mediate data consisting of the eigenvectors (e, e⊥) of K. The second chain
then connects the intermediate data to values of the orientation parameter
θ; this chain is also an ‘improve’ chain. The third chain is built upon the
fact that the eigenvectors of K are orthogonal, suggesting that the skew
angle should be that of the ideal quadrilateral element, i.e.,π2 . In this case
one can say that the raw data is K, the intermediate data is the ideal angle
in a quadrilateral element, and the final parameter data is the skew angle.
The chain uses the ‘equidistribute’ option since the target skew angle is con-
stant over the mesh. The last chain is build upon the idea that the ratio
of the eigenvalues of K suggest an appropriate value for the aspect ratio
parameter. In this case one can say that the raw data is K, the intermedi-
ate data consists of the eigenvalues of K and the final parameter data is the
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aspect ratio parameter. The chain uses the ‘improve’ option since the target
aspect ratio is non-constant and does not come from a reference mesh. In
summary, the four chains correspond to a PIE-A decision of the form I-I-E-I.

3.3.3 Summary of the Model Development Phase

In the model development phase one defines the way in which the interme-
diate data in each correspondence chain will be converted into values of a
particular target parameter. There are many ways in which this can be done
and one is limited only by one’s ingenuity. The values should all be defined
over the set of mesh sample points. Once the parameter values have all been
determined, one can further compute various target matrices if needed by
the local quality metric.

3.4 Summary of the Target-Parameter Construc-
tion Process

The three phases in Target Construction are (1) Strategy Development,
(2) Intermediate Data Algorithms, and (3) Parameter Data Model Devel-
opment. Although each stage has been carefully described in some detail,
target construction is not envisioned as a formal process. Rather, the de-
scription is intended only to guide those seeking to define values of the
required target parameters that are appropriate to a particular mesh qual-
ity improvement goal. Although other mesh optimization methods have
used target parameters of various sorts, this is the first time that methods
for assigning values to these parameters has been systematically described.
There are no guarantees that the Target Construction process will result
in an adequate optimal mesh or that the mesh quality improvement goal
will be reached. However, at least there is now a rational approach to the
problem of assigning values of target parameters that can be systematically
employed in the future. As noted earlier, in the long term this could result
in a library of target-construction algorithms available to the general com-
munity.
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3.5 Target Construction Examples for Planar Meshes

In this section examples are given of target-parameter construction for two-
dimensional meshes in order to illustrate the wide variety of mesh improve-
ment problems which can be addressed in TMOP. In each example, the
process by which one determines which target-parameters are to be con-
trolled is described, along with their values, over the full set of mesh sample
points.

Mesh quality improvement begins with an initial mesh and ends with an
optimized mesh. To improve the initial mesh one must construct the target-
parameter values. As noted in Section 3.1, the values are ultimately de-
termined by raw and intermediate data. If the data used to construct the
parameter values is strictly geometric in nature (i.e., does not originate from
a physical simulation), then the data will be defined at logical locations as-
sociated with the mesh. As the mesh moves within the domain during the
optimization procedure, the data moves along with it. On the other hand,
if some of the data used to construct the parameter values is obtained from
the simulation, then data will most likely be defined at physical locations as-
sociated with the domain. As the mesh moves within the domain during the
optimization procedure the simulation data does not move with it. In this
case, the physical parameter data must be interpolated (or advected) to log-
ical locations in the mesh. However, the interpolation or advection of data
occurs during the optimization step and therefore has nothing to do with the
target-parameter construction process, which occurs prior to optimization.
So, target-parameter construction does not depend on whether or not one
uses geometric or physical data in the target (one can mix and match the dif-
ferent types as needed). That said, the final values of the target-parameters
to be constructed must be located at logical locations within the mesh called
sample points, because that is where the active and target-matrices reside.
In the examples below it is assumed that interpolation of the data to sam-
ple points has taken place at some stage of the raw-intermediate-final data
processing, but this topic is not discussed further in the examples.

Any mesh quality improvement problem in which simulation data is used
in the construction of the target-parameters is called a solution-adaptive
problem and the target is called a solution-adaptive target. If no simulation
data is used in the construction of the target parameters, then the target
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is called a geometric target. In many instances one uses a mixture of simu-
lation and geometric data; these cases are also considered solution-adaptive
targets. Section 3.5.1 concerns examples of geometric target construction
while Section 3.5.2 gives examples of solution-adaptive target construction.
The distinction between these two types of target is only important in the
optimization procedure. In terms of target construction, the distinction is
unimportant.

In the examples that follow reference is made to certain metric types. One
outcome of the PIE-A decision is to define the type of metric which should
be used in the optimization procedure. In a follow-on document it will be
shown that there are 15 metric types that can potentially arise. Of these
only 4-6 metric types are actually viable in mesh optimization due to the ex-
istence of multiple optimal meshes. The PIE-A decision is thus constrained
with those limitations in mind. In the examples of 2D Target Construction
below some of the viable metric types are referred to even though they are
not defined in this document.

3.5.1 Target-Parameter Construction of Geometric Targets
for Planar Meshes

3.5.1.1 Equi-distribute Local Shape

The goal in this example is to create a set of target-matrices which can be
used to create an optimized mesh in which the average element shape will
be closer to the ideal element shape than the average element shape in the
initial mesh. Ideal element shape is defined a priori. The raw data in this
problem is element type. For codes that use multiple element types, there
is usually some indicator function to inform the code of the type of each
specific element. For codes that use only one element type, this is of course
trivial. The skew angles which define the ideal element type are considered
to be intermediate data. To determine the target, this raw and intermediate
data is converted into the final values of the target-parameters within the
target matrices. To control shape, we need to control the skew and aspect
ratio parameter groups and abstain from the size and orientation parameter
groups. Thus, the PIE-A decision for volume-orientation-skew-aspect is ab-
stain, abstain, equidistribute, equidistribute (AAEE). One could also view
the latter two decisions as falling into the ‘improve’ category, but since only
(constant) a priori data is used, it seems more appropriate to consider this
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as a decision to equidistribute.

Since only skew and aspect ratio (i.e., shape) are to be controlled, metric
type shape must be used. The full target-matrix W is the product of the size
parameter times the orientation matrix times the shape matrix. If we use
a shape metric that explicitly depends on W , we can use default values for
the size parameter and for the orientation factor. If the metric is invariant
to size and orientation, then the actual default values selected will not affect
the optimal mesh. Only the actual values in the shape matrix will matter.
As will be seen later, one can also use shape metrics which depend only on
the shape matrix S. In that case, one need only construct the incomplete
target SW , not W . For any shape metric, it is the construction of SW that
is critical.

If every element in the mesh has the same type, and one desires that they
all have the ideal shape, then the shape-matrix must be the same at every
mesh sample point. Thus, if the shape matrix at sample point k is Sk, then
Sk is a constant matrix, independent of k. If the mesh has more than one
element type (a hybrid mesh), then there will be one shape matrix for each
of the element types. The shape-matrix will then be constant over all sam-
ple points belonging the same element type. Mesh topology is immaterial
to the construction of the target when the ideal mesh element is isotropic
(as in the case of triangles, quadrilaterals, tetrahedral, and hexahedra).

For completeness, the shape-matrix (i.e., the incomplete target-matrix) is
given here for each ideal element type. For triangular elements, φ = π

3 and
ρ = 1. Then

Strik =

(
1 cosφ
0 sinφ

)(
1√
ρ 0

0
√
ρ

)

=

(
1 1

2

0
√
3
2

)(
1 0
0 1

)

=

(
1 1

2

0
√
3
2

)

for every k.
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For quadrilateral elements, φ = π
2 and ρ = 1. Then

Squadk =

(
1 cosφ
0 sinφ

)(
1√
ρ 0

0
√
ρ

)

=

(
1 0
0 1

)(
1 0
0 1

)

=

(
1 0
0 1

)

for every k.

3.5.1.2 Equi-distribute Local Shape and Size

The goal in this example is to define a set of target-matrices which will en-
courage the optimized mesh to have elements whose shape and size is nearly
constant. The previous example showed how targets can be constructed to
encourage ideally-shaped (i.e., constant shape) elements. To additionally in-
corporate size into the target-matrices, note first that the parameters for size
(ζ) and volume (υ) are related. In two-dimensions we have υ = ζ sinφ and
in three-dimensions, υ = ζ sinφ12 sinφ13 sinχ. So, by controlling both skew
and size, one is also controlling volume. The PIE-A decision for this exam-
ple is equidistribute, abstain, equidistribute, equidistribute (for volume/size,
orientation, skew, and aspect ratio). The raw data in this example consists
of (a) element type and (b) the initial mesh and mapping. The method
by which intermediate shape data is created from element type. Interme-
diate area or volume data is created by approximating the volume of the
physical domain by summing up the volumes of the mesh elements. The
element volumes, in turn, are found by summing over the local volumes at
each sample point within the element. The initial mesh can be used for this
purpose. Since υ is a local quantity defined at each sample point, the total
domain area must be divided by the number of elements to get a value of υ.
Finally, to find ζ, divide the volume by the sine of the skew angles. Since
it is intended to control the size and shape parameters, the corresponding
incomplete target-matrix is U(ζ, φ, ρ) =

√
ζ S(φ, ρ) in two dimensions and

U(ζ, φ12, φ13, χ, ρ1, ρ2, ρ3) = ζ
1
3 S in three dimensions, where S is the ideal

shape matrix for the given element type. The shape+size factor U is thus
a constant matrix, being the same at every sample point. In order to use
these targets, a shape+size metric must be used. If the shape+size metric
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depends explicitly on U , nothing more need be done. If the shape+size met-
ric depends explicitly on W , then one must choose a default value (such as
the identity) for the orientation factor R. Then W = RU and the metric
can be evaluated.

3.5.1.3 Equi-distribute Local Skew and Size

In the previous example, the goal was to control size, skew, and aspect ra-
tio (i.e, volume and shape). In some cases, one can obtain a better mesh
by ignoring aspect ratio and controlling only size and skew. Values for the
size and skew parameters in this example are determined exactly as in the
previous example. The result is a constant matrix. The PIE-A decision is
E-A-E-A. The incomplete target-matrix is

√
ζ Q in two-dimensions and ζ

1
3 Q

in three dimensions. This set of targets requires one to use a ‘volume+skew’
metric.

3.5.1.4 Preserving Good Meshes on Deforming Domains

In this example the physical domain changes with time during a simula-
tion due to various forces exerted on the domain. It is assumed that the
boundary of the domain is known at the beginning of each time step. It is
also assumed that at the previous time-step the mesh has acceptable quality
and includes non-constant features such as anisotropy, biasing, clustering of
vertices, and perhaps other features. The goal is to create target-matrices
such that the optimized mesh (to be used at the next time-step) resembles
the mesh at the previous time-step and thus preserves the non-constant fea-
tures. There are several variations on this theme, depending on the physical
problem and the particular features one wishes to preserve. In TMOP this
is again described by the PIE-A decision.

In the simplest situation, one wishes to preserve all of the features of the
mesh at the previous time-step (i.e., the initial mesh). That is, the goal is
to preserve shape, size, and orientation of the previous mesh, correspond-
ing to the PIE-A decision P-P-P-P. In that case, the full target-matrix W
is needed. The preservation option requires the use of the initial mesh as
the reference mesh, with Jacobian Aini. Values of the reference Jacobian are
found from the mesh at the previous time-step. Thus, one constructs the set
of target-matrices at each sample point by setting W = Aini. Because all of
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W is used in this situation, one must use metric type shape+size+orientation
(VOS). The raw data in this example can be considered to be the mesh at
the previous time-step, the intermediate data is {Aini}, and the final data
is W = Aini.

A variation on the previous example would be to change the PIE-A decision
to P-P-E-P, in which the ideal skew angles replace the angles from the ref-
erence mesh.

Another situation which occurs in practice is the need to preserve everything
except volume. This occurs, for example, when the size of the domain is
rapidly increasing or decreasing with time. In this case, one can either
abstain on volume (giving A-P-P-P) or one can re-calculate the local volume
at each sample point as time passes. In the former, one would calculate the
matrix RS from the reference mesh and use that as the incomplete target-
matrix, along with a shape+orientation (OS) metric. Volume would not be
controlled and should change automatically as needed, with this selection.
In the latter possibility, the PIE-A decision is I-P-P-P, in which data must
be found for the size factor ζ (or, equivalently the volume factor υ). One
way to do this would be to compute the total volume of the domain (V ),
both at the previous and at the current time steps (n, n+ 1). This requires
the use of the mesh at time-step n and the mesh at time-step n + 1. The
latter mesh conforms to the updated domain boundary and is considered
the initial mesh in the optimization procedure for time step n+ 1. Then, at
each sample point, let

υn+1 =
V n+1

V n
υn

Since, in two dimensions, υ = ζ sinφ, one has υn = ζn sinφn and υn+1 =
ζn+1 sinφn. In the latter one can use φn in place of φn+1 because the inten-
tion is to preserve the skew angle. Thus

ζn+1 =
V n+1

V n
ζn

In the A-P-P-P case, one uses an orientation+shape metric, with incomplete
target-matrix R(W )S(W ) = R(A)S(A). In the I-P-P-P case, one uses a
VOSA (shape+size+orientation) metric, with Wn = ζn+1R(Aref )S(Aref ).
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3.5.1.5 Removing Small Edges

Suppose that in two dimensions, at some sample point, the edge which de-
fines `2 in the initial mesh is unacceptably small. Let `min > 0 be the
smallest acceptable edge length in the mesh and assume `2 < `min. The
goal is to construct the target-parameters such that in the optimized mesh
the small edge length `2 at the same sample point has been increased. Let
the new edge length be `2 +∆`2. At the same time, let’s preserve the length
`1 at the same sample point, i.e., there should be no change in `1 as a result
of the mesh optimization. In fact, let f ≥ 1 be a user-input and let us
suppose that we desire `2 + ∆`2 = f `min after optimization.

Recall that in two-dimensions, ζ = `1 `2 and ρ = `2
`1

. Thus,

ρ ζ = `22
ζ

ρ
= `21

Then, since a goal is to preserve `1,

∆

(
ζ

ρ

)
= 0

ρ∆ζ − ζ ∆ρ

ρ2
= 0

and thus ρ∆ζ = ζ ∆ρ or

∆ζ

∆ρ
=
ζ

ρ

This means that, for some β 6= 0, one needs ∆ζ = β ζ and ∆ρ = β ρ.

Furthermore,

∆ (ρ ζ) = ∆
(
`22

)
ρ∆ζ + ζ ∆ρ = 2 `2 ∆`2

ρ (β ζ) + ζ (β ρ) = 2 `2 ∆`2

β ρ ζ = `2 ∆`2

β =
∆`2
`2
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So, if β > 0, then ∆`2 > 0 and the length of the small edge will increase
under optimization. Finally, in terms of f and `min,

β =
f`min
`2
− 1

with β > 0.

Therefore, in this target construction method, one first writes the target-
matrix in the parametric form in equation (2.2). For the given sample point
at which the small edge occurred, set θ = θinit and φ = φinit from the initial
mesh. Then replace ζ in the target with ζ+ ∆ζ = (1 +β) ζinit and replace ρ
in the target with ρ+∆ρ = (1+β) ρinit (where β is given in the last formula
above, with `2 the value of `2 on the initial mesh). A metric of type VOSA
preserves orientation and skew, while improving size and aspect ratio with
the revised target-matrix. The PIE-A decision is thus I-P-P-I.

In practice, one can find every sample point in the initial mesh at which
`2 < `min and construct the target accordingly.

Of course, it may happen that at some sample points `1 < `min. In that
case, let’s preserve `2 and increase `1. That is, set

∆ (ρ ζ) = 0

and

∆

(
ζ

ρ

)
= ∆

(
`21

)
Then,

∆ζ

∆ρ
= −ζ

ρ

and

ρ∆ζ − ζ ∆ρ = 2ρ2 `1∆`1

From the first relation, for β 6= 0, ∆ζ = β ζ and ∆ρ = −β ρ is a solu-
tion. (The alternative solution, ∆ζ = −β ζ and ∆ρ = β ρ will be discussed
momentarily). From the second relation,

ρ∆ζ − ζ ∆ρ = 2 ρ2 `1∆`1
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ρ (β ζ)− ζ (−β ρ) = 2 ρ2`1 (f `min − `1)
2β ρ ζ = 2 ρ2`1 (f `min − `1)

β
ζ

ρ
= `1 (f `min − `1)

β `21 = `1 (f `min − `1)

β =
f `min − `1

`1

Here, β > 0, but while ζ will be increased, ρ will be decreased. In that case,
`1 is increased but `2 is preserved. The alternative solution gives

β = −f `min − `1
`1

Here, β < 0. Then, from the alternative solution one sees that ∆ζ > 0 and
∆ρ < 0. Therefore, in the alternative solution, ζ will be increased and ρ
will be decreased. Thus, the alternative solution gives the same result as
the original solution, i.e. `1 is increased but `2 is preserved.

Finally, this scheme does not guarantee that in the optimal mesh all edge
lengths will be greater than `min. It only encourages it. If the scheme fails
to give the needed improvement one could consider (a) decreasing the value
of f (while keeping in greater than 1) or (b) choosing I-A-P-I in the PIE-A
decision to provide more flexibility to the mesh optimization. That would
require a size+shape (VS) metric.

3.5.2 Target-Parameter Construction of Solution-Adaptive
Targets for Planar Meshes

In these examples, one or more of the target-parameter values is defined in
physical space, while others are defined in logical space. Thus, some param-
eters will be interpolated (or advected) while other will not.

3.5.2.1 Adapting Local Volume to a Set of Error Estimates

Suppose that, as raw data, one has values of the dependent variable in a
simulation at the sample points of the initial mesh (the one just prior to
optimization). Suppose, in addition, that the raw data is processed to give
intermediate data consisting of values {ej} of some scalar error estimator

70



at the sample points. From the intermediate data, compute as final data,
the values of the local area parameters {υj} at the sample points. To do
this, a function υ = υ(e) is used to convert the local errors into local ar-
eas. With such a function, one can find υj = υ(ej). Finally, convert the
local volumes to local sizes {ζj} by the usual formulas in 2D or 3D, if needed.

Assume, for the moment, that one has such a function. Next, the PIE deci-
sion must be made. It has already been decided to adapt the local volume
to the error, so the decision must be of the form I-X-Y-Z, where X, Y, and
Z are to be determined. Most likely, one will want to abstain on the local
orientation, so choose X=A, giving I-A-Y-Z. It is also reasonable to assume
that in most cases, the skew decision will be Y = E, so that angles in the
adapted mesh will be close to ideal.6 So far, then, one has I-A-E-Z. For
the aspect ratio parameter it might be best to choose Z=P (i.e., to preserve
existing aspect ratios), especially if the initial mesh contains high-aspect
ratio elements. So, the final PIE-A decision is I-A-E-P. This choice requires
a shape+size metric.

With the I-A-E-P choice, one need only interpolate the values of the local
volume during the optimization procedure. The other parameters are com-
puted in the usual fashion on the intial mesh and do not need to be updated
during optimization.

The remaining question is how to create an adequate function υ(e). To
begin, define a non-dimensional error parameter, given by

E =
e− emin

emax − emin

with emin = minj{ej} and emax = maxj{ej}. Then 0 ≤ E ≤ 1 and

Ej =
ej − emin
emax − emin

Let υ(e) = υ̃(E). There are many functions υ̃(E) which may suffice for
adapting the mesh to the error, so let us first mention some basic require-
ments on υ̃. The first requirement is that υ̃(E) > 0 for 0 ≤ E ≤ 1. This
guarantees that the targets have positive local volume. The second require-
ment is that υ̃ should be a strictly decreasing function of E because larger

6In some rare instances, one might wish to choose Y = I, if one has some a priori
knowledge about the skew angles.
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errors require smaller local volumes in the adapted mesh. A third require-
ment is that

J∑
j=1

υ̃j =
J∑
j=1

(υA)j

where υA is the local volume in the initial mesh.

To proceed further, define the change in the volume at point j to be

(∆υ̃)j = υ̃j − (υA)j

Substituting this relation into the third requirement on υ̃, the requirement
on ∆ṽ is

J∑
j=1

(∆υ̃)j = 0

From the second requirement on υ̃, one sees that ∆υ̃ must be a decreasing
function of E because for E near 1, the change in volume must be negative,
while for E near 0, the change in volume must be positive. In addition, let’s
require that ∆υ̃(E) = 0 at E = Ē, where the latter is the average of the
{Ej}. Finally, from the first requirement on υ̃,

(∆υ̃)j > − (υA)j

for every j. Because the function ∆υ̃ is decreasing, its minimum value occurs
at E = 1. Thus (∆υ̃)j ≥ ∆υ̃(1). Therefore, it is sufficient to require

∆υ̃ (1) > max
j
{− (υA)j}

= −min
j
{(υA)j}

The simplest function to satisfy these requirements would be a linear func-
tion in E. Therefore, assume that ∆υ̃ has the form

∆υ̃ = aE + b

Since it is required that ∆υ̃(Ē) = 0, b = −a Ē and thus

∆υ̃ = a
(
E − Ē

)
Since this is supposed to be a decreasing function one needs a < 0. Further

∆υ̃(1) = a
(
1− Ē

)
72



Assuming (υA)j > 0 for all j, the first requirement on ∆υ̃

a
(
1− Ē

)
> −min

j
{(υA)j}

is satisfied when

a > −minj{(υA)j}
1− Ē

Therefore, the range of a must be constrained to

−minj{(υA)j}
1− Ē

< a < 0

Finally, note that with this model,

J∑
j=1

(∆υ̃)j =
J∑
j=1

a
(
Ej − Ē

)
= a

J∑
j=1

(
Ej − Ē

)

= a

 J∑
j=1

Ej −
J∑
j=1

Ē


= a

(
J Ē − J Ē

)
= 0

Thus the constraint on the sum of the delta’s is automatically satisfied for
any a.

The final value of the constructed volume parameter is

υ̃j = (υA)j + a
(
Ej − Ē

)
with ‘a’ a user input parameter in the specified range.

Of course, many other functional forms for ∆υ̃ satisfying the requirements
may be more suitable for adapting to the local error. For example, if
∆E = E − Ē, functions of the form a∆E + b (∆E)3 or tan (∆E) may
work better because they are less sensitive to small ∆E but change rapidly
with larger ∆E. To determine that, however, requires an actual simulation
with error values available.
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3.5.2.2 Adapting to a Material Indicator Function

In the ICF problem described in earlier work, the domain was a quarter circle
which was meshed by a multi-block structured quadrilateral mesh consisting
of three blocks. In the outer part of the mesh, one had azimuthal symmetry.
The goal in the problem was to create values for the target parameters (the
target-matrix in particular) so that the mesh would be adapted to one or
more material layers at distances r1 and r2 from the center of the circular
domain.The suggested target-matrix for one layer was

W =

(
1 0
0 ρ

)

with

ρ =

{
f if a <

√
x2 + y2 < b

1 else

with user-parameters 0 < f ≤ 1 and
√

2 < a < b < 3. Notice that the
target-matrix here is a function of position in physical space and ρ = ρ(r).
With this target-matrix, the optimized mesh is adapted to the material lay-
ers by creating high aspect-ratio cells in the ring at distance r =

√
x2 + y2

from the circle center. The shape metric µ2 was used in optimizing the ob-
jective function.

In terms of the construction method presented in this document, the Pa-
rameter Control Decision is to abstain or not abstain on each of the four
geometric parameters in 2D. Since a shape metric was used, it is clear that
the decision must have been A - A - C - C. In PIE, the decision was A - A -
E - I. The skew angle in the target is the ideal skew angle for a quadrilateral
element (π2 ) and the aspect ratio parameter defined as above. Thus, the
correct shape matrix in this problem is

S =

(
1 cosφ
0 sinφ

)(
1√
ρ 0

0
√
ρ

)

With the ideal skew angle, the skew matrix Q becomes the identity matrix.
Thus S = D. The aspect ratio matrix D can be written

D =
1
√
ρ

(
1 0
0 ρ

)
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Since shape metrics are invariant to scaling, using the matrix W above is
equivalent to using S above. As seen previously, using S in place of T in µ2
gives the same result.

Now consider the more general two-dimensional, two-material problem in
which one is given a discrete material indicator function ιj with 0 ≤ ιj ≤ 1
at physical points (xj , yj) in the initial mesh. The goal is to adapt the local
mesh volume to the two materials it contains. Clearly one needs to con-
trol volume and skew. Without additional information, it makes sense to
abstain on the orientation parameter. In the ICF problem just described
aspect ratio was controlled instead of volume. This was because thin mesh
layers at distance r were desired. In the more general problem here, no
such assumption is made, and thus it is better to control volume instead of
aspect ratio. It seems that, in the absence of additional information, there
are three potential approaches to aspect ratio: (a) set aspect ratio to 1, (b)
abstain on aspect ratio, or (c) preserve aspect ratio. The PIE decision is
I - A - E - E, I - A - E - A, or I - A - E - P, respectively. The resulting
metric types are VS (volume+shape), VQ (volume+skew), and VS, respec-
tively. The choice between the three approaches depends on whether one
believes that the simulation will produce high-aspect ratio elements or not;
if it might, then option (a) should be avoided. Additionally, if one believes
that the aspect ratio in the optimized mesh should not be too different from
the aspect ratios in the initial mesh, then option (c) is a viable approach. If
one expects the aspect ratios to change a lot between the initial and optimal
meshes, then option (b) is the best choice.

Finding the values for the skew and aspect ratios is easy once one of the
three options above is selected. Next, concentrate on finding a model for
the volume parameter, given the material indicator. Suppose that ι = 1
means that locally the only material present is material 1 and ι = 0 means
that locally only material present is material 2. Further, assume that one
wants the local volume of material 1 to decrease monotonically with ι (and
therefore the local volume of material 2 (which is 1 − ι) should increase

monotonically with ι). Suppose that υ
(1)
ini is the local volume of material 1

in the initial mesh and υ
(1)
opt is the local volume of material 1 in the optimal

mesh (at the same physical location). Assume that υ
(1)
init > 0 at all locations.

Write υ
(1)
opt = υ

(1)
ini + ∆υ. It seems reasonable to require that ∆υ < 0 if and
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only if ι > 1
2 . The simplest model for ∆υ is

∆υ = m

(
1

2
− ι
)

with the requirement 0 < m < 2 υ
(1)
ini to ensure that υ

(1)
opt > 0 at all locations.

The value of m would be a user input parameter.

With this model the target volume parameter is fully defined. The maxi-

mum range of υ
(1)
opt is 0 < υ

(1)
ini − m

2 < υ
(1)
opt < υ

(1)
ini + m

2 < 2 υ
(1)
ini. Other models

for ∆υ can, of course, be developed.

3.5.2.3 Alignment of Mesh Lines to a Smooth Vector Field

The term ‘alignment’ in meshing has been defined in the past by saying that
two vectors in <3 are aligned if their cross product is zero [1]. The equiv-
alent in two dimensions is to say that the area enclosed by the two vectors
is zero. With this definition, if u and v are aligned, then u = λv, with λ
a real number. In TMOP, however, an alternative definition of alignment
is used based on target terminology. Recall that θ is the angle between the
x-axis and the first column vector of any non-degenerate matrix X2×2. In
TMOP, two vectors in <2 are aligned if their orientation angle with respect
to the x-axis is the same. In <3 two vectors are aligned if they have the
same spherical coordinate angles. This definition is used, not because it is
better, but because it is more consistent with the target construction ap-
proach. With the TMOP definition, if u and v are aligned, then u = λv,
with λ > 0. Further, in two-dimensions, θu = θv.

In this problem suppose, for the sake of clarity, that one has an initial quadri-
lateral mesh with globally structured mesh topology. In addition let there
be, as raw or intermediate data, a discrete vector field {vj} defined at points
(xj , yj) in the physical domain (j is a global index) and possibly at some
discrete time tn. The vector field is processed into a final discrete vector field
by interpolating it to the sample points of the mesh (if not already located
there). It is assumed that the underlying continuum vector field is ‘smooth’,
i.e., there are no abrupt changes in direction between nearby sample points.
Further assume that the vector field is non-self intersecting. The feasibility
of aligning mesh lines with a vector field depends heavily on the orientation
of the vector field with respect to the domain/mesh boundary. If the bound-
ary vertices are allowed to move, better alignment can be achieved, but this
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is not always possible.

The goal of the target parameter construction is to specify values of the pa-
rameter θ so that the first column of the active matrix (i.e., a1) is properly
oriented with respect to the vector field at every point j. In addition, rea-
sonably good geometric mesh quality is desired. That means in particular,
the ideal skew angles are best for the skew parameter data. At this point
in the Parameter Control Decision the situation is ? - C - C - ? It is not
obvious what to do about the other two target-parameters (volume and as-
pect ratio) because several choices seem feasible. So, for the time being, let
us abstain on aspect ratio and, to assist feasibility, preserve the local size in
the ‘initial’ mesh (i.e., the mesh at time tn). Then the PCD decision looks
like C - C - C - A. Leaving aspect ratio undefined provides some flexibility
to the optimizer so that perhaps the alignment can be more effective. Given
this decision, the metric type must be VOQ (volume+orientation+skew).

The PIE decision is now easy to complete. The result is P-I-E-A (i.e.,
preserve volume, improve orientation, and equi-distribute the skew angle).
From this, one has directly that υ = υ(Ainit) and φ = φideal. Since φideal = π

2
for a quadrilateral element (and thus sinφideal = 1), the size parameters is
ζ = υ, so ζ is also preserved.

Recall that in two dimensions θ(A) is the angle between the x-axis and the
mesh vector a1 and θ(W ) is the angle between the x-axis and the target
column vector w1. The challenge is to define values for the orientation
parameter θ(W ) at every sample point. The most straight-forward thing
to do is to set θ(W ) = θv, where the latter is the orientation of the vector
v with respect to the x-axis, at the given sample point. Doing so should
make θ(A) ∼ θv in the optimal mesh provided the mesh topology allows it.
However, if the goal is to create alignment on a wide class of smooth vector
fields, one cannot just try to align a1 with v at every sample point. Doing so
could produce a very poor quality mesh with some vector fields. It may be
better, for example, to align −a1 with v at some sample points and to align
to a1 at others. It may also be better to try to align ±a⊥1 with v at other
sample points.7 The decision as to which of these vectors should be aligned
with v has to be made at every sample point. Since there are so many
sample points, an automatic way of making the decision is needed. One way

7If w is a non-zero vector in <2, then we use the notation w⊥ to indicate the vector
which is perpendicular to w and obeys det

[
w,w⊥] > 0.
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to do this goes as follows. Given a1 from the initial mesh and the non-zero
vector v at the same location, compute the corresponding unit vectors â1

and v̂. Then evaluate the two quantities c ≡ v̂ · â1 and s ≡ det (v̂, â1). Then
the alignment decision is made as follows:

1. If c ≥ 1√
2
, then align a1 with v by setting cos θw = vx

|v| and sin θw =
vy
|v| ,

2. If c ≤ − 1√
2
, then align −a1 with v by setting cos θw = − vx

|v| and

sin θw = − vy
|v| ,

3. If s > 1√
2
, then align a⊥1 with v by setting cos θw =

vy
|v| and sin θw =

− vx
|v| ,

4. If s < − 1√
2
, then align −a⊥1 with v by setting cos θw = − vy

|v| and

sin θw = vx
|v| .

That completes the definition of the three target parameters ζ, θ, φ for this
alignment problem. One might wonder why we do not try to align the sec-
ond column vector of A (i.e., a2) with v in this scheme. The main reason is
that the orientation of a2 is not directly used in target construction (because
its orientation is θ + φ). Additionally, φ = φideal has already been specified
so that, by controlling θ and φ, one is already controlling the orientation
of a2. Notice also that in this scheme, the target parameters are fully de-
fined prior to optimization. This is why a1 from the initial mesh is used to
make the alignment decision in the construction of the orientation parame-
ter. Experience has shown that trying to update target parameters during
the optimization procedure can lead to convergence and non-uniqueness is-
sues. Finally, note once again that, because the vector field is associated
with a position in physical space, the target parameters must be updated
via interpolation or by an advection scheme during the optimization proce-
dure.

There are other contexts aside from a structured quadrilateral mesh in which
the alignment of the mesh with a given vector field can be considered.
Among them are unstructured quadrilateral meshes, triangle meshes, hy-
brid meshes, hexahedral, and even tetrahedral meshes (both high order and
low order). Except for the triangle mesh case, I have not worked out target
construction algorithms for these contexts but believe that it can be done.
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3.5.3 The ‘Delta’ Method of Target Parameter Construction

Prior to optimization the preparation process in TMOP is to construct the
target-parameters and to select an appropriate local quality metric. For
simplicity, let us concentrate on the two-dimensional mesh case - most of
what is said here extends directly to the three-dimensional case as well. In
the two-dimensional case, values must be supplied for the four parameters
ζ, θ, φ, and ρ, at every mesh sample point (unless some have been abstained
on). This brings us to the Parameter Control Decision in which one decides
whether to control or abstain on each of the four parameters. Once the PCD
decision is completed, one has automatically determined the type of metric
which must be used. Once metric type is decided, one can select a concrete
metric of the determined type. How does one decide whether to abstain on
a given parameter? Two considerations are relevant. The first consideration
is whether or not one needs to control the given target-parameter in order
to improve the mesh. If there is a need to control the parameter then one
cannot abstain on the parameter; if there is no need to control it, then one
may be able to abstain. The second consideration is whether or not one has
raw and/or intermediate data pertaining to the factor one needs to control.
If not, then one is forced to abstain.

The PIE decision has already been described. If one completes this stage,
the next step is to define the methods by which the various ‘controlled’ pa-
rameters will be assigned values. Previously, this process has been described
as a process which results in a function which takes the raw data and con-
verts it to data for the parameter at each sample point. While this remains
valid, there is another way to think about this process. Suppose, instead,
that one starts with the initial mesh, whose set of Jacobians is {Ai}. One
can evaluate each of the non-abstained parameters on the sample points of
the initial mesh, giving ζi = ζ(Aini), θi = θ(Aini), and so on. Define the
initial target-parameter set as {ζi, θi, φi, ρi} (or, if one has an actual target-
matrix Wi = W (ζi, θi, φi, ρi). Using this data in the optimization will, of
course, result in an optimal mesh identical to the initial mesh. However, if
any of this data is changed, one will have new or partly new target data
and a different ‘optimal’ mesh will result. The change in the data can be
described in two ways. As a example, let ζi be replaced by ζo (where o
stands for optimal). Then the challenge is to define ζo. On the other hand,
let ζo = ζi+∆ζ. Then the challenge is to define ∆ζ (at every sample point).
Thus, the final target-matrix (if there is one) can be expressed as either
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W = W (ζo, θo, φo, ρo) or as W = W (ζi + ∆ζ, θi + ∆θ, φi + ∆φ, ρi + ∆ρ). In
theory, it is possible that for some parameters and some problems it will be
easier to define ζo directly and in others it will be easier to define ∆ζ. In
practice, however, most of the time it will be easier to define the values ζo,
υo, and perhaps ρo in terms of ∆ζ, ∆υ, and ∆ρ. On the other hand, it is
probably easier to specify θo and φo directly, rather than in terms of ∆θ and
∆φ.
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3.6 Target Construction Examples for Volume Meshes

Only two examples of Target Construction for Volume Meshes are given in
this section because many of the examples of Target Construction for planar
meshes given in Section 3.5 straight-forwardly extend to the volume mesh
case. The two examples presented are Equi-distribution of Ideal Volume
Element Shape and Small Edge Removal, both being examples of geomet-
ric target construction. More elaborate target constructions in 3D are best
explained within the context of a particular application.

3.6.1 Equi-distribute Local Shape

Examples of optimizing a planar mesh given the element type were discussed
in Section 3.5.1.1. The remarks in that section apply equally to the volume
mesh case, except for the entries in the shape matrices, which depend on
the 3D element type.

For the 3D elements, the ideal shape metrics have the form

S3d
k =

 1 cosφ12 cosφ13
0 sinφ12 sinφ13 cosχ
0 0 sinφ13 sinχ



ρ

2
3
1 0 0

0 ρ
2
3
2 0

0 0 ρ
2
3
3


Using Table 3.7, the ideal tetrahedron has φ12 = π

3 , φ13 = π
3 , and χ =

cos−1
(
1
3

)
. This gives

Stetk =


1 1

2
1
2

0
√
3
2

1
2
√
3

0 0
√

2
3


 1 0 0

0 1 0
0 0 1



=


1 1

2
1
2

0
√
3
2

1
2
√
3

0 0
√

2
3


For the ideal hexahedron, φ12 = π

2 , φ13 = π
2 , and χ1 = π

2 . This yields

Shexk =

 1 0 0
0 1 0
0 0 1


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For the ideal triangular prism, φ12 = π
2 , φ13 = π

2 , and χ1 = π
3 . This yields

Sprismk =

 1 0 0
0 1 1

2

0 0
√
3
2


To use this shape-matrix correctly, one must be sure that the dihedral angle
is the angle between two square faces of the element. To do that, one must
take into account the node numbering within each specific element.

For the ideal pyramid element, φ12 = π
2 , φ13 = π

3 , and χ1 = π
3 . This yields

Spyrk =


1 0 1

2
0 1 1

2
√
3

0 0
√

2
3


To use this shape-matrix correctly, one must be sure that the dihedral angle
is the angle between a square face and a triangular face of the element. To
do that, one must take into account the node numbering within each specific
element.

3.6.2 Removing Small Edges in Volume Meshes

Suppose that, at some sample point of a volume mesh, the edge which de-
fines `3 in the initial mesh is unacceptably small. Let `min > 0 be smallest
acceptable length in the mesh and assume `3 < `min. The goal is to con-
struct the target-parameters such that in the optimized mesh the small edge
length `3 at the same sample point has been increased. Let the increased
edge length be `3 + ∆`3. At the same time, let us preserve the lengths `1
and `2, i.e., there should be no change in the other two lengths as a result of
the mesh optimization. In fact, let f ≥ 1 be a user-input and let us suppose
that `3 + ∆`3 = f`min after optimization.

Recall that for volume elements, ζ = `1`2`3 and `i =
(
ζ ρ2i

) 1
3 . For i = 1, 2,

preserve the lengths by requiring

∆`1 = 0

∆`2 = 0
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Considering the first equation,

0 = ∆`1

= ∆
(
ζρ21

) 1
3

and thus

0 = ∆
(
ζρ21

)
= 2ζρ1∆ρ1 + ρ21∆ζ

= 2ζ∆ρ1 + ρ1∆ζ

Similarly,

0 = 2ζ∆ρ2 + ρ2∆ζ

Eliminate ∆ζ between these two relations to obtain

ρ2∆ρ1 − ρ1∆ρ2 = 0

From this,

∆ρ1 = β ρ1

∆ρ2 = β ρ2

for some β 6= 0. Substituting these into the original pair above gives

∆ζ = −2βζ

Next, since ρ1ρ2ρ3 = 1,

∆ (ρ1ρ2ρ3) = 0

ρ1ρ2∆ρ3 + ρ2ρ3∆ρ1 + ρ3ρ1∆ρ2 = 0

ρ1ρ2∆ρ3 + 2β(ρ1ρ2ρ3) = 0

and thus

∆ρ3 = − 2β

ρ1ρ2

However, since ρ3 = `3√
`1`2

,

∆ρ3 =
∆`3√
`1`2
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Equating these two expressions yields (after some work)

β = −1

2

∆`3
`3

Thus, in order that `3 be increased after optimization, β < 0 is required.
Recalling that `3 + ∆`3 = f`min,

β =
`3 − f`min

2`3

and, since `3 < `min ≤ f`min, we see that β < 0, as required.

Finally, the actual target construction method for increasing the small edge
`3 is to first write the target-matrix in the parametric form given in Section
2.2.4. For the given sample point at which the small edge occurred, set the
orientation and skew angle values to their values on the initial mesh. Then
replace ρ1 with ρ1 + ∆ρ1 = (1 + β)(ρ1)init (with β given in the last formula
above, and with `3 the value of `3 on the initial mesh). Also replace ρ2 with
(1 + β)(ρ2)init and ζ with ζ + ∆ζ = (1− 2β)(ζ)init.

The cases in which `1 is a small edge or in which `2 is a small edge are not
worked out here, but doing so should be straight forward.

In practice, one can find every sample point in the initial mesh at which
`3 < `min and construct targets at each of these sample points accordingly.
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Chapter 4

Summary and Conclusion

The Target-matrix Paradigm is a methodology for mesh quality improve-
ment that uses optimization to find optimal locations of mesh vertices and
nodes. The TMOP methodology is general in that it can be applied to a
wide variety of mesh quality improvement problems, rather being limited
to just one situation. An important feature of TMOP is the use of Target-
matrices (or Target-parameters) to define the local geometric properties of
the desired optimal mesh.

Chapter 2 investigated the relationship between d×dmatrices (with d = 2, 3)
and a standard set of geometric parameters representing local volume, ori-
entation, skew, and aspect ratio. With certain restrictions, the relationship
between the matrices and the parameters can be represented as a one-to-
one, onto map. Given the matrix, one can find the geometric parameters;
this process is called parameter extraction. Given the geometric parame-
ters, one can find the corresponding matrix. In the context of TMOP, the
matrices represent Jacobian matrices of the element mapping at the mesh
sample points. Thus, one can say that the geometric parameters represent
the first-order geometric quality of the mesh (qualities such as curvature
cannot be described by the Jacobian matrix). Given the active mesh, i.e.,
the mesh that is being optimized, one can find its active Jacobian matrices.
In turn, one can extract values of the geometric parameters from the active
matrices. These values are useful in the assessment of mesh quality and in
the evaluation of local quality metrics in the optimization procedure. On
the other hand, given the values of the target geometric parameters, one can
find the Target-matrix. While the idea of matrices having geometric content
is not new, the contribution in this chapter is to identify a standard set of
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geometric parameters based on the Jacobian matrix which can be used in
Target Construction.

In TMOP, every local quality metric is defined in terms of a set of active and
corresponding target parameters. The active parameter values are extracted
from the active mesh while the target parameter values are defined prior to
the mesh optimization procedure. Chapter 3 describes the process in TMOP
by which new Target Construction algorithms can be devised. This process
is broken into three phases: that of developing a construction strategy, de-
veloping algorithms for converting raw to intermediate data, and developing
models for converting intermediate data into final target parameter data. In
developing the strategy one begins with a mesh quality improvement goal
that is appropriate for the application. Next, one considers the mesh and
simulation context. In the Target Parameter Control Decision phase, one
decides whether to control or abstain on each geometric parameter. The
fact that one can abstain on a parameter means, in general, that (1) values
of the corresponding target parameters need not be assigned and (2) that
there may be increased improvement in the parameters that are controlled.
This flexibility gives greater freedom in the design of mesh optimization al-
gorithms. Finally, correspondence chains are defined that associate specific
raw, intermediate, and target data to one another so that the flow between
data types is well-defined. In the next phase of Target Construction, one
determines how the raw data in each correspondence chain will be con-
verted into intermediate data (i.e., into mesh or solution functionals). The
determination consists of identifying particular existing algorithms which
are suitable for the conversion or, in some cases, devising an entirely new
algorithm. Examples of such algorithms includes a posteriori error estima-
tion, Hessian or Gradient recovery methods, or other techniques used in
mesh adaptivity. In the last phase, one determines how the intermediate
data in each correspondence chain will be converted into values of the tar-
get parameters at every mesh sample point. Determination may consist of
a straight-forward direct conversion of the data (as in the case of skew pa-
rameters defined by the ideal element) or may require the development of
an ad-hoc model that consists of an analytic formula or function relating,
for example, the determinant of a matrix to the local mesh volume parame-
ter. Model development mainly consists of determining the best functional
form, as well as selecting (via numerical experiment) the best values of any
constants contained within the model. With the completion of the Target
Construction process one has a complete description of the data and algo-
rithms which will be used to assign values to the Target-parameters in order
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to address the mesh quality improvement goal. This description, along with
corresponding software, yields a Target Construction Method.

In the ideal situation, Target Construction is not needed because there al-
ready exists an appropriate Target Construction Method corresponding to
the mesh quality improvement goal, mesh context, and simulation context.
If this is not the case, then one may engage in the Target Construction pro-
cess. It is hoped that, over the long term, a library of Target Construction
algorithms will be developed and made available so that the need to engage
in Target Construction becomes gradually less. Various examples of Target
Construction for both planar and volume meshes were presented in Chapter
3.

Much of the existing mesh optimization literature focuses on the definition
or selection of quality metrics and/or the numerical optimization procedure.
Many of the proposed quality metrics do not make use of targets. For meth-
ods which do include targets, the most glaring gap is the lack of discussion
on how to construct a set of targets that are suitable for the particular ap-
plication at hand. The description of Target Construction in this report is
thus considered to fill a major gap in the mesh optimization literature.

Of course, not all of the mesh quality improvement problems listed in Sec-
tion 1.1 can be solved simply by proper construction of the target-matrix.
On the one hand, target-construction is an essential step in mesh quality
improvement; with this document there is finally a clear exposition of this
topic. On the other hand, we still lack firm solutions to a number of the listed
mesh quality improvement problems, especially in view of the large number
of contexts in which they may occur. In addition to Target Construction,
the solution to these problems may include (a) choosing or defining a quality
metric having the right metric type and which can produce unique optimal
meshes, (b) choosing the right objective function template, (c) constructing
proper trade-off coefficients, and (d) employing other techniques such as the
use of a different metric in different parts of the domain or adding other
terms to the basic objective function.

The consequence of the Target Parameter Control Decision described in this
report is that there are fifteen theoretical types of local quality metrics. The
idea of metric types and its consequences will be explored in our next report.
The two reports together will constitute the most up to data description of
the Target-matrix Paradigm.
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Appendices
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A.1 Key to Notation Used in this Document

The following tables provide a map from a mathematical symbol used glob-
ally in this document to a brief explanation of what the symbol represents.
Symbols used only locally in the document are not included in these tables.

Symbol Represents

a⊥ auxiliary vector in the definition of R and β

ã⊥ auxiliary extraction vector used in R̃ and β̃

a1, a2, a3 the column vectors of the active matrix A

d as subscript, the number of rows and columns of a matrix
as superscript, a degenerate matrix

`i the i-th length parameter
˜̀
i extraction function for the length of the i-th column vector

p2 (υ, θ, φ, ρ)

p2(k) p2 evaluated at the k-th sample point

p3 (υ, θ, ψ, β, φ12, φ13, χ, ρ1, ρ2)

p3(k) p3 evaluated at the k-th sample point

pasp3 (ρ1, ρ2)

pori3 (θ, ψ, β)

pskw3 (φ12, φ13, χ)

pshp3 pskw3 ∪ pasp3

pshs3 (ζ) ∪ pshp3

psso3 pshs3 ∪ pori3

r1, r2, r3 the column vectors of R(pori3 )

r̃1, r̃2, r̃3 the column vectors of the extraction matrix R̃(X)

w1, w2, w3 the column vectors of the target matrix W

x1, x2, x3 the column vectors of the 3× 3 matrix X

x̂1, x̂2, x̂3 the unit column vectors of the matrix X

Table A.1: Key to Notation (Lower Case Roman Letters)
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Symbol Represents

A the active Jacobian matrix

Ai,j the i,j-th element of the active matrix

Aini the initial active Jacobian matrix

Ak the active Jacobian matrix at sample point k

Aref Jacobian matrix at a sample point in a reference mesh

D, D(ρ), D(pasp3 ) the parameterized aspect ratio matrix

D̃, D̃(X) the aspect ratio matrix extraction function

F mapping from PW to SW
F̃ mapping from SA to PA
Id the d× d matrix identity

[In] Particular intervals on the real line, for n = 1, 2, 3, 4

[I3](a) Interval [Id] as a function of the real parameter a

Q, Q(φ), Q̃(pskw3 ) the parameterized skew matrix

Q̃, Q̃(X) the skew matrix extraction function

R, R(θ), R(pori3 ) the parameterized orientation matrix

R1(θ, ψ) first matrix factor of R(pori3 )

R2(β) second matrix factor of R(pori3 )

R̃, R̃(X) the orientation matrix extraction function

R̃1(X), R̃2(X) matrix extraction functions for the factors of R̃(X)

S, S(φ, ρ), S(pshp3 ) the parameterized shape matrix

S̃, S̃(X) the shape matrix extraction function

T the weighted Jacobian matrix AW−1,

Ti,j the i,j-th element of the weighted Jacobian matrix

Tk the weighted Jacobian matrix at sample point k

U , U(ζ, φ, ρ), U(pshs3 ) the parameterized shape+size matrix

Ũ , Ũ(X) the shape+size matrix extraction function

W the Target matrix

Wi,j the i,j-th element of the target matrix

Wk the target matrix at sample point k

W 4
a , W 9 Cartesian Products of the intervals [In]

X, Y arbitrary matrices in Md

Table A.2: Key to Notation (Upper Case Roman Letters)
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Symbol Represents

β third target orientation parameter (volume elements)

β̃, β̃(X) extraction function for the third orientation parameter

ζ the target size parameter

ζ̃, ζ̃(X) the size extraction function

θ the target orientation parameter (planar elements)
or, first target orientation parameter (volume elements)

θ̃, θ̃(X) the orientation extraction function (planar elements)
or, extraction function for the first orientation parameter

ρ the target aspect ratio parameter (planar elements)

ρ̃, ρ̃(X) the aspect ratio extraction function (planar elements)

ρ1, ρ2, ρ3 the target aspect ratio parameters (volume elements)

ρ̃1, ρ̃2, ρ̃3 the aspect ratio extraction functions (volume elements)

υ the target volume parameter

υ̃ the volume extraction function

φ the target skew parameter (planar elements)

φ̃, φ̃(X) the skew extraction function (planar elements)

φ12, φ13, φ23 the target skew parameters (volume elements)

φ̃12, φ̃13, φ̃23 the skew extraction functions (volume elements)

χ target dihedral angle skew parameter (volume elements)

χ̃, χ̃(X) the dihedral angle extraction function (volume elements)

ψ second target orientation parameter (volume elements)

ψ̃, ψ̃(X) extraction function for the second orientation parameter

ω the determinant of the Target-matrix

Table A.3: Key to Notation (Lower Case Greek Letters)
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Symbol Represents

{A} the set of active matrices over all mesh sample points

Md the set of d× d matrices with real elements

Ms
d the set of singular matrices in Md

M∼sd the set of non-singular matrices in Md

Md
d the set of degenerate matrices in Md

M∼dd the set of non-degenerate matrices in Md

Mp
d the set of matrices in Md whose determinant is positive

Masp
d the set of aspect ratio matrices in Md

Mrot
d the set of rotation matrices in Md

Mshp
d the set of shape matrices in Md

Mshs
d the set of shape+size matrices in Md

Mskw
d the set of skew matrices in Md

PA set of allowable active geometric parameter values

PW set of allowable target geometric parameter values

SA set of matrices to which A is restricted

SW set of matrices to which W is restricted

<d Cartesian space of d dimensions

{W} the set of target matrices over all mesh sample points

Table A.4: Key to Notation (Miscellaneous Symbols)
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