
l Modeling and Simulation
1.1 ParaChoice Model

Camron Proctor, Principal Investigator

Organization: Sandia National Laboratories
Address: 7011 East Avenue
Livermore, CA 94550
E-mail: cproct@sandia.gov

Jacob Ward, DOE Program Manager

U.S. Department of Energy
E-mail: Jacob.Ward@ee.doe.gov

Start Date:FY14

Project Funding : $1,330k

End Date:Project continuation
determined annually
DOE share: $1,330k Non-DOE share: $0

Project introduction

Sandia National Laboratories' (SNL's) Parametric Choice Model (ParaChoice) supports the U.S. Department
of Energy Vehicle Technologies Office (VTO) mission. Using early-stage research as input, ParaChoice
supports the informed development of technology that will improve affordability of transportation, while
encouraging innovation and reducing dependence on petroleum. Analysis with ParaChoice enables exploration
of key factors that influence consumer choice, as well as projecting the effects of technology, fuel, and
infrastructure development for the vehicle fleet mix. Because of the distinct differences between requirements,
needs, and use patterns for light duty vehicles (LDVs) relative to heavy duty vehicles (HDVs), this project
separately models the dynamics of each of these segments to accurately characterize the factors that influence
technology adoption.

Objectives

The overall project objective is to assess the evolving integration potential of LDV and HDV technologies,
fuels, and infrastructure and their contributions to lowering emissions and petroleum consumption. We
leverage existing LDV and build HDV ParaChoice capability to conduct parametric analyses that explore the
trade-space for key factors that influence consumer choice and technology, fuel and infrastructure
development. ParaChoice provides the unique capability to examine tipping points and tradeoffs, and can help
quantify the effects of and mitigate uncertainty introduced by data sources and assumptions.

LDV analysis goal: Determine the potential for alternative fuel LDVs to penetrate the market, reduce LDV
petroleum consumption and emissions, and impact energy use for two scenarios to support the Benefits
Analysis low and high technology cases.

HDV analysis goal: Provide the capability to model PHEVs, BEV, and FCEVs to reflect the changing
technology space for HDVs, and evaluate the potential for alternative fuel heavy duty vehicles (AFHDVs) to
penetrate the market, increase freight hauling efficiency and reduce pollution.

Approach

ParaChoice is a system dynamics model incorporating energy sources, fuels, and LD or HD vehicles; see
Figure 1. Simulations begin with today's energy, fuel, and vehicle stock and projects out to 2050. At each time
step, vehicles compete for share in the sales fleet based on value to consumers. The simulation assesses
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Figure 1 Schematic of ParaChoice systems dynamices model structure that indicates how energy, fuel, and vehicle-stock
effect each other iteratively. The model allows for incentives and policy options to act as functions of time.

generalized vehicle cost for each vehicle at every time step. A nested multinomial logit choice function assigns
sales fractions based on these costs and updates the vehicle stock accordingly [1, 2].

ParaChoice is designed to enable parameterization that can be used to explore uncertainty and trade spaces,
allowing identification of tipping points and system sensitivities. Uncertainty analyses include trade space
analyses where two parameters are varied, generating hundreds of scenarios; and sensitivity analyses where
many parameters are varied at once, generating thousands of scenarios. Parameter ranges are selected to
explore plausible and "what if' regimes, and provide thorough coverage of possible future states. Analysis
products using ParaChoice provide insights into: (1) perspectives in uncertain energy and technology futures;
(2) sensitivities and tradeoffs between technology investments, market incentives, and modeling uncertainty;
and (3) the set of conditions that must be true to reach performance goals.

Vehicles, fuels, and populations are segmented to study the competition between powertrains and market
niches; see Figure 2. Baseline inputs into the ParaChoice model include the following data and modeling
sources: GREET 2016 [3] (emissions & fuel cost); NHTS [4] (LDV fleet segmentation); Polk [5] (HDV fleet
segmentation & price projections); Autonomie 2018 [6] (price projections); AFDC [7] (2010-2017 fueling
stations and policies by state); VIUS 2002 [8] (VTMT); APTA 2019 [9] (VTMT); 2018 FHWA FAF4 [10]
(VTMT); NPC ATATP 2012 [11] (efficiency); EPA-NHTSA [12] 2016(efficiency); EIA AEO 2018 [13] (fuel
costs); HDSANI 2015 [14] (fuel costs); H2A 2015 [15] (fuel costs); Foothill Transit Agency 2018 [16] (price
projections); and ICCT 2017 [17] (price projections).

Results

In FY19 we added three alternative fuel powertrains to the ParaChoice Truck (HDV) model—battery electric
(BEV); plug-in hybrid electric (PHEV), and fuel cell electric (FCEV) vehicles—and demonstrated the
capability for a subset of the HDV segment. Results from the LDV analysis supporting the Benefits Analysis
will be published in FY20 due to delays in receiving the inputs before the end of the FY.

To inform HDV model development and which vehicle segment to demonstrate this year, we conducted a gaps
analysis that incorporates an in-depth literature review to determine whether or not data is available and
sufficient to answer specific analysis questions. A multistep process was used beginning with identifying
relevant analsysis questions that can be addressed using ParaChoice; the associated data needed, its availability
and quality; and given the quality, what questions of interest can we credibly pursue. The analysis identified
(1) specific data gaps that limit the vehicles types and powertrains we can study in the near term; (2) specific
data gaps around HDV consumers that create uncertainty in projections; and (3) inconsistencies in data
aggregation across vehicle types, weights, powertrains, duty cycles, and vocation that may introduce further
uncertainty into the analysis results.
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Figure 2 LDV and HDV segmentations grouped into themes of buyer demographics (e.g., access to workplace charging
or truck stop versus gas station refueling), vehicle options (e.g., powertrain or body type) and geography (e.g., state or

population density).

Based on the gaps analysis and our FY18 market segmentation analysis that indicated tractor trucks comprise
almost half of Class 7 & 8 HDVs and travel approximately three-quarters of the total annual miles and
consume three-quarters of fuel, we selected long haul tractor trucks to demonstrate the ParaChoice Truck
modeling capability this FY.

The Parachoice Truck modeling capability built on previous work [18] to provide choice among the following
powertrains, with nesting according to fuel types (Figure 3): compression ignition diesel (CI), mild hybrid CI
integrated start generator (CI-ISG), hybrid CI (CI-HE), compressed natural gas (CNG), hybrid CNG (CNG-
HE), liquified natural gas (LNG), battery electric (BE), plugin hybrid CI (CI-PHE), plugin hybrid CNG (CNG-
PHE) and fuel cell (FC). Note that BEV and the PHEVs falls under the plugin electric (PEV) category and will
be referred to as such in the subsequent sections of this report.
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Figure 3 Nesting method for HDV vehicles was added in conjuction with the addition of BE, PHE, and FCE vehicles

Because of variability in data values from different sources, as well as the finding that not all sources had data
for all the powertrains of interest, some adjustments to the data were needed for use in the model. For
example, fuel efficiency data from Autonomie are slightly different than from EPA-NHTSA, and NPC
provides NG vehicle efficiencies while Autonomie does not. To minimize data error, these sources were
normalized to one source by applying relative proportions derived from one source to another; e.g. relative
efficiency of CNG vs CI was derived from NPC and applied to CI efficiency from Autonomie. As more
refined data becomes available and is added to the model, specific results from projections will become more



valuable. The addition of more single source data and recent vehicle stock would further mitigate errors and
allow for model calibration.

The baseline analysis for low technology and high technology cases (as defined by ANL/Autonomie) show
that there is negligible adoption of AFHDVs out to 2050. Figure 4 shows the population of long haul tractor
trucks by powertrain out to 2050, with fleet stock represented mainly by CI, NG and their hybrids. Based on
the model cost and efficiency input trends, CNG and CNGHE appear to reach cost parity with CI around the
year 2030 and begin to take a significant share of the vehicle stock. Comparison of the low and high
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To understand what factors are suppressing adoption of the alternative powertrains, a sensitivity study using
2560 Monte Carlo samples (latin hypercube method) was conducted across input parameters. The results
indicate carbon cost, acting as a cost modifier due to greenhouse gas (GHG) emissions, is the most impactful
factor across all powertrains and should be viewed as a potential instrument for promoting AFHDVs with less
GHG emission intensity than diesel.

For AFHDVs, FCEV and PEV purchase costs are the driving factor for adoption, suggesting purchase
incentives and/or further cost reductions are needed to spur adoption of AFHDVs (Figure 5). Without these
changes, AFHDVs rest at a valley where CI, NG and their hybrid counterparts dominate. There are clear cost
tipping points for these vehicles: —$150k for FCEV and —$180k for PEV (2018 $ value). Below these points,
FCEV and PEV begin to compete among one another (lower left corners in Figure 5). The lower cost
requirement for FC is attributed to higher cost of H2 per unit energy than electricity and lower FCV efficiency
p Figure 4 ParaChoice projections of long haul tractor truck stock for the (a) Iow technology and (b) high technology

case scenarios identified by ANL/Auotnomie

Key findings from the long haul tractor truck analysis:

• AFHDVs have a negligible effect on the sales fraction of conventional CI powertrains projected to
2050. Adoption of AFHDVs is closely tied to the initial purchase cost of the vehicle. There is an
apparent tipping point for adoption of these vehicles between $150k-$180k. Incentive and financing
options may be needed to promote adoption of these vehicles.

• NG vehicles appear to significantly displace conventional powertrains as driven by lower purchase
cost and lower fuel costs relative to the AFHDVs. They appear to readily compete in the baseline
case, thus investments should be targeted towards the alternative fuel powertrains.
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Figure 4 - Tradespace analysis showing the numbe of (a) FCEVs and (b) PEVs at the end of analysis period (2050). The
conditions for the baseline conditions are noted by the diamond marker.

Concluslons

ParaChoice is a system-level model of the dynamics existing among vehicles, fuels, and infrastructure. It
leverages other DOE models and inputs to simulate fuel production pathways that scale with demand from
vehicles. It is designed for parametric analysis in order to understand and mitigate uncertainty introduced by
data sources and assumptions. Native parametric capabilities are also useful for identifying trade spaces,
tipping points and sensitivities. Acquisition of more recent vehicle and VMT data is needed for further
ParaChoice Truck model refinement. Incorporation of additional efficiency and cost data covering relevant
permutations of tractor trucks, box trucks, buses and vocational vehicles is planned for FY20.
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