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Motivation: Need for Fast Biofuel Screening

Alcohols 

OH

OH

Many Potential Biofuels*:

Fatty Acid Esters 
0

R 0

0

Or a Mixture!

lsoprenoids 

*Peralta-Yahya, Pamela P., Fuzhong Zhang, Stephen B. del Cardayre, and Jay D. Keasling. "Microbial Engineering for the Production of Advanced Biofuels1Nature 488, no.

7411 (August 2012): 320-28.
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Motivation: Need for Fast Biosfuel Screening

Physical Properties 

Energy Density

Melting Point

Boiling Point

Miscibility with Water

Properties to Screen for:

Chemical Properties

1 Ignition Behaviorr

Sooting Tendency

Compatibility with Sealing Material

Economic Properties 

Feedstock (Fuel vs. Food)

Cost of Production



Ignition Delay Time (IDT) as Figure-of-Merit
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Gauthier, B. M., D. F. Davidson, and R. K. Hanson. "Shock Tube

Determination of Ignition Delay Times in Full-Blend and Surrogate Fuel

Mixtures!' Combustion and Flame 139, no. 4 (December 1, 2004): 300-311.

Description:
• IDT measured at a fixed, initial T, P and c13,
• Most commonly measured using shock tubes or

rapid compression machines (RCM's)
• Related to Octane Numbers: RON and MON

Drawbacks:
• Substantial quantity of fuel needed
• Difficulty maintaining constant T and P

conditions for >100 ms
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Idea: Fast Screening Using FAGE*
*FAGE = Fluorescence Assay by Gas Expansion 4 Used to measure time-resolved OH and H02 profiles

Air + Dilute Fuel + Radical Precursor (Cl2)

4
High-P Oxidation Reactor

(300-700 K, 1-50 Bar)

Air + Dilute Fuel + Radical Precursor (Cl2)

I

I 

FAG E

1-100 Torr)

\ 
eid1-44\ Sampled Gas



Idea: Fast Screening Using FAGE
*FAGE = Fluorescence Assay by Gas Expansion 4 Used to measure time-resolved OH and H02 profiles

Air + Dilute Fuel + Radical Precursor (Cl2)

Photolysis

Laser

I
High-P Oxidation Reactor

(300-700 K, 1-50 Bar)

Reactive Gas Mixture

Air + Dilute Fuel + Radical Initiator (CI)

Air + Dilute Fuel + Radical Precursor (Cl2)

OH = Chain Branching

Correlation?
H02 = Chain Terminating

FAG E

1-100 Torr)

1
k Sampled Gas

 ► Ignition Properties (IDT, RON, etc.)



Modeling Approach

Physical Model

Shock Tube/RCM High-P FAGE Reactor

Air

Dilute Fuel

110.

Tthermal Add Radical Tphotolysis

Initiator (CI)

Tthermal Tphotolysis Ttotal

Vary 0 < Tphotolysis Ttotal

Measure final

[OH] and [H02]

Chemical

Mechanism

"Real" Fuels = Alkanes (Linear, Branched and Cyclic), Alcohols (Linear and Branched), Aromatics, Alkenes (Linear), Ethers (Linear and Cyclic) and Esters

"Hypothetical" fuels = "Real" fuels with the most sensitive reactions in the mechanism perturbed by a factor of two



Chemical Mechanisms
Fuel Class Authors Reference

n-Heptane Linear Alkane LLNL 1

n-Heptane Linear Alkane NUIG 2

i-Octane Branched Alkane LLNL 3

Cyclohexane Cyclic Alkane LLNL 4

1 -Hexene Linear Alkene Co-Optima 5

2-Hexene Linear Alkene Co-Optima 5

Butylbenzene Aromatic LLNL 6

1 -Butanol Linear Alcohol LLNL 7

i-Pentanol Branched Alcohol KAUST 8

Dimethyl Ether (DME) Ether LLNL 9

Tetrahydrofuran (THF) Cyclic Ether CNRS m

Methyl Decanoate Ester LLNL 11

Binary, Ternary and Quaternary Blends of

Heptane/Octane/Toluene/Ethanol
Blend Co-Optima 5

'Mehl, Marco, William J. Pitz, Charles K. Westbrook, and Henry J. Curran. "Kinetic Modeling of Gasoline Surrogate Components and Mixtures under Engine Conditions!' Proceedings of the Combustion lnstitute33, no. 1 (January 1, 2011): 193-200.

2Zhang, Kuiwen, Colin Banyon, John Bugler, Henry J. Curran, Anne Rodriguez, Olivier Herbinet, Frédérique Battin-Leclerc, Christine B'Chir, and Karl Alexander Heufer. "An Updated Experimental and Kinetic Modeling Study of N-Heptane Oxidation!' Combustion

and Flame172 (October 1, 2016): 116-35.

3Curran, H. J., P. Gaffuri, W. J. Pitz, and C. K. Westbrook. "A Comprehensive Modeling Study of lso-Octane Oxidation."Combustion and Flame129, no. 3 (May 1, 2002): 253-80.

4Silke, Emma J., William J. Pitz, Charles K. Westbrook, and Marc Ribaucour. "Detailed Chemical Kinetic Modeling of Cyclohexane Oxidationt!'The Journal of Physical Chemistry A111, no. 19 (May 1, 2007): 3761-75.

5Mehl, Marco, Kuiwen Zhang, Scott Wagnon, Goutham Kukkadapu, Charles K. Westbrook, William J. Pitz, Yinjia Zhang, et al. "A Comprehensive Detailed Kinetic Mechanism for the Simulation of Transportation Fuels!' In 10th US National Combustion Meeting.

Lawrence Livermore National Laboratory, 2017.

6Nakamura, Hisashi, Daniel Darcy, Marco Mehl, Colin J. Tobin, Wayne K. Metcalfe, William J. Pitz, Charles K. Westbrook, and Henry J. Curran. "An Experimental and Modeling Study of Shock Tube and Rapid Compression Machine Ignition of N-Butylbenzene/Air

Mixtures!' Combustion and Flame161, no. 1 (January 1, 2014): 49-64.

7Sarathy, S. Mani, Stijn Vranckx, Kenji Yasunaga, Marco Mehl, Patrick ORwald, Wayne K. Metcalfe, Charles K. Westbrook, et al. "A Comprehensive Chemical Kinetic Combustion Model for the Four Butanol Isomers!' Combustion and Flame159, no. 6 (June 1,

2012): 2028-55.

8Mani Sarathy, S., Sungwoo Park, Bryan W. Weber, Weijing Wang, Peter S. Veloo, Alexander C. Davis, Casimir Togbe, et al. "A Comprehensive Experimental and Modeling Study of lso-Pentanol Combustion!'Combustion and Flame160, no. 12 (December 1, 2013):

2712-28.

9Kaiser, E. W., T. J. Wallington, M. D. Hurley, J. Platz, H. J. Curran, W. J. Pitz, and C. K. Westbrook. "Experimental and Modeling Study of Premixed Atmospheric-Pressure Dimethyl Ether—Air Flames!'The Journal of Physical Chemistry A104, no. 35 (September 1,

2000): 8194-8206.

19Fenard, Yann, Adrià Gil, Guillaume Vanhove, Hans-Heinrich Carstensen, Kevin M. Van Geem, Phillip R. Westmoreland, Olivier Herbinet, and Frédérique Battin-Leclerc. "A Model of Tetrahydrofuran Low-Temperature Oxidation Based on Theoretically Calculated

Rate Constants!' Combustion and Flame191 (May 1, 2018): 252-69.

11Herbinet, Olivier, William J. Pitz, and Charles K. Westbrook. "Detailed Chemical Kinetic Mechanism for the Oxidation of Biodiesel Fuels Blend SurrogateCombustion and Flame157, no. 5 (May 1, 2010): 893-908.



Modeling Approach

Physical Model

Shock Tube/RCM High-P FAGE Reactor

Air
+ lip..

Dilute Fuel

Ttherrnal Add Radical

Initiator (CI)

Tphotolysis

Tthermal + Tphotolysis = Ttotal

Vary 0< Tphotolysis C Ttotal

Measure final

[OH] and [H02]

Chemical
+

Mechanism

"Real" Fuels = Alkanes (Linear, Branched and Cyclic), Alcohols (Linear and Branched), Aromatics, Alkenes (Linear), Ethers (Linear and Cyclic) and Esters

+

"Hypothetical" fuels = "Real" fuels with the most sensitive reactions in the mechanism perturbed by a factor of two

+ Other Effects None

Wall Reactions Kai/ = 10 s-1)

+
Detection Limit ([OH] = 1e6 cm-3)

+
Finite Time Resolution (100 µs)

+

FAGE Interference from P-hydroxyalkylperoxy radicals*

*Whalley, L. K., M. A. Blitz, M. Desservettaz, P. W. Seakins, and D. E. Heard. "Reporting the Sensitivity of Laser-Induced Fluorescence Instruments Used for H02 Detection to an Interference from R02 Radicals and Introducing a Novel Approach That Enables H02

and Certain R02 Types to Be Selectively Measured."Atmos. Meas. Tech.6, no. 12 (December 9, 2013): 3425-40.
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Modeling Approach
Shock Tube/RCM High-P FAGE Reactor
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Possible correlation between IDT and time to peak OH/H02?



Results: lst Order Correlation with IDT

"Well-Behaved" Fuels: 

• n-Heptane

• i-Octane

• 1-Hexene

• Methyl Decanoate

• DME

• PRF and TPRF Blends

I 1 1 • • 1 1 1 1 • • • 11 1 l

10A-2 10A-1 10"0

Time to Peak OH in High-P FAGE (s)



Results: lst Order Correlation with IDT

"Well-Behaved" Fuels: 

• n-Heptane

• i-Octane

• 1-Hexene

• Methyl Decanoate

• DME

• PRF and TPRF Blends
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y=x "Outlier" Fuels: 

• i-Pentanol

• Butanol

• 2-Hexene

• Cyclohexane

• THF

• Butylbenzene

• Ethanol-containing Blends

Examine i-Pentanol
more closely

Time to Peak OH in High-P FAGE (s)



Explaining an Example Outlier: Pentanol

OH +
OH OH

• o"\-

Or),x

H02 +

4'4
.

%14- 2 OH

Apply QSSA and Solve ODE's

[OH] and [H02] oc eicf [Fuel] t

Ignition is dependent on [Fuel] 4 Dilute fuel conditions not equivalent to 4, r'', 1 conditions

Other outlier fuels exhibit similar [Fuel] dependence, although mechanistic cause is not investigated



Explaining an Example Outlier: Pentanol
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700 K
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Outlier Fuels exhibit a larger H02/0H Ratio!
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Results: H02/OH ratio as 2nd Order Correction
Shock Tube
(I) = 1. 0
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Shock Tube IDT = f(Time to Peak OH, H02/OH Ratio )

17% Error for 1063 simulations



Results: H02/OH ratio as 2nd Order Correction
Shock Tube
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Results: Dependence on Equivalence Ratio (it))
Shock Tube
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Results: Dependence on Equivalence Ratio (it))
Shock Tube

(I) = 2. 0
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Results: Dependence on Equivalence Ratio (4))
d(IDT)
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Results: Possible Correlations with Octane Numbers
Only considered fuel blends with known RON, MON and OS: 
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Conclusions
• Simulations predict that for "well-behaved" fuels like n-Heptane, IDT can be measured directly with

proposed High-Pressure FAGE Reactor

• However, ignition of "outlier" fuels such as i-Pentanol are dependent on [Fuel], complicating comparisons
between ultra-lean and stoichiometric fuel conditions
• H02/01-I Ratio can be used as a correction term for outliers

• Two-term correlation between IDT and High-P FAGE simulations predicted to be accurate within 20% for a
wide range of fuel classes from 600-700 K

• Outlier fuels with higher H02/OH ratio are predicted to have more oto-sensitive ignition
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Experimental Results
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Important Reactions:
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193 nm
N20 0(1D) + NO

0(1D) + H20 —> 20H

OH + OH H202

T = 300 K

P = 1 atm

[N20] = cm-3

[H20] = cm-3

[0(1D)]0 = cm-3

Sangwan, Manuvesh, Evgeni N. Chesnokov, and Lev N. Krasnoperov. "Reaction OH + OH Studied over the 298-834 K Temperature and 1 - 100 Bar Pressure Ranges."The Journal of Physical Chemistry A116, no. 24 (June
21, 2012): 6282-94.



Modeling Thermal Oxidation
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Modeling 13-hydroxyalkylperoxy Radical Interference
Air
+

Dilute Fuel

6H +

Constant T, P PFR W

Thermal Oxidation 1
..&

Tthermal

Constant T, P PFR

ost-Photolysis Oxidation

Add Radical

Initiator (CI)

Tthermal + Tphotolysis = Ttotal

Vary 0< Tphotolysis Ttotal

HO
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Tphotolysis

C) .
HO 0
P-hyd roxya I kyl peroxy

Add NO

+NO

-NO2 HO
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Modeling 13-hydroxyalkylperoxy Radical Interference
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Modeling Detection Limit and Time Resolution
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Sensitivity of Results to [CI]o
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Identifying Sensitive Reactions

Sensitive Reaction

Sensitivity For:

Temperature (Shock Tube) 
HO 2 OH

(FAGE) (FAGE)

Overall Sensitivity Rank

ch3och2o2<=

ho2ch2ocho<=

o2ch2och2o2h<=

ho2+oh<
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>och2ocho+oh

>ho2ch2ocho+oh
=>h2o+o2

1.0

0.47

0.1

1.0

0.84

0.18

-0.26

1.0

0.69

0.16

-0.19

3.0

1.99

0.45
0.44



Solving Simple Pentanol Ignition Model

6H +

d[R]

OH k1

d[OH]

(:)H
(+H20)

dt = —k1 [RH] [OH] + 2k2

dt 
= k1 [RH] [OH] — k2 — k3 0 (QSSA)

k3

e4? • Sio

k2

[H02]

[OHL

d[H02] 
= k3 [In

dt

k2- 

e( kk3
H 

3)k1 [RH] t = ek[RH]t
[[OOFI]] = k2+0

k2-k3)
k3  [e(k2+k3 " 

kl[RH]t
-1] = A[ek[R —

k.k2-k3/

T"ignition"

1
In
([0H]critical)

[OHM 

k [RH]

H02

.
2 OH



Solving Simple Alkane Ignition Model

Equilibrated
6• H + (Fast) Slow

Chain Branching
R  OP- 2 6HR R K1 R

k2

(+H20)



Concerted H02 Elimination in Pentanol Oxidation
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•
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+

OiH

1 H abstraction by radicals
..... ..........

H + Radicals
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•
•
• •

I

+ HO),

Tsujimura, Taku, William J. Pitz, Fiona Gillespie, Henry J. Curran, Bryan W. Weber, Yu Zhang, and Chih-Jen Sung. "Development of lsopentanol

Reaction Mechanism Reproducing Autoignition Character at High and Low Temperatures." Energy&Fuels26, no. 8 (August 16, 2012): 4871-86.


