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ABSTRACT

Magnetically driven experiments supporting pulsed-power utilize a wide range of configurations, including
wire-arrays, gas-puffs, flyer plates, and cylindrical liners. This experimental flexibility is critical to supporting
radiation effects, dynamic materials, magneto-inertial-fusion (MIF), and basic high energy density laboratory
physics (HEDP) efforts. Ultimately, the rate at which these efforts progress is limited by our understanding of
the complex plasma physics of these systems.

Our effort has been to begin to develop an advanced algorithmic structure and a R&D code implementa-
tion for a plasma physics simulation capability based on the five-moment multi-fluid / full-Maxwell plasma
model. This model can be used for inclusion of multiple fluid species (e.g., electrons, multiple charge state
ions, and neutrals) and allows for generalized collisional interactions between species, models for ioniza-
tion/recombination, magnetized Braginskii collisional transport, dissipative effects, and can be readily ex-
tended to incorporate radiation transport physics. In the context of pulsed-power simulations this advanced
model will help to allow SNL to computationally simulate the dense continuum regions of the physical load
(e.g. liner implosions, flyer plates) as well as partial power-flow losses in the final gap region of the inner
MITL. In this report we briefly summarize results of applying a preliminary version of this model in the con-
text of verification type problems, and some initial magnetic implosion relevant prototype problems. The
MIF relevant prototype problems include results from fully-implicit / implicit-explicit (IMEX) resistive MHD
as well as full multifluid EM plasma formulations.
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1. INTRODUCTION

To more accurately model complex plasma dynamics in Z experimental load configurations, advanced multi-
fluid multi-physics plasma and electromagnetic simulation capabilities with robust, modern, scalable, and
strongly coupled solvers will be required. In general, the dominant solution strategy over the past 20 years has
been the use of simple resistive magnetohydrodynamics (MHD) multi-physics models that rely on operator-
splitting methods expressed as a sequential evaluation of physics operators in a time-loop.

In the context of plasma models, resistive MHD necessitates significant simplifying assumptions with pro-
found consequences. These include quasi-neutrality, high plasma frequencies, large length-scales compared
to the ion inertial length, a collision mediated Ohm’s law describing electron dynamics, and the restriction to
low-frequency Maxwell equations [see e.g. [23]]. These approximations are invalid over wide regions of the
required simulation domain for a typical Z experiment where the plasma flow and EM responses are dynam-
ically altered as the experiment evolves. For this reason user-controlled "knobs" modifying basic physical
parameters have been introduced to "patch up" the model response to attempt to overcome fundamental
defects in the resistive MHD model. While these "knobs" can be made to recover the approximate limit-
ing physical behavior, they do so in an unphysical manner, and therefore severely impact predictive sim-
ulation beyond the parameter space on which the "knobs" have been "tuned". Additionally, current solu-
tion strategies often use ad-hoc combinations of operator-splitting, semi-implicit, and explicit time integra-
tion to evolve complex multiple-time-scale dynamic solutions. These approaches can often compound the
degradation of robustness and predictability of current plasma simulations with numerical stability limits,
errors, and time-step controls that are only empirically understood and lead to unstable results when physi-
cal mechanisms are strongly-coupled, highly-nonlinear and have overlapping time-scales. For these reasons
the approaches described above have not provided the stability, accuracy, scalability, and efficiency required
to accurately model plasma physics over the relevant length-scales and dynamic range of time-scales for
the physical mechanisms active in Z experiments. In contrast, our overarching, long term, goal is the de-
velopment of a unique, robust, and accurate implicit/explicit (IMEX) computational physics/mathematical
approach for multi-fluid multi-physics shock-hydro plasma research that will help to uniquely position SNL
R&D at the forefront of continuum computational analysis of magnetic implosion fusion (MIF).

Our proposed plasma physics model is based on the five-moment multi-fluid / full-Maxwell system out-
lined in Figure 2-1 [24, 59, 79, 120, 124, 89]. This description can be used for inclusion of multiple fluid
species (e.g., electrons, multiple charge state ions, and neutrals) and allows for generalized collisional inter-
actions between species, models for ionization/recombination, magnetized Braginskii collisional transport,
dissipative effects, and can be readily extended to incorporate radiation transport physics. In the context of
pulsed-power simulations this advanced model will help to allow SNL to computationally simulate the dense
continuum regions of the physical load (e.g. liner implosions, flyer plates) as well as partial power-flow losses
in the final gap region of the inner MITL. Critical mechanisms that can be studied and characterized include
(1) electro-thermal instabilities, (2) incompressible and compressible Hall-modified MRT [see e.g. [121]],
(3) current distribution in, and power flow through, low density plasmas outside of the load, and (4) abla-
tion driven plasma formation, evolution, and dynamics of plasma/neutral bridging in the final A-K gap along
with electromagnetic wave and force interactions as the load implosion progresses [53]. Understanding these
phenomena will allow SNL to study design modifications that help mitigate mechanisms that generate insta-
bilities in load implosions to produce higher implosion compression ratios, more significant magnetic field
compressions for MIE, and suggest experimental modifications of loads and the final-gap regions to deliver
more power to future Z experiments. In addition, the successful verification, validation and demonstration of
predictive modeling of experiments will allow for the proposed multi-fluid plasma model to be used as part
of an effective broad-based SNL computational capability for pulsed-power applications.

Finally, with further application of this model the multi-fluid / full-Maxwell formulation could also be used
as a reference solution to directly evaluate the validity of a number of assumptions that are used to develop



reduced two-fluid (Hall-physics), generalized Ohm’s law (GOL) approximations for inclusion of electron dy-
namics in MIE Using high-fidelity multi-fluid reference solutions, would allow us to evaluate individual
model assumptions for the GOL approach in detail.

To make this ambitious, robust, and scalable mathematical approach tractable, we have constructed the soft-
ware implementation on recent unique algorithmic, and plasma-model formulation developments by our
team in the Drekar R&D MHD and multi-fluid/EM [116, 105, 89] code as a software-base / algorithmic test-
bed. This work has been developed with past partial support from the Office of Science (Advanced Scientific
Computing Research and Office of Fusion Energy), Sandia LDRD, and ATDM R&D for EMPIRE. The Drekar
software base provides an extensible multiphysics capability that can accommodate the description of mass,
momentum and energy conservation/balance laws for an arbitrary number of species (charged/neutral) and
various forms of approximation for electromagnetic interactions (electro-static, full Maxwell electromagnetic
system). This capability has been used to demonstrate the solution to resistive MHD (steady and transient)
and multifluid EM plasmas with up to 10 species. At this level the 10 species full multiflluid EM plasma model
requires the solution of 56 PDEs at each node in the FE mesh. For these extreme levels of multiphysics com-
putations the ability to robustly and efficiently scale in parallel is required. In this context the Drekar code
has been demonstrated to scale to 1M+ cores for MHD, and has run on up to 1.6M cores for elliptic solves that
are kernels for the advanced physics-based preconditioners that are critical for the solution of these types of
complex systems [116, 115, 73].

The multi-fluid equations are a set of coupled hyperbolic subsystems of equations for modeling the dynamics
of partially ionized plasma systems (neutrals, charged ions, and electrons) in the presence of electromagnetic
fields. In the brief discussion in this report that describes the stabilization of this system we present a robust
and flexible stabilized scheme for the multifluid plasma system. The approach we consider is an algebraic
flux corrected (AFC) continuous Galerkin (CG) finite element method [82]. The AFC stabilization, we con-
sider is an iterative local bounds preserving element based formulation [82, 81]. The AFC design, at this time,
is based on a blocked stabilization of the hyperbolic system. That is each subsystem (Euler for ions, neu-
trals, electrons and Maxwell equations) is stabilized separately. Additionally Maxwell equations, employ a
divergence cleaning strategy based on an eliminated parabolic divergence cleaning method extended to the
maxwell system [35, 78, 122, 81]. The final stabilized semi-discrete method is integrated in time using various
time integrators such as IMEX-RK strong stability preserving (SSP) or backward differentiation (BDF) type
methods that allow for the stable integration of complex multiple-time-scale systems.

An additional critical and unique aspect of our mathematical approach our continued development, demon-
stration and evaluation of robust and efficient IMEX temporal discretizations for asymptotic preserving (AP)
multi-fluid formulations. Important advantages of IMEX methods include: (1) stability - IMEX methods can
be designed with various nonlinear stability properties when coupled with appropriate spatial discretizations
(e.g. SSPseee.g., [51, 97, 108]), (2) accuracy - e.g., multistep and multistage type higher-order methods (1st -
5th) are available [51], (3) efficiency - IMEX allows a partition of multi-physics systems into fast/stiff opera-
tors, and slower time-scale operators for mixed implicit and explicit evaluation; IMEX also encompasses fully-
explicit and fully-implicit methods [51], (4) IMEX has a consistent residual definition that enables higher-
level general mathematical approaches for use in sensitivity analysis, UQ, and optimization (e.g., adjoints as
in Drekar) [27]. To develop AP IMEX multi-fluid models, we have extended existing multi-fluid capabilities
in Drekar to enable transition from highly-resolved spatial/temporal discretizations capturing stiff physical
processes to robust under-resolved computations intended to robustly and accurately capture the required
asymptotic limits. Specifically to robustly and accurately approximate the strongly hyperbolic character of
the multi-fluid equations and to deal with the strong EM source-term coupling we have developed IMEX
time-integration approximations that explicitly represent slower fluid phenomena time-scales such as ma-
terial advection, acoustic waves and shocks, and implicitly represent EM source-terms and couple implicitly
to the Maxwell system that generate the fast plasma and cyclotron frequencies. Further, to control time-step
limitations for electrons, we have explored fully-implicit models, and IMEX models where the electrons use
an implicit representation for advection operators as appropriate.
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In the context of MIE strong magnetic fields are generated and also applied externally to inhibit transport
across magnetic field lines. To accurately model strongly anisotropic phenomena, we have developed and
begun to evaluate Braginskii transport models [24]. This model is difficult to solve numerically due to extreme
levels of differential transport in directions parallel and perpendicular to the B-field, which can differ by 10*
- 10° [24, 121]. Approaches based on high-order DG have shown promise in this context [85]. In our case
we have developed an extension of the AFC stabilization for anisotropic transport [64, 63] that allows us to
stabilize these operators and eliminate unphysical oscillations.

In the draft report that follows we first consider a brief abstract presentation of multifluid EM plasma model
in the context of moments of the underlying Boltzmann system and present the conservation/balance law
systems in Section 2. In Section 3 we present a discussion of the general multifluid EM plasma model and
describe aspects of the collisional, ionization/recombination interaction models that are employed. In Sec-
tion 4 we present a description of the general computational formulation that we employ for the multifluid
EM plasma model. This includes spatial discretizations, time integration, nonlienar/linear iterative meth-
ods, and some representative parallel scaling results for methods on problems of relevance to this effort.
Then preliminary verification results are presented for our current effort to develop an implicit/IMEX MHD
and multifluid EM plasma capability for exploring computational simulations in support of MIF and pulsed-
power applications in Section 5. Results are then presented in Section 6 for the application of these models
In the context of MIF relevant systems. Finally we end with conclusions in Section 8.

2. SUMMARY OF THE MULTIFLUID PLASMA MODEL

in this brief summary section we provide a very brief high level view of the multfluid EM plasma model that
we are developing, attempt to provide some context for the fluid system as moments of the kinetic model,
and then introduce a bit of notation. In Section 3 we provide a more detailed description of the multifluid
model, provide reasonable detail on the structure of the model, and provide references.

2.1. Kinetic Model

We consider models for a partially-ionized plasma composed of an arbitrary number of atomic species in-
dexed by a € {1,..., N4}, each of which may be present in one of several charge states k € {0,1,...,2z4}. The
fluid descriptions that are the focus of this document can be derived by taking various moments (with respect
to the velocity variables) of a coupled set of kinetic equations [58, 59, 88, 89]. Each such kinetic equation has
the form
6tf5+v-vxfs+%(E+va)-vaS=Cs[f5]+Ss, W
S

where f; = f (%,v, 1) is the one-particle distribution function for species s, S; is a source of particles of type s,
and s represents one of:

1. e (for the electron species),
2. (a,0)with ¢ € {1,..., N4} (for neutral species), or
3. (a,k)withae{l,...,Na}and k€ {1,...,z,} (for ion species with charge k);

or more simply s € Ag, where the index set Ag is defined in Table 2-1. The kinetic equations (1) are coupled
through the collision operators Cs, which describe interactions between particles and also through the ef-
fect of the electromagnetic fields that are influenced by the flow of charge particles (the current) in Ampere’s
law of Maxwell’s equations. The collisional interactions may occur between particles of the same type or
between particles of different types. Collisions of both scattering and reacting types are considered, with re-
acting interactions covering electron-collision/impact ionization, radiative and dielectronic recombination,
and resonant charge exchange events. in our current model the following general assumptions are made:
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Model Reduction Index Set

General Ae={lm, k) 1 =1, s Nz b= 0045 2o } U {E)
Neutral, Averaged Ion Z;“:l Anar={(@,0):a=1,...,Na}U{(a,i):a=1,...,Na} U {e}
Fully Averaged Z;"‘:O Apn={a:a=1,...,Na}u{e}

Table 2-1. Index set of fluid species for each model.

1. Itis assumed that resonant charge-exchange interactions occur only between ion and neutral species
of the same type; that is, we neglect effects due to charge exchange between two ions and charge
exchange between different atomic species.

2. The plasma is assumed to be optically thin, so that modeling the dynamics of the radiation field and
and its effects on the plasma (eg., photoionization) may be neglected. That is we will account (even-
tually) for only radiative emisson.

3. We assume that atoms of different species a # 8 engage in only scattering interactions; that is, reacting
interactions are restricted to particles of the same atomic species.

For purposes of notation, the collision operators C; may be decomposed into a sum of contributions from

various interaction types:
Cs=C+CM+C* +C§X+C§ad, 2)

where each term denotes interactions as follows:

C3¢ : Elastic scattering interactions, (3a)
CisOn : Ionization reactions, (3b)
C{*¢ : Recombination reactions, (3c)
CS* . Charge-exchange reactions, (3d)
Cd; Radiative emission. (3e)

For more thorough discussions concerning the form of the collision operators C; see, for example, [86, 87].

2.2 Summary of Fluid Models

Each model is composed of a coupled set of fluid equations of the form

805+ V- (psus) =C9 + S, (4a)
3¢ (psus) + V- (psus@us+ pI+TT) = gsns (E+ug x B) +clly st (4b)
0,5+ V- [(Es+ ps)us +ug-TT + hg] = gsnsus-E+CP + S (4c)

Here the governing balance equations for each fluid species s include:

¢ The mass balance equation for the mass density ps with inclusion of source terms that include ioniza-
tion/recombination reaction terms (C £Ol), and a general source (S SIO]).

* A momentum balance system for the momentum vector p us with acceleration due to electromag-
netic interactions, and source terms that include the rate of momentum production/destruction due
to ionization/recombination and interspecies transfer (C E]) effects, along with a general source (S 5[1]),

12



e nenergy balance equation for the total energy (internal + kinetic) £ = pses+ 2+os Il psu|? with the work
done by the electric field, E, and energy production/destruction due to ionization/recombination and
interspecies transfer (C £2]) effects, along with a general source (S E]).

This system, in the absence of dissipative/diffusion operators (i.e. the viscous forces, IT , and heat conduc-
tion, hy), is an Euler subsystem for each species s with electromagnetic source terms associated with the
charged plasma fluid interacting with electric E, and the magnetic B fields. Here p;e; is the internal energy
which can be related to pressure and temperature by the equation of state (EoS). More detail on the definition
of the nomenclature used in these balance equations can be found in Appendix A

The differences between each model that we have developed are enumerated by: (i) differences in the set over
which the fluid species index s ranges, and (ii) the forms of the collision terms C*, C!), and C?. An overview
of the various models considered is given in Table 2-1. The collision terms for the general multifluid model
are obtained by taking moments of the kinetic collision operators C;. The collision terms for the average
ionization and average ion-neutral models are obtained by summing the corresponding collision terms from
the general multifluid mode (see Appendix B.2).

2.3 Maxwell’s Equations

The electromagnetic fields E and B are evolved consistently with the evolution of the species fluid density, ps,
and momentum, pug, using Maxwell’s equations

1
EétE—VxB+u0]=0, (5a)
0;B+VxE=0, (5b)
VE:E, (5¢0)
€0
V-B=0, (6d)

where the charge and current densities g and J are defined by
q=)_dqsns (6a)
S
I= Z qsnsus, (6b)
N

respectively, and the species number densities n; are computed as ns = pg/ ms.

2.4. Summary of General Multifluid Plasma Model

The most general multifluid electromagnetic plasma model considered in this LDRD project is presented in
Table 2-1. This system has a hyperbolic transport/wave physics system sub-structure (Euler-Maxwell) with
strong EM, collisional, and ionization/recombination source term coupling, along with the inclusion of 2nd
order diffusion type operators (most notably heat transfer).

3. MULTIFLUID EM PLASMA MODEL DESCRIPTION

3.1. General Model Description

We now consider a general multifluid model based on the kinetic equations (1). This model is composed of
three groups of equations: the continuity, momentum, and energy equations for each species. The source
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Density 0tps+V- (Psus) =—pshe s+ Rg) + mgne (Ng—1 Is—1 + Ng11 Rsi1)

0; (Psus) +V- (Psus dus + ps!+ﬂs) =qsns(E+us xB)+ Z QstPsPr (U —uy)

Momentum m t£s
—psushe (Is+ Rs) + m - NePs—1Us—115-1 + (neps+1us+1 + ns+1peue) Rsi1
s—1
aS;tpSpt 2
0:Es+ V- [(Es+ ps)us+us-T +h] = gsnsus-E+ Z ———— [Agrkp (T — T5) + mg (uy —uy)?]
7 Ms+my
Energy "
—Esne (Is+ Ry) + m > NeEs—115-1 + (N1 + Ng11Ee) Rt
s—1
Charge
and q=7 qsns J=) qgsnsug
S )
Current
1 q
Maxwell’s FOIE—VXB+/JO]:O V-E:e_
Equations 0
0;B+VxE=0 V-B=0

Figure 2-1. General multifluid model for atomic species s with collisional, ion-
ization and recombination terms included.

terms for each equation are written in a general form for either an electron species or an arbitrary atomic
species [88, 59, 58, 89]. In order to avoid repetition, only the most general form of each source term is provided
for the atomic species. This is done with the understanding that not all ionization and recombination terms
will be present for each species; ie., neutral atoms do not recombine and ions of the maximum charge state
for a species do not further ionize, though the corresponding source terms are included in the description of
the general source terms.

The continuity, momentum, and total energy equations for each species are given by (4), where
Cl% msts [fs]dv, CM= msvaS [fs]dv, and CZ= msfvzcs [fs] dv (7a)
describe exchange of mass, momentum, and energy due to collisional interactions between species, and
S£O] = meSs av, Ssm ~ msfvSs av, and 85[2] ~ msjszs av, (7b)

represent external sources.

Exchange of mass. The collision sources C\”' have the form

[0] _ ion rec
Ce =Mme Z 1—‘(a,k) —Me Z 1—‘(Ut,k)’ (8a)
(a,k)eNs (a,k)eNs
k#zq k#0
0] _ ion ion Tec rec
Claiy = Miak) (r(a,k—l) “Taw Tant r(cx,k+1)) ) (@, k) € Ag, (8b)
where
Fison = n.n,l and  TYC=nengRs, 9)
and
I = ((71;’“ Ve) and  Ry=(05 ve) (10)

are the ionization and recombination rate parameters, respectively.
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Exchange of momentum. The collision sources C!! have the form

i )
c([a l=m, Z u(a,k)rl(zl?k) — Mele Z l—q(chYk) + Z Re;(a, k) (11a)
(@, k)N (a,k)eNs (a,k)eNs
k#zq k#0

for the electron species, and

m _ ion ion rec
Clay = M@ Bia k=0T (g k1) = Mia, b Wi, k) (r @k T (a,k))

rec cx,[1] (1 lb)
+ (M@ ke Wa k) + Mele) T+ 2 Riaks +Clo
seAg~(a,k)
for the atomic species, where
& okl
-y c k=0
cx,[1] _ Z (a,0)’ ?
Cop =1 =1 (11c)
— CX CcX _ PCX
Mab (U@ ~@o) TG o+ REG b ~Raoswr £>0
andT f; p 1s the charge exchange rate parameter.
Exchange of energy. Written out term-by-term, the collision sources C!?' have the form'
[2] _ 1 2 ion ion 1 2 rec
Gol= ¥ (5 MU, 1 + Mee(a,k) — ¢(a,k)) o~ (zmeug+mee.) Y T
(a,k)eNs (a,k)eN;
k#zq k#0 (12a)
d
+ ) (ue-Reap + Qeab) + Qe
(a,k)eNs
for the electron species, and
21 _ (1 2 ion
Clak = (Em(mk)“(a,k—l) + Mia,k) e(a,kfl)) L a,k-1)
1 2 ion rec
- (z M(a,k)Wq, k) + Ma k) e(a,k)) (F(a,k) + F(a,k))
; (12b)
1 2 1 2
+ (5 M, k+ )Wy k+1) T MUa,k+1) €(a,k+1) T 53 Melly + Mele + <Pl(zr,lk)) rfzc,kﬂ)
,12] d
+ ) (uep Rk + Quakys) + C(c;(,k) + Qf;,k)
seAGg~(a,k)
for the atomic species, where
Za
cx,[2] _
-~ G k=0,
Ces2) £= (120)
2] _ c
(a,k) 1 2 s cx L RCX _ LRCX
2Ma,k) (“(a,m “(a,k)) Fan @0 R 44,0 ~Wab "R g0,0
cX _ Nex
Q120 ~ La0@ kb’ k>0.

Here ij‘d, Q{;flk) represent sources or losses of energy through radiative processes (eg., bremsstrahlung, line

radiation, etc.) and (pi(gnk) denotes the ionization potential? for species (a, k).

The forms of the ionization, recombination, and charge exchange sources largely follows that of [86, 87], with the exception of
the treatment of the internal energy components. Whereas [86, 87] assumes only an idea gas, our formulation permits a more
general form of the expression for internal energy.

2Instead of the ground-state ionization potential gbi(‘;‘:‘k), the authors of [87] use an effective ionization potential ‘/’?;f, o that “ap-
proximately includes the electron binding energy plus the excitation energy that is expended (on average) for each ionization
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3.1.1. lonization rate.

The ionization rate parameter I(4 ) specifies the ionization rate of atomic species a from charge state k to
k +1 by electron-impact ionization. We consider two models for the ionization rate parameters:

(i) Voronov [128] provides coefficients for functional fits of the form

1+ Pa,i) v/ Uia by

K
I =A (U, @k exp (U, . 13
@k = Ak —— S (Utapy) P (~Uiap)) (13)

Here Uy i) = ¢>( “k)/ Te is the (dimensionless) relative temperature, ¢>}°“k) is the ionization energy for
species a and charge state k, and A 1), K,k Pk, and X, ) are tabulated fit parameters. The
expression (13) is given in units of cm s_l. Fit parameters are given in [128] for over 400 cases from H
to Ni*’* that are (in most cases) accurate to within 10% for temperatures between 1 eV and 20 KeV. For
some ions of higher charge states, the fit parameters are computed for temperature ranges up to 100
KeV.

(ii) The following functional approximation from Lotz [76, 77] may also be used:

Slak
L = 2.976-6) — %Y __ B (Uepy), (14)

PlajVTe

where ¢4 i) is the number of electrons in the outer shell of the atom being ionized, Ug i) = (/)i(‘;nk) [T,

and E; is the exponential integral of the first kind. The expression (14) is given in units of cm3s™!, and
the leading constant is chosen for ‘Onk) and T, both in units of eV. One important advantage of this
formula is that as the ionization energy ";“k) approaches zero, the ionization rate (4 ) monotonically
approaches infinity. This ionization model may therefore be combined with models for ionization
potential depression to capture effects of pressure ionization phenomena in high-density plasmas.

Other ionization models, such as the fits of Voronov, are not well-behaved in this limit.

3.1.2. Recombination rate.

The total recombination rate parameter R, ) specifies the recombination rate of atomic species a from
charge state k to k—1, and is composed of a sum of contributions from radiative recombination (RR) and
dielectronic recombination (DR):

i
Rea,by = Rl + Ry (15)

We consider multiple sources of functional fits for each recombination rate parameter. Where data from
preferred sources is unavailable, alternative sources are used. It should be noted that dielectronic recombi-
nation rates can be suppressed by sufficiently high electron densities [93, 94], though we have not included
such effects here.

We leverage the following sources of data for radiative recombination, in order of preference:

event,” and additionally includes contributions from the dissociation of diatomic gases. We have excluded these additional con-
tributions since (i) they are highly uncertain and serve as only very rough approximations of reality, and (ii) these contributions
would not apply in many of our applications of interest. Additionally, we note that in [87] the corresponding energy gain in the
recombination term was excluded, since this energy is typically radiated away as part of the radiative recombination process.
Here the terms Qrad and Qrad are used to account for all radiative losses (including those due to radiative recombination) and
therefore the ionization energy is included in the recombination energy balance (though it should be removed in the radiative
loss terms).
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@

(i)

Badnell [11] provides coefficients for fits based on the functional form of Verner and Ferland [127],

which can be written as
@n ) 1-Dyq,i) b 14D, ] 71
\ T/ T (1+\/T9/TO’ ) (1+\/Te/T1 ' ) ) (16a)

D(a,k) = B(a,k) + Cia,k) €XP (— i Te) (16b)

rad _
R(a,k) = Aa,k)

where

is the modified exponential coefficient introduced by Gu [45], and A, k), B(a,x)» Ca, k), and Tl.(“’k) for
i=0,1,2 are tabulated fit parameters. Except for some low-charge ions, it is usually the case that
Clap = TP = 0, in which case D, 1) = B(a,1)- The expression (16) is given in units of cm?s~!, and co-
efficients are provided for electron temperatures in units of eV or K. Fits are provided for all elements
up to Zn (inclusive), plus Kr, Mo, and Xe, for all isoelectronic sequences up to Na-like forming Mg-
like. The fits are claimed to be accurate for electron temperatures between (1.0E+1) k? and (1.0E+7) k?
degrees Kelvin to within 1% for multiply charged ions and 5% for singly and doubly ionized states. Fur-
ther, the fit formula is designed to produce the correct asymptotic forms outside of these temperature
ranges in both the low- and high-temperature limits.

Kotelnikov, et al. [56] supplies the following approximate analytic formula based on a hydrogenic ap-
proximation:
el 8.414ka’caj [In (1 + ) +3.499]

Ry = , (17a)
@k = 1/)Y2 10,6517 (1/1) +0.2138 (1/1)3/2

where a is the fine-structure constant, ag is the Bohr radius, c is the speed of light in vacuum, and

o= hRoock?

kB T
with h, kg, and R, representing the Planck, Boltzmann, and Rydberg constants, respectively. When
using standard SI units for all supplementary constants, the expression (17a) yields rates in units of
m3s~!. The accuracy of this formula is expected to be within 3% for 1.0E—4 < A < 1.0E+4. In the low-
and high-temperature limits, this formula yields rates ngfik) o« T, 12 and ngfik) o« T, 32, respectively,
so that reasonable (if not necessarily accurate) rates are obtained outside of the targeted temperature
range.

) (17b)

We leverage the following sources of data for dielectronic recombination, in order of preference:

)

(i)

In a sequence of papers, [1, 2, 3, 4, 5, 10, 12, 16, 29, 30, 31, 55, 90, 130, 131, 132, 133] Badnell, et al.
provide coefficients for fits of the form

N,k
die _ —-3/2 (a,k) (a,k)
Rl =T Zl c*P exp(-EP1T,), (18)
i=
where cl(“'k), El(.“’k), and Ny i) are tabulated fit parameters. The expression (18) is given in units of

cm3s~1, and the electron temperature is expected in units of degrees Kelvin. These fits are claimed to

reproduce the computed data on which they are based to within 5% in general, and in most cases to
within 1%.

Landini, et al. [66, 67] provide coefficients for fits of the form

RIS = Aty T2 exp (TP I T ) (14 By exp (- TP/ T ), (19)

where A, 1), Bia, k) Té“’k), and Tl(“’k) are tabulated fit parameters. The expression (19) is given in units
of cm3s~!, and the electron temperature is expected in units of degrees Kelvin. While believed to be
generally less accurate than the formula (18), the fits of Landini, et al. can be used as a substitute for
data not provided by Badnell, et al. for lower ionization states of some heavier atomic species — in
particular, S, Cl, Ar, K, Ca, Ti, Cr, Mn, Fe, Co, and Ni.
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3.1.3. Momentum transfer due to elastic collisions.

The momentum transfer from species s to species t due to elastic, non-reacting collisions is specified by Rg;;,
defined as [83, 84]
R = 5500 (U —u5) Dy, (20)

where «;; is the friction coefficient, and ®;; is a correction factor that depends on the drift speed |u; —uy]

and the reduced thermal speed
2kg (m;Ts+ msTy)
Vtherm:\/ 5 LS Ll . 21)

mgmny

It is found that ®;; =1 in the limit of vanishing drift speed, and this value is generally sufficient when the
drift speed is much smaller than the thermal speed. Expressions for more general scenarios can be found in
[114].

The friction coefficient is composed of different expressions depending on whether the interaction involves
one or more neutral species [84]. For two interacting charged species, the friction coefficient is given by

def Zng|qe|4lnAs;l
st = 3727 (22)
6mV2mes mgm;my;; (kg Ts/ ms+ kg Ty m;)

where P

Mey & ——— (23)
mg+ my
is the reduced mass and
3/2 L2
def 127 (o k)™ < (Ts + Ty) TsTy
InAg; =In - 5 5 (24)
| ZsZt11ge ZinsTe+ Zin: T

is Coulomb’s logarithm. For interactions that involve one or more neutral species, the friction coefficient is

given by
ksTs kgT:\1'?
( o t)] - (25)
mg mg

def 1 4
Asr = =
ms+my 3

8
b4

where o, is the collisional cross section.

Values for some collisional cross sections o ;; between species up to He are included in [84]. These values are
summarized in Table 3-1. For heavier species, we compute cross section values using a simple hard-sphere
approximation, where

o5t =m(rs+10)° (26)

with rg and r; the radii of species s and ¢, respectively. Cross section values computed using atomic radii from
[28] are summarized in Table 3-2.

3.14. Momentum transfer due to charge exchange.
The following approximation for Ff; o is given in [100]:
T =08 0 (US ) riai nao U @7
where
Uk = (% U * %L‘ZTW,O) * ”?a,k);(a,m)m ‘ (28]
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Species  Value (m?) Model

H*-H 1.0E-18 Quant. mech. calc. [129]
H*-He 1.0E-19 Quant. mech. calc. [129]
H-e 1.5E-19 Quant. mech. calc. [129]
He—e 5.0E—20 Quant. mech. calc. [129]
H-He 1.5E-19 [69]

H-Het 2.0E-20 Hard sphere [84]

H-He2* 1.0E-20  Hard sphere [84]
He-He* 5.0E—19 Quant. mech. calc. [39]
He-He?’™  3.0e-21  Hard sphere [84]

Table 3-1. Elastic scattering cross sections for some interactions involving neutral species.

with
2 _ 2kg Ty

uf;z = ”“s;tnz’ Ug; =Us— Uy, Up, —— (29)
)

and o$* denotes the charge exchange cross section for species s. The author of [87] has observed this approx-
imation to be accurate to within a few percent.

The momentum transfer between an ion species i = («, k) and a neutral species n = (a,0) due to charge ex-
change interactions is specified by R® and R®";, which are defined as [100]

; (30a)

cX _ . CX CX . )
Ri, =0; (UF) nnp; (uy u;) ur,

RS, = 07 (UF) nppi (; —ay,) uf, (30b)

A common approach to constructing approximate values for the charge exchange cross sections o$* is a fit of
the form
2
o (v) = (A+Clog,v)", (31)

where A, C, and b are constants. In [100] a fit formula from [42] for charge exchange between H and H* is
used that is characterized by

A=2.1E-7, C=-9.2E-9, and b=e, (32)
with units of cm?. Based on data from [15], the author of [87] proposes the following fits:

H-H*: A=1.12E-18, C =-7.15-20, b=e, (33a)
D-D*: A=1.09e-18, C =-7.15E-20, b=e, (33b)

Elastic scattering cross section (m?)
H He Be Ne Al Ar e

H 5.30E-11 | 3.53E-20 2.22E-20 8.55E-20 2.60E-20 9.19E-20 4.83-20 8.82E-21
He 3.10e-11 | 2.22E-20 1.21E-20 6.42E-20 1.50E-20 6.97E-20 3.27E-20 3.02E-21
Be 1.126-10 | 8.55E-20 6.42E-20 1.58E-19 7.07E-20 1.66E-19 1.05E-19 3.94E-20
3.80E-11 | 2.60E-20 1.50E-20 7.07E-20 1.81E-20 7.65E-20 3.73E-20 4.54E-21
1.186-10 | 9.19E-20 6.97E-20 1.66E-19 7.65e-20 1.75E-19 1.12E-19 4.37E-20
7.10E-11 | 4.83e-20 3.27E-20 1.05e-19 3.73e-20 1.12E-19 6.33E-20 1.58E-20

Radius (m)

&2z

Table 3-2. Atomic radii and elastic scattering cross sections computed using a
hard-sphere approximation.
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with units of m2.

3.1.5. Heat transfer due to elastic collisions.

The heat transfer from species s to species t due to elastic, non-reacting collisions is specified by Qs ;, defined
as [84] BB

Qs = —SlERE As;th (Ty—Ty) \Ps;t +my(uy — us)z cI)s;t ) (34)

mg+ my;

where a;; is the friction coefficient given by either (22) or (25), and ¥,; and @, are correction factors that
depend on the drift and reduced thermal speeds. The parameter A;.; takes the value 4 for electron-neutral
interactions, and 3 for all other types of interactions. The correction factors ¥, and @, take the value 1 in
the limit of vanishing drift speed, and this value is generally sufficient when the drift speed is much smaller

than the thermal speed. Expressions for more general scenarios can be found in [114].

3.1.6. Thermal energy transfer due to charge exchange.

The transfer of thermal energy between an ion species i = (@, k) and a neutral species n = (a,0) due to charge
exchange interactions is specified by Q¢ and Q7;. The following approximations from [100] are used:

1/2
CX _ FCX (X ,§2 EZ 2 6_42 (35a)
Qiin =107 (U; )”npt4”T,, n.uTi+ui;n+9n.uTn ) a
3 4 64 , \V?
Q=0T (UP) mapiud (S, i+ o) 3sb)
3.1.7. Radiative losses.

We use the following approximation for radiative losses due to recombination reactions:

rad,rec __ ion 1 2\ yrec

Ul = ( @k T Eme“e) Lo k) (36)
Currently other forms of energy loss through radiative processes (eg., bremsstrahlung, line radiation, etc.) are
yet to be fully implemented.

4. BRIEF OVERVIEW OF NUMERICAL SOLUTION METHODS

41. Continuous Galerkin Spaital Discretization of Multifluid EM Model

The multi-fluid equations Figure 2-1 are a set of coupled hyperbolic subsystems of equations for modeling the
dynamics of partially ionized plasma systems (neutrals, charged ions, and electrons) in the presence of elec-
tromagnetic fields. In the brief discussion that follows we present a robust and flexible stabilized scheme for
the multifluid plasma system. The approach we consider is an algebraic flux corrected continuous Galerkin
(CG) method. The AFC stabilization, we consider is an iterative local bounds preserving element based for-
mulation [65, 62, 82, 81]. The AFC design in this work is a blocked stabilization of the hyperbolic system.
This means that each subsystem (Euler for ions/neutrals, Euler for electrons and Maxwell equations) cab be
stabilized separately. Alternate forms of stabilization that use the largest wave-speed bound for the coupled
hyperbolic system are also of interest and the subject of our continuing development. The current block sta-
bilized method is at least partially inspired by the blended scheme considered in [123]. We use CG for all
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the Euler species subsystems and in the Maxwell equations when an all H(grad) basis is used, we include a
divergence cleaning strategy based on a parabolic divergence cleaning method [35, 78, 122, 81]. The final
stabilized semi-discrete scheme is integrated in time using various time integrators such as IMEX-RK strong
stability preserving or BDF2 type methods.

4.1.1. Exact sequence discretizations {H(grad), H(curl), H(div)}

This section develops a Galerkin finite element discretization for the multi-fluid plasma model described
in Section 2.4 and follows [89] and reuses text from this paper. To begin, the spatial domain is tiled by a
set of hexahedral or tetrahedral (3D) elements. The finite element discretization uses basis functions that
mimic the structure of the continuous representations (see [21, 19]). In particular, the goal is to develop a
discretization for the multifluid EM plasma system ( Figure 2-1) that satisfy the involutions satisfied by the
continuous mathematical system by construction.

The discretization defines discrete basis functions to approximate the continuous function spaces

Hy(Q):={veL*Q):VveL*Q)} (37)
Hyx(Q):={reL?(Q):Vx veL?(Q)} (38)
Hy.(Q):={veL?(Q):V-ve L*(Q)} (39)

defined on the domain Q. The L?(Q)/L?(Q) space is defined as the set of square integrable scalar/vector
functions. Figure 4-1 depicts that the derivative defined on one space maps this space into a subset of the
next space. For example, if v € Hy (Q) then Vv € Hy« (Q2). Define the discrete spaces as:

V& ¢ Hy(Q), VI, cHy«(Q), V2 cHy.(Q), (40)

where the mesh refinement is indicated by the superscript i. Colloquially these spaces are referred to as the

nodal, edge, and face spaces respectively. This relation reflects the continuity enforcement of the lowest order

space: nodal spaces have point-wise continuity between elements (enforced by shared nodes), edge bases

have tangential continuity (enforced by shared edges), and face bases have normal continuity (enforced by

shared faces). These compatible spaces inherit the same derivative mapping properties of the continuous
spaces; in particular

h h

VveVl  vveVd, 41)

VxveVE, YveVl . (42)

These spatial derivatives are well defined because of the global continuity of the discrete spaces. In addition,

not every set of discrete nodal, edge, and faces spaces satisfy this nesting property. These sequences must be
carefully constructed to ensure the mapping property [21, 20, 6, 19].

To show that this discretization will satisfy the divergence involutions it is important to note that
VxVoy=0,V-Vxvyx=0 (43)

where vy is in Hy(Q) or Vvh, and vy« is in Hy (Q) or V@X. These are the commonly known vector calculus

identities, which are preserved by the discretization to machine precision [89].

Discrete Variational Form. The governing conservation/balance laws (see Figure 2-1), describing the

evolution of a fluid species in the presence of an electromagnetic field, can be written in the form

0tUq+V-Fq(Uq) =S¢ (Ug, E,B) (44)
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Nodal space Edge space Face space Cell space
Hy Hpy Hy. L,
4 VX V-

Figure 4-1. Representation of the relationships between the spaces associated with the exact sequence dis-
cretization. Note how the derivative operators V,Vx and V- map from one space to another, and that the gray area
represents the null-space of the associated operator as described in Eq. (43). The discrete version of these spaces

maintains this mapping property. The exact sequence property is essential for maintaining the involutions discretely.

with fluid state Uy € Uy = {0, Pa, €}, flux F, and source S. The system is discretized using nodal fluid vari-
ables (e.g. U, € Vvh) for all species, edge electric fields (e.g. E € vh ..),» and face magnetic fields (e.g. B € V@.). By
multiplying the Euler subsystems for each species, @, Ampere’s and Faraday’s law (the Maxwell subsystem)
by test functions in their respective spaces and integrating by parts, the discretized unknowns are found to
satisfy

f (0:Uq — Sq (U4, E,B)) Vu—F(Ua)-VUUdX-Ff F(Uy) nvyds=0 VUyeUy,Vrye Vvh, Va (45)
Q 00
1
f (atm —j) Vg — ¢*B-V vadx+f ¢n- (vgxB)ds=0 Vvg EVQX (46)
Q €0 oQ

f(atB+VXE)'Vde=O Vvg eVl 47)
Q

As aresult of the exact sequence property, satisfaction of Eq. (47) also implies that the strong form of Faraday’s
law is satisfied (because the strong curl of E is exactly representable by B € Vg.) [89].

4.1.2. Continuous Galerkin H(grad) AFC spaital discretization

The multi-fluid equations Figure 2-1 are a set of coupled hyperbolic subsystems of equations for modeling the
dynamics of partially ionized plasma systems (neutrals, charged ions, and electrons) in the presence of elec-
tromagnetic fields. In the brief discussion that follows we present a robust and flexible stabilized scheme for
the multifluid plasma system. The approach we consider is an algebraic flux corrected continuous Galerkin
(CG) method. The AFC stabilization, we consider is an iterative local bounds preserving element based for-
mulation [65, 62, 82, 81]. The AFC design in this work is a blocked stabilization of the hyperbolic system.
This means that each subsystem (Euler for ions/neutrals, Euler for electrons and Maxwell equations) is sta-
bilized separately. This is partially inspired by the blended scheme considered in [123]. We use CG for all the
subsystems and in the Maxwell equations, we include a divergence cleaning strategy based on a parabolic
divergence cleaning method. The final stabilized semi-discrete scheme is integrated in time using various
time integrators such as IMEX-RK strong stability preserving or BDF2 type methods.

Let Q c Rd, d =1,2,3 be a bounded domain with a Lipschitz boundary I' = Q). Let T > 0 be a given finite
real number. For (x, t) € Q x [0, T'], we consider the multifluid model for a partially ionized system as given in
Figure 2-1, and consider a general development of the AFC CG method in the context of a conservation law
system with source terms defined as

ou
5 *VF0) =S, (48)
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The conserved quantity is U = [{(Uy), Vs € A},UEM]T. U; =[ps, psUs, psE5] T and Ugpm = [B,E]T. The physical
flux F is given by

F;(U))
o | o 49
Fn,(Un,) (=)
Fem(Ugnm)
The physical flux for the fluid equations can then be written as
PsUs
Fs(Us) = [psus®@us+ psI |, (50)
(Pgs + psiug
The physical flux for the electromagnetics can be written as
[ T®
FemUpm) = | 2T®) | (51)
where for any vector w = [wy, Wy, W] € R3,
0 w; —Wy
Tw=|-w, 0 Wy
Wy - w_x 0

The source term coupling the fluid equations to the Maxwell equations can be written as S(U) = [{(Ss + C;s +
Sy), Vse ALSpy ()], where

0

SMS 0
Ss(U) = | L (E+usxB) |, SEM(U)z[ 2 asps |-
‘gspsy g ~HoC” X5 Ty Us
mg S

In the balance law (48), we do not take into full account, the constraints given by the involutions to the
Maxwell system. These can be addressed by making use of divergence cleaning strategies [123]. Below, we
will consider parabolic divergence cleaning.

Parabolic divergence cleaning. The parabolic divergence cleaning introduced here is similar to the
MHD parabolic divergence cleaning in [35, 81]. Let ¢j,,p and cy, g be the finite real numbers defined by the
hyperbolic cleaning speed in [35] for the induction equation and the electric field equation respectively. Let
Cp,B = \/Ch,BCr, and ¢y g = /Cp,, gCr, where ¢, = 0.18. Then, the Maxwell equations will be modified in the
following way

0B v -

5, tVXE-V-[¢, ;(V-BI| =0, (52a)
OE 2 2 qspPs 2 qsPs

5 ¢ VxB-V- cp'E(EOV-E—XS: ~ Il=-c uo; - ug, (52b)

The physical flux is then given by
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2
—c2 ,(V-B)I

F\,(U) = Fep(Ugay) + hey (U) = (e B3, 2|
ms

T (E) ] N 53)

—c*>T (B)

_2
ChE

We will, therefore have an extra term in the fully coupled system, given by h(U) = [0,0,hg,(U)] T The result
is the following modified balance law

ou
3 + V- [F(U) + h(0)] = S(U). (54)

It should be noted that we can choose ¢y, g = ci g = ¢, which depends on the maximum propagation speed
for the Maxwell system. We will show below, in the finite element discretization, how the value for ¢y, is
computed on the computational domain of the problem.

Finite element discretization. Consider the continuous formulation given by (54). Let Sj, be a collection
of elements K, that partition the domain Q, such that Q = UiV:e 1 Ke, where N, is the total number of elements.
These elements are assumed to be conforming and admissible. Let vh = {v:Q—-R: v|ge PYK),K € Sy} be
the finite element space of element-wise linear/bilinear bases. Let {([)k}gi’l be the basis that spans Vj,. Denote
by U, the finite element approximation of U. That is, Uy, = Y. Ur¢x, where Uy = [{(05.x, 0sUs k, 05E5 k), Vs €
A}, By, E¢]T are the nodal values of the conserved variables. We will also denote by U s,k = [Ps 1o Plg 1 PE 5 1] i

and Ugy . = By, Ex]T. Note that, we can also write Uy j, = Z;:Z‘lUs,k(/)k, and Ugpyp, = ZQZ'IUEM,/C(/)/C. The
semi-discrete Galerkin scheme is given by the following.

Given Uy, (-,0) = Ug(-) € L2(Q), find U}, (-, 1) € (V1) Nea a.e (0, T) such that

i/ (/)Uhdx+f(p[F(Uh)+h(Uh)]-ndG—f V([)-[F(Uh)+h(Uh)]dX=f ¢S(Up)dx, (55)
dt Jo r Q Q

forall¢ e Vh, where N, is the number of conserved variables in (54).

The semi-discrete scheme in matrix form is given by

A

Mc% +K(0) +H(0) +Br(0) +S@@) =0, (56)
where
Mc = {Mkl}],:?:yMkl:mklINeque,,, mklZde?MPldX» (57)
KO) = kg, ke=- fQ Vi U, (58)
HO) = {hk}kNgl,hk:—Lv¢k~h(Uh)dx, (59)
Br(0) = {bit}, bi= fr ¢x[F(U}) +h(Up)] -ndo, (60)
SWO) = (St Sk=- fQ $iS(Up)dx. (61)

The inclusion of Br depends on the prescribed boundary conditions. This semi-discrete scheme, when
solved without any stabilization may result in spurious oscillations developing in the solution profile. The
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next step is to introduce suitable stabilization that will eliminate spurious oscillations. This will be achieved
by introducing some artificial diffusion to the semi-discrete system whose amount is regulated by a solution
dependent limiter [82]. First, we need to consider the eigen-system for the two fluid equations. Details of this
can be found also in [60].

Eigen-system for the two-fluid equations. In this section, the eigenvalues and eigenvectors of the Euler
subsystem and Maxwell equations will be presented. These will be useful in the following sections where the
stabilization will be presented. The stabilization involves introduction of artificial diffusion based on the
eigensystem of the Euler and Maxwell equations. First, denote by u; = [u, vs, ws]” the components of the
velocity for each specie in R3. Note that in R?, this will be u; = [u, vs] .

The eigenvalues of n- F’S(U s), the flux Jacobian, in the direction of a unit vector n € R4 , are given by

A(Us,n) = diag ({us-n—c5,us-n,ug-n+ c5,ug-nj), (62)

where ¢; = /2 ;r“ is the sound speed. The eigenvector matrix is given, in R?, by

1 1 1 0
Us — Cs Ny U U+ Cs Ty n
R;(Ug,n) = 4 (63)
Us—CsMhy Vs Vs + CsMy —ny

1 2
Hs—csus-n sllugll®  wusny—vsny Hs+csug-n

The eigenvalues and eigenvectors in R® can be found in [109]. For the Maxwell systems, we only consider the
eigenvalues of F% 1 (UEM) - n which are given by Agpy (Ugy,n) = diag({—c¢,—¢,0,0,¢,c}). In the next section,
the stabilization based on artificial diffusion computed using the above quantities will be presented.

Stabilization. The stabilization strategy here will follow the algebraic flux correction strategy as in [82] for
Euler equations and reactive flow problems. The subsystems will be stabilized separately. The fluid equations
will be stabilized using scalar or tensorial diffusion as in [82]. The Maxwell system will be stabilized using
scalar diffusion. The following diffusion operators will be considered:

D(Uy) = {Dy(Ua}:_,, with D (U9 =Y. DY, (Uy), (64)
e
and
Dy (Ugn) = {Dpa ki W}t sy With Dy (Ua) = Y. D, (U, (65)
e

Here D; are the fluid artificial diffusion operators for species s. They could be either Rusanov (scalar) dif-
fusion operators or Roe diffusion operators. If we have Rusanov diffusion, then Die])cl = dieli a+2)xa+2) for

1#k,and D%, = - ¥4 D', where

d%),(U) = max (Amax (F (U ) - ), Amax (Fe(Us ) -€) ), 1k, (66)

and

= fK Vrpdx. (67)
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If we have Roe diffusion, then we can recall that the eigen-decomposition for the flux Jacobian is given by
n-F,(U) = R(U S,n)AS(US,n)Rs‘1 (Us,n), where n is a unit vector. In a component-wise formulation, this can
be written as

F, (U =e;-F, (Uy) = R (UJA° (UYIR (U], (68)

where e = [01¢,...,0 4¢] T for & =1,...,d are the canonical basis for R4, and 0pe = 1ifn = ¢ and 0 otherwise.
The element-wise Roe dissipation using a split tensorial representation is given by

zmlz%mmmmsmm@m ,for 1 #k,

@
Ds kk — Z Ds kl’
where the direction vector cgfl) = cl k For example, we could have c(e) [c1 (9), .. cl‘:l(e)] T cil(e = max (Icf (@) l, [c"c (@) I) .

th

U, x; is a suitable average of the s** species, such as an arithmetic average Uy ; = %(U sk +Ug), or the Roe

average[82].

Now we consider the artificial diffusion for the Maxwell system. The maximum eigenvalue is given by /lmax (n-

Fy.,,(Ugy)) = cn|, wheren e R%. The Rusanov artificial diffusion is then obtained from D' = M =a EeM i1 16x6
(e)
for  # k, andD;Z\/“dC Z#kDEMkl,where
Ay = max( max (Flps (UEn, 1) - €0, Amax (g (U i) -cﬁ))), 12k (69)

The element-wise artificial diffusion for the system is given in block diagonal form by

D@ (uP) .. 0 0
DOU®) = (') ...... 0 (fug?) 0 , (70)
...... o 0,09,

where U'? is the restriction of Uy to the nodes lying on the element K,. The same applies to U(b?])\/[

It should be noted that the left hand side of (56) can be assembled from the following element-wise contri-
butions

4du®
R =MY —— +K? W) +H? ) +B () +S“ (). (71)
dt

The AFC stabilization procedure involves adding the artificial diffusion with the operator D® to this element-
wise assembly and the lumping of the mass matrix associated with the time derivative. The result is the
following low order semi-discrete contribution

(e) _
R = M

L

4du®
o —— K9 +H” W) +D? WU + B () +8° (). (72)

The difference between this low order element-wise contributions and the high order contributions is the
following anti-diffusive part
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4du®
F=-p@u® + MY - M(e)) TR (73)

The low order scheme obtained from (72) is diffusive and is designed to be local extremum diminishing (LED)
in the case of the characteristic variables of a linearized hyperbolic first order conservation law system. In
general this approximation will result in a diffusive representation. The goal is to have a scheme that is high
resolution. In the AFC stabilization algorithm, this is achieved by adding limited element-wise counterparts
of (@ that add back as much of the high-order approximation as possible without violating the LED prop-
erty. This limited contribution is given by

q)ge) ]:1(e)
Flo_ e)}_(e , (74)
o7
where CD(se) and CDgI)W are quantities between 0 and 1. These values are such they vanish in elements that have

a steep front or a shock and are close to unit in elements where the solution is smooth or linear. A detailed
discussion of the construction of these limiters follows in the next section.

We can now summarize the stabilized semi-discrete up to this point to the quantity assembled from the
following element residual contributions

daut® .
R(e) - M(Le) dt o K(E‘) (U) + H(E) (U) 3 D(e) (U)U(e) 4 B{f) (U) + S(e) (U) 4 ]:'(e) . (75)

Limiting strategy. In this section, we present the limiting strategy used in the AFC algorithm. This is the
method used to compute ®'¢ and @g}w For a given variable u, we define ®'¢ = mingenk,) (1 - (119, g = 1.
py for k=1,..., Ny is a linearity preserving limiter given by

u_ |Zl;£k,3kl(ul - uk)l +€

,e~10716 (76)
Yz Brilup—ugl+e

where Bi; > 0 such that Y ;4 Bri8k - (X; —X) = 0. The scales S, are assembled using the following Kuzmin
linearity preservation strategy:

(i) Compute the nodal gradients are first using a lumped mass L? projection of Vuy,.

=i Z cir (U — ug), cxr = ZC(Q) (77)
M 12k

(i) Compute Si for each k:

SZ = Z max{O,gk - (xg —Xk)},
I#£k

Sy = >_min{0, gk - (x; —xx)}
I#k

(78)
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(iii) Compute nodal correction factors a;cr and %

|ST|+¢€

of =minq1, —~ ,
Sk +€
g+ (79)

2+

0, =minq 1, —

ISkI +e

The fluxes into node k and the nodal correction factors must satisfy for each component, this zero
sum condition

0. Sg +0;S; =0. (80)
(iv) Compute the positive scales B;:

oy, if g~ (x; —xx) >0,

= 81
P {U;,ifgk-(xl—xk)SO. ®1)

13 (&) _ s (e (e (e _ .: (e) (e)
In the stabilized scheme, for example we set @~ = mln{d)px ’(I)Psps}’ and @, = min {(I)% IImBIIZ’(I)% — }

4.2, Temporal Discretization

IMEX methods allow implicit evolution of stiff modes in an ODE, while maintaining explicit evolution of slow
modes. To achieve this, IMEX methods work with ODEs with an additive separation of scales:

0y(t)
ot

+8n=fy0. (82)

Here g contains operators generating fast time scales, while f contains operators generating slow time scales.
This qualitative ordering of the time scales is defined relative to a desired time scale that is intended to be re-
solved by the simulation. This time scale is specified by the user selected time-step At. As a guiding principle,
the forward-Euler stability limit of the fastest resolved mode is used to determine the time step size.

IMEX methods can be written as both linear multi-step [7, 52], multi-stage Runge-Kutta schemes [9, 22, 47,
48, 49, 61], and multi-step multi-stage Runge—Kutta (general linear multi-step (GLM)) [134, 135, 113]. This
work focuses on multi-stage IMEX Runge-Kutta (IMEX-RK) schemes presented in [9, 96, 98], though exten-
sions to multi-step formulations are straightforward. Similar to implicit and explicit Runge-Kutta algorithms,
IMEX-RK defines a sequence of solutions at different stages in the time interval. These solutions are com-
bined with appropriate quadrature weights to produce the solution at the end of the time-step. Stated con-
cisely, the stage updates and final summation satisfy:

. i-1 A . i -
YO =y +arY A f "+ a0 -t AjjgyP, 1" + cjAL) fori=1...5 (83)
j=1 j=1
Y =y ALY bif(0, "+ G AD - ALY big(y D, " + ciAD). (84)
i=1 i=1

Here s is the number of stages, and the coefficients come from implicit and explicit Butcher tableaus:
¢l A c| A
T is explicit, and —'—bf is implicit. (85)
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Terms in these tableaus define the computational, accuracy, and stability properties of the method. In this
work the implicit A matrix is lower triangular, while the explicit A matrix is strictly lower triangular. This
ensures that the IMEX scheme is diagonally implicit, and contributions from the slow terms are handled
explicitly. More information on these tables, and their derivation, can be found in [9, 96, 98].

A pseudocode description of the IMEX-RK algorithm, including the storage of the stage contributions, is:
fori=1...sdo
V= yn +Atz;;11 Aiij — At ;;11 A,‘jGj
Solve y — j+ AtA;;g(y?, t, + c;At) = 0 for y?
Fi— f(y", 1, + &A1)
Gi— -y xim
end for
yrl—yn g Atzls-zl b;F; - Atzls-zl b;G;

A careful examination of the algorithm demonstrates that there are two physics-dependent computational
steps: (i) the explicit evolution and computations of the intermediate value j, and (ii) the solution of the
nonlinear system

Ry)=y-7+agy) =0 (86)

for y, accounting for the implicit time evolution of the stiff physics.

4.2.1. Strong Stability Preserving Methods

The exact solution of a hyperbolic conservation law of the form U; = f(U), frequently develops sharp gra-
dients or discontinuities, which may cause significant difficulties in numerical simulations. High order spa-
tial discretizations that feature nonlinear non-inner-product stability properties that mimic some significant
physical properties of the exact solution are desirable. Such properties are designed to ensure that the spatial
discretization F(u) (where u is a vector of approximations to U) satisfies the forward Euler condition

I < lu™, 0<At<Atpg, (87)

(for u" is a discrete approximation to U at time ") where | - || is the desired norm, semi-norm, or convex
functional.

Often, higher order Runge-Kutta methods can be decomposed into convex combinations of forward Euler
steps [119], so that given an F that satisfies the forward Euler condition, these Runge-Kutta methods will pre-
serve the monotonicity property || u™ < |lu, usually under a modified time-step restriction At < C Afgg.
Any method that can be written as such a convex combination so that with C > 0 is called a strong stability
preserving (SSP) method. These methods ensure that any strong stability property satisfied by the spatial
discretization when using the forward Euler condition (87) is preserved by the higher order strong stability
preserving Runge-Kutta method.

The time-step restriction At < CAtgg is comprised of two factors: the forward Euler time-step A fgg that comes
from the spatial discretization, and the SSP coefficient C that is a property only of the time-discretization. The
research on SSP methods focuses on optimizing the allowable time-step At < CAtgg by maximizing the SSP
coefficient C of the method.

High order strong stability preserving (SSP) time discretizations have proven beneficial for use with spa-
tial discretizations with nonlinear stability properties for the solution of hyperbolic PDEs. SSP Runge-Kutta
methods suffer from barriers on their order: explicit SSP Runge-Kutta methods cannot be more than fourth-
order accurate [57, 110] and implicit SSP Runge-Kutta methods cannot be more than sixth-order accurate
[44]. However, when we consider the accuracy of the methods when applied to linear problems, these barri-
ers relax: explicit Runge-Kutta methods of any linear order can be found in [44].

29



The search for high order strong stability time-stepping methods with large allowable strong stability time-
step has been an active area of research over the last two decades. In the work [33] we found implicit-explicit
(IMEX) SSP Runge-Kutta methods with large allowable time-step, that feature high linear order and simulta-
neously have varying designed orders of accuracy for for linear and non linear components.

In general, most of the time integration for numerical solution of ODEs are computed with a single formula
and a fixed step-size. This type of approach can be non-optimal if the solution varies rapidly over small
subsets of the integration interval and slowly over larger ones [32]. Using a uniform step-size, such that
At, = At is the same at every time step, the local error would vary at each time step since the error depends
on the properties of f and its derivatives. A small constant step-size may help resolve regions with large
variation in solution, at the expense of unnecessary computation in the region of less variability.

In an attempt to minimize the computational cost and obtain the best possible result, it is necessary to use
an adaptive method based on automatic step-size selection (Appendix D). Numerical computation based
on adaptive methods varies the step-size At; such that the local error can be uniformly distributed at each
time step ?,,. Such an approach is akin to using non uniform Chebyshev nodes in polynomial interpolation.
Practical error estimates are necessary to choose the step-size At, sufficiently small to obtain the required
precision of the numerical solution and ensure At is large enough to avoid unnecessary computational
work. In [32], we construct a family of embedded pairs for optimal strong stability preserving explicit Runge—
Kutta methods of order 2 < p < 4 to be used to obtain numerical solution of spatially discretized hyperbolic
PDEs. The extension to DIRK and IMEX-RK will be explored in future works.

4.3. Nonlinear/Linear Solvers

The result of a fully-implicit or IMEX time discertizaion is the development of very large-scale, coupled highly
nonlinear system(s) that must be solved. Therefore, these techniques place a heavy burden on both the non-
linear and linear solvers and require robust, scalable, and efficient nonlinear solution methods. In this study,
Newton-based iterative nonlinear solvers [37] are employed to solve the challenging nonlinear systems that
result in this application. These solvers can exhibit quadratic convergence rates independently of the prob-
lem size when sufficiently robust linear solvers are available. For the latter, we employ Krylov iterative tech-
niques. A Newton-Krylov (NK) method [25] is an implementation of Newton’s method in which a Krylov
iterative solution technique is used to approximately solve the linear systems that are generated at each step
of Newton’s method. Specifically, to solve the nonlinear system R(@U) = 0, we seek a zero of R : RN — RV
where U € R is a current approximate solution. The Krylov iterative solver is applied to the linearized resid-
ual equation

JkSk+1=—Rr, (88)

where J . is the Jacobian matrix and R is the nonlinear residual, both of which are evaluated at the previous
Newton step solution Ug. The solution for the Newton direction vector, s;. 1, is used to update the previous
solution in the sequence. For efficiency an inexact Newton method [36, 41] is usually employed, whereby
one approximately solves (88) by choosing a forcing term 7, and stopping the Krylov iteration when the
inexact Newton condition

IRk +T kSka1ll < M1 IRkl (89)

is satisfied. For efficient implementation, an adaptive convergence criteria can be employed [40, 118, 103],
and to increase robustness, backtracking of the provisional Newton step can be enforced to ensure a sufficient
reduction of the nonlinear residual before the step is accepted [37, 103].

4.4. Automatic Differentiation

For fully-implicit and IMEX schemes, we construct an explicit Jacobian matrix for solving the linear system in
the Newton-Krylov scheme. This provides an exact matrix-vector apply multiply and allows for a wide range
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Cores | Total Unknowns | Relative Time
256 7.93m 1.000
1024 31.5m 1.002
4096 126m 0.998
8192 253m 1.012

16384 504m 1.011

32768 1.01b 1.015

65536 2.01b 1.014

Table 4-1. Weak scaling study of Jacobian evalaution time using automatic
differentiation on IBM Blue Gene for semiconductor device problem.

of preconditioning strategies when approximating the Jacobian inverse. To generate this matrix, we have
developed a set of finite element assembly tools built upon a template-based implementation of automatic
differentiation.

The automatic differentiation library, Sacado, and the finite element assembly tools, Phalanx and Panzer, are
packages available in Trilinos [46]. Sacado implements automatic differentiation by providing new scalar
types with overloads of the math operators to evaluate the derivatives [101]. Users write their nonlinear
residual equations templated on the scalar type. For a nonlinear residual, one would compile and call the
function with a scalar type of double. To get Jacobian sensitivities, one would compile and call the same code
with a Sacado scalar type. This significantly speeds up development as the application developer only need
write a single residual evaluation. This results in a smaller code base, allows us to get sensitivities wrt any
parameter in the code, and eliminates the time consuming effort of deriving, implementing and debugging
Jacobians. We get tremendous flexibility for, e.g. adjoints and parametric sensitivity analysis, without placing
the burden of hand coding derivatives on the application developers.

The equation evaluation routines are broken into individual functors with explicit direct dependencies. In
this way we can build up multiphysics applications by analyzing the functors and building a directed acyclic
graph (DAGQG) of functor dependencies. When more equations are added or the models are changed, we can
easily accomplish these changes at runtime by adding or swapping functors (nodes in the DAG) and rebuild-
ing the DAG connectivity. This gives flexibility in comparing discretizations and material models. The DAG
management and evaluation is handled by the Phalanx package [95, 101]. The parallel distributed finite el-
ement assembly is handled by the Panzer package. The automatic differentiation is applied at the local ele-
ment level for efficiency [102]. Table 4-1 shows an example of weak scaling of the evaluation of the Jacobian
for a semiconductor device simulation on an IBM Blue Gene.

4.5. Parallel Scalability of Solvers
4.5.1. Weak scalability of coupled AMG for MHD system

A critical component of solving large-scale MHD applications is our fully-coupled AMG (FC-AMG) precondi-
tioner [126, 111, 70, 71, 112, 74, 43, 75, 117, 72]. This capability is also a fundamental aspect of our physics-
based (PB) / approximate block preconditioning (ABF) preconditioning approaches for complex multiphysics,
as well as mixed spatial discertizations (e.g. node, edge, face, volume). To demonstrate this critical capability
we present results of a weak scaling study for our resistive MHD formulation for an MHD duct flow problem
with FC-AMG-preconditioned Newton-Krylov solvers on a BlueGene Q platform on up to 1M+ cores [72] and
compared these with the Titan Cray XK7 results. Representative results are presented in Figure 4-2. These re-
sults demonstrate excellent weak scalability on large-scale problems. The largest steady-state fully-coupled
solves to date have 1.625B unstructured finite-elements and 13B unknowns on 128K cores. For transients we
have performed CFD solves for 10B elements with 40B unknowns on 128K cores. We have also demonstrated
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the solution to Poisson-type sub-problems, which are important kernels for our block preconditioners, on up
to 1.6M cores of BG/Q [72]. These results, while important on their own, also serve as a valuable baseline for
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Figure 4-2. lllustration of parallel weak scaling of fully-coupled AMG for MHD.

comparison and provide confidence as we develop and analyze ABF preconditioners for MHD and multifluid
plasma formulations based on structure-preserving discretizations, for which no FC-AMG system multilevel
solver exists.

4.5.2. PB and ABF preconditioners for implicit full two-fluid formulations.

Full two-fluid models allow for charge separation effects beyond the resistive / extended MHD model and
bring in additional, very stiff hyperbolic wave phenomena (light waves and plasma waves [125]). To deal with
these time-scales we have developed a PB/ABF preconditioning strategy for this complex system. Our devel-
opment of a multifluid plasma preconditioner has treated all plasma species together. The Jacobian for the
two-fluid (ion/electron) / full-Maxwell plasma model (see Figure 2-1), neglecting some property variations,
is represented in fully-discrete form as:

[ D, K0, 0 Qp 0 0 0 0 .
(pu); ! (pu); (pw); (pu); (pw); Pi
Icpfg ng)i 0 Qpe‘g Q(g,u)e (:: QEg QB (pw);
Dgi ou; D& Qp, Q%Su)e Q, Q 0 £
Qp; 0 0 D, K 0 0 0 o
i e puU)e e

(owe  (pWe (pue (pwe (pte
Q% Qp, 0 DR Dew, 0 QFY Q" (Fi*?u)e
& £ & £ & e
Qp; ngu),' Qs Dy, %,fu)e De,  QF OE E
0 Qpuw; 0 0 Qpw, O Qe K B
0 0 0 0 0 N ¢ Qs | ]

Here, the notation for the matrices is as follows: D corresponds to generalized transient and advection op-
erators, possibly including diffusion; /C corresponds to first-order derivative operators for divergence and
gradient; K corresponds to first-order curl operators; and finally Q corresponds to mass matrices or source
terms (i.e. not containing any derivatives). To enable a wide range of spatial discretizations and efficient
preconditioners for the implicit time integration of this system, we have developed preconditioners based on
the following algorithmic design criteria:

1. Fluid variables partitioned separate from the EM variables to allow disparate discretizations (e.g. nodal FE or FV
methods for the compressible conservation variables and structure-preserving discretizations for EM).

The electric field E, and the magnetic induction B, will be partitioned to allow disparate discrete approximations
to be employed (e.g. edge elements for the electric field and face elements for the the magnetic field.)
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3. The variable partitioning, and the ABF preconditioners, should be efficient in the large time-step limit of Maxwell
(i.e. not resolving speed of light), and should also enable use of this formulation and ABF preconditioner in a
single fluid MHD formulation solving for E,B .

4. All ABF and Schur-complement approximations should be compatible with scalar/system nodal AMG (H(grad),
FC-AMG), and curl-curl AMG (H(curl)) methods in the multilevel Trilinos packages ML/Muelu.

An ABF preconditioner that satisfies criteria (1) - (4) has been developed based on the following 3 x 3 block
partition with F = (p;, (ow);,&;, pe, (pW)e, Ee) [106]. The combined block system is shown below, along with
the upper-triangular preconditioner (for which the lower triangular factor is omitted [92, 34]):

Dr QF QL][F S 0 0][F
Qi Q K| |E[, Q; Sz 0]|E|. (90)
0 K Qs|B 0 K; QsIB

The fluid flow Schur-complement is defined as Sp=Dp— Q?Sgl (Qg - QEQ;K?) . Additionally the electric-
field Schur-complement is defined as S = Qg — KgleKg. The terms in Sg can intuitively be seen to cor-
respond to the transient operator and the Schur-complement for Maxwell’s equations that would have a
curl curl type operator, just as the continuous development of the 2nd order form of Maxwell would ex-
hibit. The terms are, from left to right, the displacement current, the curl-curl operator, and a perturbation
due to the electromagnetic force acceleration of the fluid momentum that reflects currents that are coupled
into Ampere’s law. To allow this system to be solved for large light-wave CFL, we use the grad-div stabiliza-
tion of the Schur-complement [104] as outlined in [106]. This preconditioner admits multilevel solves of the
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(a) Constant Ion Density Surface (b) ABF scaling fully ionized magnetized plasma expansion

Figure 4-3. lllustration scaling of fully ionized multifluid plasma model with
structure-preserving discretizations

Schur-complement for the edge-based electric field with optimal H(curl) AMG, then followed by a solve of
the fluid system with optimal system projection H(grad) FC-AMG, and then a simple mass matrix inversion
to compute the magnetic field. In Figure 4-3, we present a weak scaling study as a proof of principle for an
electron/ion plasma with an under-resolved transverse electromagnetic (TEM) wave. In the case of the mul-
tifluid plasma, we have demonstrated the capability to step over very restrictive fast time-scale physics as
we describe below in Section 5.4. These methods have demonstrated significant promise for an entire set of
scalable efficient preconditioners for this important class of advanced plasma physics models.

5. VERIFICATION RESULTS WITH RELEVANCE TO MIF

This section presents a sequence of brief results that are intended to provide an initial demonstration of
the accuracy and robustness of the multifluid EM plasma model. These results cover a hierarchy of basic
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results range from collisionless one-dimensional multifluid wave solutions, verification of the ionization,
recombination, and elastic scattering source terms, and the solution of the full multifluid EM plasma model
in the visco-resistive MHD limit. These verification problems include:

e Warm longitudinal electron/ion plasma oscillation with both an electrostatic and full Maxwell EM
representation [Section 5.1.1].

¢ Cold Langmuir (a.k.a. longitudinal electron plasma) oscillation (LEP) [Section 5.1.1].

e Left- and right-hand circularly polarized (LCB, RCP) waves in a magnetized electron plasma [Sec-
tion 5.1.2].

¢ Collisional relaxation and damped plasma oscillations [Section 5.2.1].
e Equilibrium ionization fractions for a coronal model with constant electron temperature [Section 5.3].

¢ Solution of the full multifluid EM plasma model in the asymptotic limit of visco-resistive MHD [Sec-
tion 5.4].

5.1. Verification and Evaluation on Collisionless Plasmas

The linear waves are derived from a static two-fluid plasma where the background flow velocity and electric
field are assumed zero with a constant background density, pressure, and magnetic field, as discussed in [18].
The main waves of interest are ordinary waves, electrostatic waves, and polarization waves. These waves are
generally derived in terms of bulk plasma quantities such as the bulk plasma frequency

wp = [ W5, (91)
a

5

cyclotron frequency,

we= - (92)

7
S

sound speed,

vs= ) V3, (93)
a

d= [y dz. (94)
a

Ordinary waves are light waves which have a polarization (oscillation direction of electric field perturbations)
along the background magnetic field, leading to coupling to the plasma consistent with an unmagnetized
plasma. Electrostatic waves describe the wave like behavior due to charge separation. Polarization waves,
where the background magnetic field points along the wave’s propagation direction, include the left hand
circularly polarized wave (LCP) and right-handed circularly polarized wave (RCP). Both electrostatic and po-
larization waves have multiple branches depending on the number of particle species.

and skin depth
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5.1.1. Linear waves in unmagnetized plasma

The linear waves are presented in a normalized form, where the oscillation frequency of the linear wave w is
normalized by the bulk plasma frequency: w/w,. The wave number ky is similarly normalized by the bulk
skin depth: k,d. The simulations are setup to resolve a single wavelength such that the domain width is
Ly =2m/ky.

Figure 5-5 compares the branches of electrostatic and polarization waves with the ordinary wave. Resolving
time and length scales associated with these waves becomes more difficult with decreasing frequency and
increasing wavenumber.

A simple analysis was done for each wave by seeding the simulation with the waveform, evolving over three
periods, and measuring the frequency by looking at the time of the zero crossings for the species momenta.

A subset of the frequency test points shown in Fig. 5-5 where chosen for further study by convergence anal-
ysis. The points, represented by the circles in [89, Fig. 3], were chosen to stress the consistent integration of
stiff implicit terms with resolved explicit dynamics.

Two-fluid electrostatic waves are broken into fast and slow branches. The fast electrostatic wave, commonly
known as Langmuir oscillations, is tied to electron dynamics, while the slower wave is associating with the
heavier ion species. The dispersion relation for two-fluid electrostatic waves,

Ae+Aj = AcA;, (95)

is written in terms of the non-dimensional parameters

2 2 2
w w v
p 2 52
Ag=—— (—2 — 2 kxd ) (96)
Wha \ W)

The solution to the dispersion relation is written in terms of two non-dimensional parameters Cy and C;

w? 1
— =G+ Cy). (97)
wp 2

Here ‘+’ refers the the fast electrostatic wave, and ‘-’ the slow wave. The parameters are given by

Co=1+x> 98)
Ci = /C2—4x2(a2 2+ a2f? + ala’x?) (99)
with
1%
x=—ked (100)
c
and
1 |
2 2
a; = m; T, @e = me T;
1.+ m_eTL 1.+ WITE‘
1 |
2 _ 2 _
o qi me Y e My

Solutions to this dispersion relation, see [89, Fig. 3], show the asymptotic short-wavelength behavior tend
toward the acoustic speeds of the individual species.

The analytic solution for the plasma variables are given by

Pa =Mgng (1+64sin(kyx —wt)), (101)
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and

a_
uy =0g

&le

sin(kyx—wt),

Po=kpnoTo(1+y8qsin(kyx— b)),

0.—0;eny

Ey,=———cos(kyx—wt).

kx €o

The system is closed with a relation between the perturbation amplitudes

61’ Ae

where 6, < 1.

b A

(102)

(103)

(104)

(105)

The test space is defined by a mass ratio m; = 100m,, and a temperature ratio T, = 10T; chosen to increase
the inflection magnitude for the electrostatic dispersion relation. The base temperature was chosen such
that ¢ = 10v,. The background density is set to n9 = 1018 [m73], and the speed of light and elementary charge
are realistic. The electron perturbation is set at 5, = 107",

The error convergence for this wave are shown in Fig. 5-2 (IMEX-RK) for tree test points and Fig. 5-1 (DIRK).
Table 5-1 shows the time scales for the most stiff result k,d = 250, where 214 order convergence is shown for
IMEX-RK while stepping over the speed of light by two orders of magnitude, and the electron sound speed by
one order of magnitude.
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Figure 5-1. Slow electrostatic wave L, convergence at a constant CFL at a
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Figure 5-3. Slow warm electron electrostatic wave L, convergence at a con-
stant CFL using the ES formulation. Results show the expected order accuracy
of the respective DIRK methods. Mesh resolution ranges from 10 to 320 cells
per wavelength.

The error convergence for an unmagnetized warm electron plasma is shown in Fig. 5-3 for various implicit
methods. Here, the ion species are assumed to be immobile, and represented exclusively as a constant charge
density n; = ny.

The cold unmagnetized electron plasma waves, absence of thermal pressure and no energy equation in the
system, are the simplest version of the general formulation above. The collionseless cold LEP wave mode
solution is simplified:
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Table 5-1. Time scales slow electrostatic wave with k,d = 250. Frequency time
scales are expressed as a range since convergence is tested over a constant
CFL such that Az = 1 % Ax. Operators associated with bold terms were treated

implicitly.

wpAt

w At
At

USA_)C
At

CAx

pe(x; t)
ue(x; t)

B(x, 1)

Electrons
0.11-3.4
0.053-1.7
67

Tons

2.5-107%-7.9-1072

29-107°-9.2-107*

672

0.5

=meng[1+dsin(kx; —wi)]
= 5 [sin(kx; — wg1),0,0]
E(x, 1) = nioegkﬁ [cos(kx; —wgrt),0,0]

=0

(106)
(107)
(108)
(109)

The error convergence for an unmagnetized cold electron plasma is shown in Fig. 5-4 for various implicit

methods.
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'
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Figure 5-4. Slow cold electron electrostatic wave L, convergence at a constant
CFL using the ES formulation. Results show the expected order accuracy of
the respective DIRK methods. Mesh resolution ranges from 10 to 320 cells per

wavelength.

The convergence results for the total energy in the warm electron-ion and warm electron plasma oscillation
was unsatisfactory for higher order methods. We are currently investigating these observed order reduc-

tion.

5.1.2. Linear waves in a magnetized cold plasma: LCP, RCP

In this section a straightforward dispersion verification study is presented for linear waves in a magnetized
cold plasma. Specifically the left/right hand circularly polarized waves (LCBRCP). In Figure 5-5 the analytic
dispersion relation is presented and a selected number of computations down with the Drekar multifluid

plasma model.
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Figure 5-5. Dispersion diagram for linear waves in a magnetized cold plasma (LCP,RCP)

5.2. Verification and Evaluation on Collisional Plasmas

A collection of tests are considered here with the aim of verifying that the various source terms required for
the general multifluid model described in Section 3.1 are correctly implemented in the Drekar code. In each
test, it is assumed that:

(i) all quantities lack spatial gradients; and
(ii) all external source terms (S S[O], S 5[”, S £2]) are zero.

In this case, the fluid equations (4) reduce to

8;0s=C"Y, (110a)
6t(psus)=%pS(E+uSXB)+C£H, (110b)
N
0,& = ﬂpsus-EJrCf]. (110c)
mg

5.2.1. Collisional relaxation

First, we consider the transfer of momentum and energy between a collection of two or more species through
elastic collisions. Including only interactions due to elastic scattering collisions, the momentum and energy
sources for each species, using (20) and (34), are given by

CM=Y agpspru;—uy), (111a)
t#s
2] _ As;tPsPt 2
Co' =) |aspsprus- (u—ug) + ——— [3kg (T — Ty) + m; (u; —uy)?] | (111b)

t£s ms+mt
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| Neutral (n) Ton (i) Electron (e) | Neutral (n) Ton (i) Electron (e)

mg 3.0E-27 2.0E-27 1.0E-27 Ps 1.2E-10 4.0E-11 2.0e-11
T 1.0E+3 1.0E+4 2.0E+4 0.0 4.0E—7 _28E-7
0.0 1.0E+4 -1.4E+4 PsUs [00‘ [ 0.0 } [ 0.0 ‘
u; [0.0‘ 0.0 [ 0.0 ‘ 0.0 0.0 0.0
0.0 0.0 0.0 pses 8.2860E-4  4.1430E-3 8.2860E-3
ng 4.0E+16 2.0E+16 2.0E+16 Es 8.2860E-4  6.1430E-3 1.0246E-2

Table 5-2. Initial conditions for collisional verification problems.

An equation of state for an ideal monatomic gas is assumed for each species, so that the internal energy
densities satisfy

1
pses= ﬁnskBTs» (112)
with y =5/3. The electric field E and magnetic field B are both assumed to be zero (ie., external fields are

assumed to be absent and the contributions from any fields induced by the motion of charged particles are
neglected).

In these tests, the species simply relax to common velocity and temperature values u, and T as ¢ — oco. By
conservation of momentum, it must hold that

D PsUs =, ) ps (113)
) S
for all times, which implies that
u, = ZePslls. (114)
2sPs

Similarly, conservation of energy requires that
Zg :Z 1p u2+Ln kBT)zluZZp +LkBT Zn (115)
< SZSSY_IS N Z*SSY—I *sSr

for all times, which implies that
_ Ys&s— %ui 2sPs

T, :
-1 kg5 ns

(116)

We consider three scenarios:
(i) A two-fluid system with constant friction coefficients,
(i) A three-fluid system with constant friction coefficients, and
(iii) A three-fluid system with friction coefficients computed using (22) and (25).

All scenarios use the initial conditions shown in Table 5-2, with only ions and electrons included in the two-
fluid case. Solutions computed using the Drekar code were compared to: (i) the time evolution of an explicit
ODE solver applied to a reduced system for the velocities and temperatures of the species, and (ii) the analytic
equilibrium values given by (114) and (116). Deviations of all values from the equilibrium quantities are
computed in a relative sense; eg.,

1 — T,

T, (117)
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Figure 5-6. Results for two-fluid collisional relaxation problem.

If the friction coefficients a;; are assumed to be constant, analytic solutions may be derived for the two-fluid
case. The velocity difference between species is given by

u, (1) —u; (1) = (ue (o) —u; (%) ) exp (—Ag;it), (118)

where
Agi =t (pe+pi), (119)

and the temperature difference between species is given by

s
To(t) = Ti(8) = (To (f0) — T (fo) ) exp (—Besi ) + ——2— [exp(—ZAe;it) - exp(—Be;,-t)], (120)
Be;i _ZAe;i
where
Mmem;
Bei =3(y - 1) @i ———— (ne + 13), (121)
e T M;
Ce;i = Yk_Bae;i (0i —pe) m(ue (o) —u; (19))°. (122)

The time evolution of numerically computed velocity and temperature values from Drekar and an explicit
ODE solver are compared in Figures 5-6 and 5-7. For the two-fluid case in Figure 5-6, each solver is ad-
ditionally compared to the analytic solutions (118) and (120). We observe that: (i) the numerical imple-
mentations are in very good agreement, (ii) each numerical implementation relaxes toward the appropri-
ate equilibrium values, and (iii) both numerical implementations yield small errors relative to the analytic
solutions for the two-fluid case. The results of convergence studies using various implicit and explicit time-
integration schemes made available through the Tempus library are shown in Figure 5-8 for a simulation time
of t = 4.0e-8. The expected convergence orders are observed for all schemes considered.
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(a) Three-fluid relaxation problem with constant friction coefficients.
Velocity Temperature
2.0e+4 T T T T T 25e+4 T T T T T
1.5e+4 - - Z—R\\ - -
2.0e+4 —— -
1.0e+4 |< - /”r_____r:‘—h‘;‘—_- T
O soes | T~ . 1.5er4 —// 7
g — o
= 00et0 f=—"==—= L S == TV i
] — 1.0e+4 —
> 50e43 | i
¢ i 5.0e+3 |- 4 -
-1.0e+4 [ - I e
“1.5e+4 |- ] 0.0e+0 = ! ! I I I ]
F T T I I I
E 1.0e+1 E 10et0 P 0 4 —_—
S5 F e —
= i /
= 3
= 10e0 [/ 1 ==
3 E 1.0e-1 E H
o © '/ ] -
W 10e1 h i ==
g ] i ]
> h
1.0e-2 1.0e-2 L L L = 1
0.0e+0 1.0e-4 2.0e-4 3.0e-4 4.0e-4 5.0e-4 6.0e-4 0.0e+0 1.0e-4 2.0e-4 3.0e-4 4.0e-4 5.0e-4 6.0e-4
Time (s) Time (s)
(b) Three-fluid collisional relaxation problem with friction coefficients computed using (22) and (25).
Figure 5-7. Results for three-fluid collisional relaxation problems.
5.2.2. Three-species plasma oscillations
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We now consider cases where the effects of electric fields induced by the motion of charged particles are
included, but contributions due to magnetic fields and external electric fields are omitted. Here the evolution

of the electric field E is described by
€00E+J=0,

where € is the permittivity of free space and the total current density J is given by
def qs
J=) —psus.
% m,

We consider four scenarios:

(123)

(124)

(i) A collisionless two-fluid system containing ion and electron species interacting only through the elec-

tric field coupling. The result is an undamped oscillation.

(ii) A collisional two-fluid system containing ion and electron species with constant friction coefficients

with the value a,; = 1.0E+18. The result is a damped oscillation.
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Figure 5-8. Convergence results for two-fluid relaxation problem.

(iii) A collisional three-fluid system containing ion, electron, and neutral species with constant friction
coefficients a,.;; = 1.0E+18 and a ;e = a,;; = 2.0E+17. The result is again a damped oscillation.

(iv) A collisional three-fluid system containing ion, electron, and neutral species with friction coefficients
computed using (22) and (25). The result is a damped oscillation in which the oscillation frequency is
much smaller than the timescale over which collisional relaxation occurs.

If the friction coefficients a;; are assumed to be constant, analytic solutions may be derived for the two-fluid
case with the additional assumption of charge-neutrality; ie., we assume that n; = n, in this case. The velocity
difference between the charged species is given by

Ve,it) €08 (Neit = Pesi)
We () —u; () = (ue (fy) —u; (Ly) Jexp | —— . 125
e (1) =u; (1) = (u, (10) — u; (1)) p( 5 ) — (128
where
2
B 2 4 1 1
Ve;i = Ue;i (Pe+Pi)v Wei = €_§ni (ﬁe + E)r (126a)
2 2 Vrze‘i -1 Vei
ne;l‘=we;i_T,’ (l’e;i:tan (_2 : ) (126b)
el
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(b) Two-fluid damped oscillation.

Figure 5-9. Results for two-fluid collisional and collisionless plasma oscillations.
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(b) Three-fluid damped oscillation with friction coefficients computed using (22) and (25).

Figure 5-10. Results for three-fluid collisional plasma oscillations.

The electric field E, which is initially zero, is given by

n; exp(—Ve,;it/2 .
E (1) = —(ue (fo) —u; (1)) LIZ . 2( - ) [ne;i sin (1¢;it — Pe;i)
0 W, COSPy; (127)

(Mesit — Peyi) +€xp (Veit/2) (T COSe:i + Me:j SN, ,)]

2
The temperature difference between the charge species is given by

D,.;e -V
Te(t)—Tl-(t):exp(—Ae;,-t)Ce;l-+e'lXp2#[4 21 +2G2,;c0s® (Neit — Pesi)
c0s? e

(128)
+41)¢;i Ge;i SN (1) ;i T = Peyi) €OS (1 ;i E = Peyi) ],
where
Ag;i = 2ae;iw (ne + 1), (129a)
me i
-1 Mem;
Be;i = Yk—B“e;i (pi—pe) m(ue (to) —u; () )7, (129b)
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(b) Explicit methods (Tempus).

Figure 5-11. Convergence tests for two-fluid collisionless oscillation.

2
Ce,i = (Te (o) — T; (to)) = De;; [Wi;e;i + 2Ge;i(Ge;i - zne;itan(,be;i)] ) (129¢)
Be;i
De;i = ) (1294d)
2Ge;i (4n2%, + G2,
Gei = Agji — Veii- (129e¢)

The time evolution of numerically computed velocity and temperature values from Drekar and an explicit
ODE solver are compared in Figures 5-9 and 5-10. For the two-fluid cases Figure 5-9, each solver is addi-
tionally compared to the analytic solutions (125), (127) and (128). For the cases with constant or zero friction
coefficients, we observe that: (i) the numerical implementations are in very good agreement, (ii) each numer-
ical implementation relaxes toward the appropriate equilibrium values, and (iii) both numerical implemen-
tations yield small errors relative to the analytic two-fluid solutions. The results of convergence studies for
the two-fluid scenarios using various implicit and explicit time-integration schemes made available through
the Tempus library are shown in Figures 5-11 and 5-12 for a simulation time of # = 4.0E-8.

In the case of the three-fluid damped oscillation with friction coefficients computed using (22) and (25), the
oscillation frequency is much larger than the timescale over which collisional relaxation occurs. For this
problem, the ODE solution is computed using an explicit embedded method that resolves the fast timescale
associated with the oscillation frequency. Meanwhile, the Drekar solution is computed using an L-stable im-
plicit method using a timestep size that is much larger than that required to resolve the oscillation frequency.
In Figure 5-10(b), the effect of the implicit method used in the Drekar calculation is clear: the oscillation
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(b) Explicit methods (Tempus).

Figure 5-12. Convergence tests for two-fluid damped oscillation.

is not resolved, but the solution is appropriately damped in a manner that is consistent with the long-time
collisional relaxation of the ODE solution.

5.3. Verification and Evaluation of lonization/recombination Processes

Verification of the ionization and recombination rate implementation in Drekar is performed by comparing
the average charge state values generated by: (i) directly computing the equilibrium ionization fractions for
a reduced ODE model, and (ii) integrating the reaction system in time using Drekar to a large final time.
Here only ionization and recombination source terms are included in (110), and the contributions due to
electric and magnetic fields are assumed to be zero. To prevent the ionization and recombination rates from
changing as energy is transferred between species, this test does not use an energy equation for each species:
Instead, the temperature of all species is set to the same constant value.

Each test contains an electron species and all charge states of one atomic species, with a total ion number
density of 1.0E+24 m~3. The ionization fractions for each charge state are initially equal (ie., a uniform distri-
bution across the charge states is used). In order to ensure that the reactions progress reasonably quickly even
in the low-temperature limit (where the average charge state would be near zero) we do not assume quasi-
neutrality: instead, initial electron number density is increased by 1.0E+24 m~ beyond the quasi-neutral
density value. That is, the initial electron number density is given by

(1.0E+24) (1 +Z)) , (130)
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Figure 5-13. Results of verification tests for ionization/recombination.



where Z, is the initial average ion charge state.
The equilibrium ionization fractions are computed as follows. Let

def N(a,k)

fan = , (k=1,...,24); (131)
fee ) Y0 a0 *

denote the ionization fractions of the charge states of species a. The ionization fractions of two successive
charge states are related by

Jak+1) Iia, )

= 5 (k=1,...,z24—-1). (132)
Jarw  Rak+n “
Combining the relations (132) with the additional constraint
Zq
> fap=1 (133)
k=1

yields a linear system for the values of the equilibrium ionization fractions, which can be written as

1 1 1 e 1 f(u,l) 1
—Iwy Re2 Jw@2 0
0

~l@2 R@g3) fla3 |=]0]. (134)

_I(a,za—l) R(a»za) f(a.za) 0

Once the system (134) is solved, the ionization fractions obtained can be used to compute required quantities
such as the average ion charge state Z 4 ;).

The Drekar runs are integrated to a final time of ¢ = 1.0E—4 using the implicit Euler scheme. Note that the
final time is chosen large enough that each configuration should reach a state that is close to the equilibrium
value by the end of the simulation. The results of the tests for a selection of species of interest over a broad
range of temperatures are shown in Figure 5-13. The agreement between the exact equilibrium values and
the time-evolved values is very good in each case.

5.4. Solution of the Multffluid EM Plasma Model in the Asymptotic
Resistive MHD Limit

In the context of developing a robust and accurate multifluid model and set of associated computational solu-
tion methods for these complex systems an important necessary condition to apply the model to a large range
of potential plasma physics applications is to demonstrate that the model can be solved when component
length and time-scale are coarsely, and even unresolved, in the simulation. That is for this complex multiple-
time-scale system broad application of the computational model requires the ability, when appropriate, to
overstep in a stable manner, time-scales such as transverse EM waves, collisions, cyclotron and plasma fre-
quencies, diffusion time scales and still resolve accurately slower dynamics such as hydrodynamics, Alfven
and magnetosonic wave propagation. In this context fully-implicit and IMEX methods have shown consid-
erable progress [89]. Additionally since electron dynamics can often be orders of magnitude faster than ion
time-scales the ability to differentially handle not only componnet mechanisms but also electron dynamics
implicitly is also a significant advantage in developing a computationally tractable computational formula-
tion for the multifluid EM plasma model. in the brief section that follows we describe some initial results of
applying IMEX methods and solving the multifluid EM model in the asymptotic limits of visco-resistive and
ideal MHD. For a more detailed and self contained discussion of these topics please see [89].
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5.4.1. Visco-resistive Alfven wave propagation

While linear waves are good for testing linear terms, they do not stress resistive, viscous, or convective terms.
The visco-resistive Alfven wave problem is classically used to test resistive MHD models [91] and the mul-
tifluid development is detailed in [89]. The problem uses a magnetized viscous boundary layer, known as
a Hartmann layer, to generate an Alfven wave which propagates into an infinite domain. Application of a
multi-fluid plasma model to the problem is difficult due to consistency issues discussed herein. Figure 5-
14 outlines the problem geometry, where the Alfven wave is propagated along an imposed magnetic field
creating a shear flow profile.

U/2 U

Figure 5-14. Example profiles for shear velocity u, for Alfven wave problem
showing the effect of increasing the effective Lundquist number S. Length
scales include the Hartmann layer thickness &, diffusion thickness A, and Alfven
wave propagation distance L.

For MHD, the problem derivation can be found in [91], however, adaptation to the two-fluid model requires
additional constraints to support the MHD asymptotic limit. The solution is derived from incompressible,
resistive-viscous MHD in a slab geometry where - = 0,- = 0. The density and pressure are assumed con-
stant. The problem defines sheared flow along the y axis, which leads to two sets of equations

Oy = vfayvfﬁvaiux (135)

0,V = v)dyuy +A05 vy (136)
and

Oruz = vfdyvf+v0§,uz (137)

0,vl = v)o,u, + A0, v, (138)

describing the evolution of the shear flows u, and u,, and the Alfven velocity

v; = (139)
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in terms of the kinematic viscosity v = i/ p and magnetic diffusivity A = /o, where the resistivity is given
by

(140)

For this analysis, the focus will be on a flow along X, represented by Egs. (135) and (136).

From [91], the solution for this system is found when A = v = D. Given a wall velocity of U the solution takes

the form
)

)

<

Uy = % (erfc(n+) (1 + exp( )) + erfc(n-) (1 +exp (—

Y

i<

vf = % (erfc(n+) (1 —exp ( ) —erfc(n-) (1 —exp (—

where the normalized coordinate

Ay
ne =" : (143)
2\/;
is defined by a length scale
y=2 (144)
vy
and time scale
L (145)
T=—.
A
Vy

The simulation time for this problem is defined by an effective Lundquist number at a point in time ¢ = T.
The Alfven wave generated in this problem propagates a length L = v4 T, which can be used in the definition
of the effective Lundquist number,

_ va

§=—2L =

L (146)
A Y

T
=y
to give a relationship between simulation time and domain size. Figure 5-14 shows the effect of increasing
Lundquist number on the solution profile. Note that while the wavefront remains diffused for the given
examples, the Hartmann layer thickness decreases dramatically. This leads to an issue when using the multi-
fluid plasma model where the Hartmann layer must be resolved to converge to the proper shear velocity
profile. In practice the mesh is biased to increase the number of cells in the Hartmann layer.

Additionally, it is important to remember that this problem is derived from resistive MHD, and, therefore,
ignores Hall physics. To keep the multi-fluid plasma model consistent with this, the plasma regime must be
chosen such that the Hall parameter

Wee
Vei

H= < 1. (147)

This regime is easier to define by rewriting the Hall parameter as

H—é (148)
=i

with ion skin depth d;, which gives a method for choosing a plasma density consistent with a small Hall
parameter for a given viscosity and magnetic field.

51



Since the commonly applied bulk-viscosity, Navier-Stokes style operators employed for resistive MHD mod-
els are only consistent with multi-fluid in the asymptotic sense, an approximation is used to keep the models
in agreement. Namely, that the bulk viscosity is the sum of electron and ion viscosities

U= Ue + ;. (149)

This approximation supports the asymptotic relation since the electron and ion shear velocities are equal
along % due to the large resistivity driving j, — 0. In the literature [24, 50], viscosity scales with

p

Po X —= (150)
Vaa
and intraspecies collisions scale with
v m;
RPN kL) (151)
Vii Me
which combine to give
= e (152)
Hi= m; He
where
1
He=V(pe+pi) ——. (153)
1+4/ 28

A similar relationship can be derived for the thermal conductivities.

The problem’s parameter regime is controlled by setting ratios between characteristic variables in the system.
The Hall parameter is chosen at H = 10~*. The plasma is a hydrogen plasma with m; = 1836m,, the Alfven
velocity is vﬁ =1073¢, the wall velocity is uy = 1073 l/%. The ion sound speed is vs; = 1073 v%. The adiabatic
index is y = 5/3. The domain length is set at L, = 3L to fit the entire Alfven wave with its diffusive tails, while
the mesh itself is biased to increase the number of cells at the moving boundary. Boundary conditions set the
shear wall velocity u$ = U, and the inbound flow to uj',‘ = 0. The boundary conditions for the electromagnet-
ics, density, energy, and orthogonal velocity uZ are zero Neumann conditions.

The physical parameter regime can be normalized, and, for this application, the speed of light is set to ¢ =
103, permeability is po = 1, and elementary charge e = 1. Figure 5-15 shows convergence results for three
effective Lundquist numbers. Table 5-3 shows the time scales for this problem. The collision frequency,
plasma frequency, and cyclotron frequencies are all integrated far outside of their explicit stability limits.
Since the diffusion numbers are resolved, the model is effectively being integrated over MHD time scales.

5.4.2. Plasma vortex (Z-pinch) advection

The two-fluid plasma vortex problem describes the advection of a smooth z-pinch within a plane. This prob-
lem is an extension of the ideal MHD vortex problem introduced in [13], and is depicted in Fig. 5-16. Natu-
rally, the two-fluid solution must be consistent with the MHD solution.

The vortex problem is designed to test the ability for the discretization to advect a plasma equilibrium. The
plasma is assumed to be quasi-neutral such that

n
p=mene+mini:m,~?(l+R) (154)
i
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Figure 5-15. Alfven wave results for three effective Lundquist numbers S. Re-
sults show the expected 2" order convergence. Mesh resolution ranges from
20 to 320 cells across the shear flow, however the mesh has a linearly biased
resolution which increases near the boundary layer and decreases near the

open boundary.

Figure 5-16. Orientations of fields in vortex problem. A pressure gradient bal-
ances the magnetic j x B forces and the cetripital forces due to the rotating flow.
The entire vortex is advected diagonally in the 2D domain at velocity u.

where n, = n, n; = n/ Z;, and

m
R=7;—2.

(155)
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Table 5-3. Time scales for effective Lundquist number S =60. Frequency and
diffusive time scales are expressed as a range since convergence is tested
over a constant CFL At « Ax. Operators associated with bold terms are treated

implicitly.
Electrons Ions
wpAt | 4-107-1.3-10° | 9.4-10°-3-107
weAt | 1.7-10-55-107 | 9.4-10%-3-10%
VepAt | 1.7-10'°-55.10" | 9.4-10°-3-10°
vsaL 7-1073 2-107*
HE At
T 04-12 0.01-0.3
c&t 167
The magnetic field for the vortex is defined within the (%, y) plane
—Byryexp ( 1= )
B= Borxexp(l ) (156)
0
where r = |r| with shifted radial vector
X—upt
r= | X=X! i‘o (157)
0

The length scale L defines the shell width of the vortex, and uy is the convection velocity. The current required

to support this magnetic field is then

me Pelly + 1 & m; Pilt 0
. Qe fh — i - 0
i=| m peuy+ -piu —[1 VxB= 2 (158)
de fh 0 — F2
Epeu§+mpiu; yOL(Z r )exp( )
The problem also defines the bulk flow velocity
petS+pitty -
PetPi Uy — U1Ty€XP|—5
_ petl+piu! _ 2
u=| ——— | 5| uotwrxexp =t ) (159)
pell+piutl 0
PetpPi

where u is the vorticial flow velocity. The bulk velocity and current density combine to give the velocities for

the ions

Up — U1 Ty €Xp =

7 )
l—r)

u; = uo + Uy €xXp (160)
R 2
1+R /,toLen @-r )exp( )
and electrons
_ 1—r2
Ug— UiTyexp|—
Up = Uy + U Ty €XPp 1"7’2 (161)

_1 2 1-
T 1+R poLen @-r )exp( )
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The pressure gradient separately balances rotational forces,

p,= 1p 2 ex (1 rz) (162)
=——puse ,

and magnetic forces,
B;
210

P (1-r )exp( > (163)

The pressures are decomposed between the electrons,

Po=—-Py+ ——P,+ ——Py,, (164)
and ions
Py, (165)

such that the total pressure P = P, + P; is consistent with the ideal MHD form from [13].

The ideal MHD formulation also defines a time dependent electric field to satisfy Ampere’s law

0
E= 0 | (166)
—Boug(ry +1y) exp ( l—2r )

Similar to the Alfvén wave problem, the two-fluid vortex is only valid in the asymptotic limit of MHD. Since
the multi-fluid formulation includes a displacement current in Ampere’s law, there is a growing deviation
from equilibrium which scales as

€90:E U
2 (167)
Jz ¢
which restricts the applicability to slow advection velocities. In the asymptotic limit of ideal MHD this is
naturally satisfied, however for the multi-fluid model this must be directly enforced.

The problem is defined independent from the mass ratio, and, therefore, the problem is tested at three mass

ratios m;/me € (10,100, 1836). The ions are singly charged. Problem is setup with ©y =1, uy = By = ﬁ, Py=1,

n=1,and L =1 on a 2D domain x € (-5,5) and y € (-5,5). The parameters are chosen in a normalized
parameter regime where m; =1, yp = 1 and ¢ = 1000.

The results are shown in Fig. 5-17 which shows 2" order convergence. The time scales for this problem,
given in Table 5-4, show that while the electrostatics and electromagnetics are being stepped over by a large
factor, the simulation still converges properly.

6. DEMONSTRATION ON COMPLEX PLASMA PROBLEMS:
MHD AND MULTIFLUID EM PLASMA RELATED TO MIF

6.1. High Density Single Shell Liner MHD Implosions (Ideal Gas)

This simple example, proof-of-principle computation, is a demonstration of a resistive MHD implosion for
a high density gas cylinder. A simple analytic ideal gas equation of state is used and a Knopfel electrical
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Figure 5-17. Two-fluid vortex momentum convergence has expected 2”4 order
convergence for the three mass ratios tested at an end time of t =0.1. Con-
vergence is tested at a constant CFL such that At < Ax =Ay. Mesh resolution
ranges from 8x8 to 128x128 cells across the domain.

conductivity model. These representations are clearly non-physical for the entire range of parameters of the
implosion problem but this initial study is included as a proof of principle that the resistive MHD model, the
stabilization of the hyperbolic systems, and the iterative solution of the linear systems work for this class of
reasonably complex plasma problems. The boundary conditions are Neumann type zero flux conditions on
the density, and momentum, with the B field specified in the flux boundary condition for total energy and
a Dirichlet condition on By. The time profile for By is given by an analytic profile for g = 6 [14] for which
the implosion time is set at 100 ns, and is shown graphically in Figure 6-1. The initial conditions is for a
constant pressure high density gas (see image for the initial condition) has a maximum initial density of 103
and a minimum initial density of 10™*kg/m3. In Figure 6-2 the evolution of the implosion for the profiles of
density and By is shown. In this case the AFC stabilization is demonstrated for the resistive MHD system.
The image progression shows the liner imploding as the B field increases and then the rebound/relaxation
of the liner as the By field is decreased. At this point the evolution of the liner appears plausible, however
future more comprehensive studies, and comparisons with experiments for more realistic conditions, are

Table 5-4. Time scales for mass ratio of m; = 1836m,. Frequency and diffu-
sive time scales are expressed as a range since convergence is tested over
a constant CFL At « Ax. Operators associated with bold terms are treated

implicitly.
Electrons Ions
wpAt | 23-270 0.55-6.3
wAt 1-12 55-1074-6.3-1072
veRL 0.25 5.7-1073
c4L 6.3
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Figure 6-1. Non-dimensional time history profile used for specifications of
boundary conditions (By in this case) [14].

required for evaluation of the formulation. Even with these limitations these initial results are encouraging.
The compressible resistive MHD system is integrated at a maximum time step of about 5x 10~'? seconds with
an implicit SDIRK22 L-stable method and the simulation progresses through the maximum compression and
the rebound phase.

T=0.0
T=28.35e-8
Distance
T=84e-8
T=25e8
>
b
g')
8
Distance
T=5.0e-8
T=1.06e-7
001
Distance
(a) Density and By during compression (b) Density and By close to peak compression and rebound

Figure 6-2. Density and By for single shell high density one-dimensional MHD Z-pinch.

We also include below both a 2D and 3D version of the high density gas liner MHD implosion. It generalizes
the same initial conditions as the 1D to multiD and then applies the g = 6 boundary drive for By. In this case
developing a peak of roughly 60MA. Representative results are presented in Figure 6-3 and Figure 6-4. For
the 3D case constant surfaces of density are visualized with the mesh also represented. Clearly evident is the
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more unstable, non axis-symmetric constant density surfaces as the gas shell implodes.
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Figure 6-3. Plots of profiles for a single shell high density 2D MHD Z-pinch.

Finally we compare the density profiles (filled color contours) for the 2D (a very thin 3D disk) and 3D (cylin-
der) implosions on the upper surface in Figure 6-5. Clearly seen is the more non axis-symmetric profiles that
are generated in the context of the 3D implosion dynamics as would be expected since the By field does not

inhibit variation in the z-direction from being generated on axis.
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Figure 6-5. Comparison of density profiles (filled color contours) for the 2D (a
very thin 3D disk) and 3D (cylinder) implosions on the upper surface.

6.2. MHD Single Shell Liner Implosion Type Problems with Complex EoS
(Al, Be)

In this section, we describe aluminum and beryllium metal liner implosion simulations using the MHD
model. The addition of complex materials such as metal liners represents a additional complication for
modeling the equation-of-state (eos) and constituative properties. While some analytical models exist, de-
velopment of these models can be quite time consuming and are material dependent. Instead, for complex
materials, we have chosen to use table lookups for eos and constituative properties. For this purpose, we
have implemented a UTri [26] table lookup interface in Drekar.

UTri [26] is an unstructured adaptive triangular tabular format for interpolating table based eos and constitu-
ative coefficients. When solving the resistive MHD equations for complex materials like aluminum, UTri pro-
vides; pressure, temperature, sound speed, electrical conductivity, thermal conductivity, entropy and specific
heat at constant volume, given density and internal energy. Conductivity is computed and tabulated using
the Lee-More-Desjarlais (LMD) [68], [38] model.

The driving magnetic field at left and right boundaries is By () given by the analytic expression

By (1) =Bmax\/5I(q_1)(1'—Tq)Tq_2 (168)

where Byqx = 1,000 (Tesla), g =6, T = t/t;mp and ¢ is time normalized by the implosion time ¢, = 100 (ns).
The boundary magnetic wave form is shown in Figure 6-6. This is the dimensional version of Figure 6-1,
shown earlier in this report. The peak is 3000 (Tesla) occurring at approximately 85 (ns).

Preliminary one-dimensional simulations of an aluminum liner implosion using the magnetic wave form
and UTri eos interface were performed with the Drekar MHD model. The domain was L = 20 mm, liner outer
radius r, = 3.2 mm, inner radius r; = 2.8 mm and liner width is 0.4 mm. A local Lax-Friedrichs (LLF) flux
function where the maximum wave speed was based on velocity magnitude, sound speed and fast magneto
wave speed was used for stabilization. The domain was initialized with constant pressure P = 5000 Pa. The
solid aluminum density was ps = 2700 kg/m?> and the density of the void regions outside and inside the
liner was p, = 0.001 kg/m?3. The void density value is chosen to be small enough to approximate a vacuum
state without destabilizing the computation. Zero inflow boundary conditions were inforced along with an
Neumann magnetic energy flux condition. Implicit time integration was used with a maximum timestep size
Atymax =0.1 ns.
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Figure 6-6. Driving Magnetic field in one-dimensional Z-pinch simulations.

Solutions for density, x-momentum, total energy and y-component of B at the initial state and three later
states are shown in Figure 6-7. The three later states are approximately the point when the density starts to
compress on the axis and the point of maximum density (0 mqx = 15000 kg/m3) which occurs at 101 ns. The
final time is an arbitrary point during the rebound phase of the evolution. Notice that the maximum density
is close to the initial value and the momentum has changed sign on either side of the axis.

Next, a beryllium liner implosion was simulated in one-dimension. The geometry was the same as the alu-
minum simulation discussed above. The aluminum table was built from the ground up for UTri. Initially,
no beryllium UTri table was available. A new beryllium UTri table was constructed by converting an existing
SESAME [80] eos and LMD conductivity table to the UTri format by John Carpenter. This new table was used
in out beryllium liner implosion simulations. For beryllium, the solid density was specified p; = 1850 kg/m3
and vapor density p, = 0.001 kg/m3>. The intial pressure in the system was again P = 5000 Pa. Solutions
for density, x-momentum, total energy and y-component of magnetic field By at the initial state and three
later states are shown in Figure 6-8. The three later states are approximately the point when the density starts
to compress on the axis, the point of maximum density (0,qx = 4930 kg/m®) which occurs at 95 ns and an
arbitray point during rebound. Relative to aluminum, the beryllium implosion produced a much lower p ;4
by a factor of three. The reasons for this is still being investigated. One reason may simply be the difference
in mass between aluminum and beryllium which could account for different dynamics. Another difference
is the total energy. In these simulations kinetic and magnetic components of energy make up a large fraction
of the total energy. Therefore, computing internal energy can be prone to error. In addition, the dynam-
ics of these simulations is so great that density and internal energy are often outside the range of the table.
When this occurs, a zero-order extrapolation (constant) of pressure and temperature are returned from UTri.
There may be other extenuating circumstances but these two alone may account for lower p ;4 in the case of
beryllium. Nevertheless, these preliminary simulations show good promise towards being able to accurately
simulate realisitic metal liner implosions.
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Figure 6-7. One dimensional Z-pinch of an aluminum liner with the MHD model.

6.3. Preliminary Flyer Plate Simulation and Comparison with Experiment
Complex EoS (Al)

Flyer plate experiments consisting of 400 micron thick aluminum plates attached to the current return elec-
trodes of Z-pinch targets are used to estimate return electrical currents by measuring plate velocity. The plate
is accelerated by Lorentz forces and the evolution is captured by a velocity interferometer system for any re-
flector (VISAR) diagnostic system. At large enough distances from the center axis, in this case approximately
13 mm, the magnetic load is approximately one-dimensional and therefore, a one-dimensional simulation
can be executed that accurately approximates the load forces on the plate with the expectation that the ve-
locity evolution of the plate can be accurately predicted given the current drive pluse history. Therefore, this
is a good validation test problem for our MHD model. An estimate of the drive magnetic field strengh which
is a function of the current I(#) is given by an experimentally measured current wave form

_ 27E-71(¥) (169)

By ()
y
Tp
where r, is the radius from the center axis to the left side of the plate. This magnetic field produces a force
on the plate in the x-direction causing it to accelerate to the right. For the Drekar MHD simulations, the

domain starts at a radius of r; = 11.2 mm and ends at r, = 15.2 mm. The left edge of the plate is situated at
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Figure 6-8. One dimensional Z-pinch of an beryllium liner with the MHD model.

rp =13 mm, the domain is initialized with constant pressure P = 5000 Pa and 1,000 cells were used in the
radial direction. The solid density was ps = 2700 kg/m?® and the void density was p, = 0.001 kg/m3. The
current wave form for Z-pinch experiment 72851 is shown in Figure 6-9 (a). Measured and predicted plate
velocities are shown in Figure 6-9 (b). It can be seen in right panel that the simulation predicts an earlier
acceleration than experiment. There is some uncertainty in the time shifted experimental data that may
account for some of the early rise time, however most of the velocity history is well captured by simulation.

6.4. Multifluid Gas Puff Z-pinch Implosion Type Problems

In this section we present preliminary results on the path towards complete multifluid simulations of Ar gas
puff Z-pinch experiments. We consider a common gas puff configuration consisting of two concentric an-
nular shells of gas emitted from an 8cm diameter nozzle [54]. An idealized one-dimensional configuration is
used on a domain of length 50 cm centered across the nozzle. The initial radial gas distribution consists of a
sum of two Gaussian profiles for the inner and outer shells. The profiles are selected in correspondence with
experimental density profiles from [54] such that the peak values and spread of the distributions approxi-
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Figure 6-9. Velocity evolution of an aluminum flyer plate with the one-dimensional MHD model.

mately match those of the experimental data®. The inner and outer gas shells are given peak number density
values of 1.1E+24 m~3 and 3.58+23 m~3, respectively. To limit the computational cost of the simulation and
avoid introducing additional complexities due to the initial breakdown phase, we assume that the initial den-
sity profile consists of only Ar?* and electrons in a quasi-neutral state, and permit the gas to ionize only up
to Ar’*. The simulation performed as stated contains a total of 5 sets of fluid equations plus the 6 Maxwell’s
equations: This yields a total of 31 coupled equations.

The one-dimensional configuration is simulated on a three-dimensional Cartesian mesh consisting of 4000
mesh cells in the x-dimension and one mesh cell in the y- and z-dimensions, and applying periodic condi-
tions across the boundaries in the y and z dimensions. The results of the simulation are shown in Figures 6-10
and 6-11 in the context of a zoomed in section of the domain ([-0.15cm, 0.15cm] rather than the computa-
tional domain of [-0.25cm, 0.25cm]) near the initial gas puff for visualization purposes. In the first column of
each subfigure, Ar?* is shown in green, Ar** is shown in orange, Ar** is shown in purple, Ar°* is shown in teal,
and the center-of-mass quantities over all simulated charge states of Ar are shown in black. The problem is
driven by placing boundary conditions for E, along the left and right edges of the domain using a simplified
sin? profile with a rise time of 120 ns.

We have a few initial comments concerning these results. It is clear that the treatment of the electrons is over-
diffusive, which has a strong impact on the distribution of current carried along the z-dimension. One would
expect that the current profile would be at least somewhat compressed as the gas compresses, but this is
unfortunately not the case. After the ions have begun to compress, most of the current is carried in the outer
lower-density region where the electrons have diffused. This behavior significantly affects the evolution of
the driving electromagnetic fields. Additionally, a large E, field (not shown) is generated in these simulations:
we are currently working to better understand how this field is generated. At this point, we suspect that this is
due to an inconsistency in our treatment of the stabilization of the continuity equations and Ampere’s law.

While still very preliminary, these results are encouraging. The most important processes of the gas puff Z-
pinch - ionization and compression of the ion species — progress in a plausible manner as the fields build
up and penetrate the dense gas. Compared to initial resistive MHD results (for 1D cf. Figure 6-13 and for 2D
Figure 6-14 ) using a perfect gas equation of state, a simplified Knopfel conductivity model, and driven by the
magnetic field profile shown in Figure 6-6, the final compressed state of the ions in the multifluid simulation

3While the peak density values and spread of the initial gas profiles used agrees quite well with the referenced experimental data,
we note that our initial gas profiles yield smaller density values in the regions between the annular shells than is suggested by
experiments.
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Figure 6-10. Preliminary multifluid Ar gas puff Z-pinch tracking charge levels

between Ar** and Ar®" — Part |. The images are a subset of the domain and
detail the subdomain [-0.15cm, 0.15cm].
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Figure 6-11. Preliminary multifluid Ar gas puff Z-pinch tracking charge levels

between Ar>* and Ar°* — Part Il. The images are a subset of the domain and

detail the subdomain [-0.15cm, 0.15cm].
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Figure 6-12. Number density of ionization states of low-density multifluid Ar
gas puff Z-pinch tracking charge levels between Ar** and Ar°*. The images are
a subset of the domain and detail the subdomain [-0.1cm,0.1cm].

seems to compare reasonably well. Even though differences in the problem setup of the multifluid and re-
sistive MHD simulations lead to different timings of the compression, there is a qualitative correspondence
between the ion density at stagnation, maximum pressure values, and to a certain extent temperatures in the
compressed core.

Results for a second simulation using lower initial density values are shown in Figure 6-12, more clearly show-
ing the progress of ionization in the Ar gas. As current begins to flow through the gas, the electrons are heated
from the initial temperature of 8000 degrees K, and the gas proceeds to ionize. This ionization contributes
to the current carrying capacity of the plasma, and the ionized gas compresses under the influence of the
magnetic field. We note here that the lower-density conditions of this simulation significantly limit the de-
gree to which the Ar is able to ionize, and simulations using higher-density conditions closer to that used in
experimental setups ionize much more rapidly and to much higher charge states.

In both simulations presented here, the dissipation in the electron fluid due to the low-order Rusanov AFC
stabilization contributes significantly to the spreading of the electron population. We are currently examining
this issue more carefully and pursuing mitigation strategies, such as the use of Roe-type AFC stabilization and
higher-order AFC methods, both of which introduce less dissipation into the solution.

Work is currently underway to extend the multifluid simulation results in several directions. First, we have
begun to attempt two-dimensional thin disk multifluid implosions to capture asymmetric instabilities in
the compression of the gas. Second, it is clear that including more charge states of Ar in the simulation is of
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crucial importance. We have been slowly extending the range of charge states considered so that (i) the initial
breakdown can be represented to some degree, and (ii) the gas is able to ionize further, ideally to a level where
K-shell emission would be possible.
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T INITIAL COMPARISONS WITH A PIC CODE ON
CHALLENGING PROBLEMS

7.1. Expansion into Near Vacuum

In this section and the next, we compare PIC solutions to the multifluid model in two one-dimensional ex-
pansion problems. The motivation is to show consistency between the two formulation. The first problem
we consider is an expansion of a quasi-neutral plasma into a near vacuum. The domain of the problem is
taken to be one-dimensional (v = [vg]) spanning —L < x < L, L = 0.01 m, with the initial conditions for the
electrons and ions given with a specified nominal number density ny:

no [x|<Li20 _4
= - m (170)
ng x 10 |x|=L/20
Ve=0 (171)
T.=10,000K (172)
no |x|<L/i20 _4
n;= " m (173)
no x 10 |x| = L/20
v;=0 (174)
T; =10K (175)
The mass ratio between electrons and ions was taken as m;/m, = 10, where m, =~ 9.109 x 10731 kg and the
charges given g; = —g. = e = 1.602 x 1071% C. Simulations of collisionless cases were run until a final time of
5x1079s.

In the electrostatic approximation Maxwell’s equations reduce to a single scaler potential equation

V-E:V-V(p:i. (176)
€0

Aleph [17] solves the scalar potential equation (176) (ES) for determining the electric field. Drekar solves
either the full Maxwell’s equations Figure 2-1 (EB) or the potential equation (ES). A comparison between
the electrostatic and electrodynamic model formulations was investigated at a nominal number density
no = 10'6. The results for a range of resolutions are depicted in Figure 7-1-7-3. While the high density region
electron number density converges to plotting accuracy relatively quickly (on a log scale) the low density re-
gions are observed to not be converged to plotting accuracy even at the highest resolution of Ax = 2L/16384.
Both the ion number density and electric field converge to plotting accuracy for both cases. This trend is
similar for both the electrostatic and electrodynamic cases which yield similar results at the highest resolu-
tions as can be seen in comparison presented in Figure 7-4 at the highest resolution of Ax = 21/16384 and
are compared to the Aleph PIC solution.

Comparing the PIC results to those obtained with the multifluid approach implemented in Drekar reason-
able agreement between the two can be seen considering the significant differences in modeling approaches.
However, both the ion and electron high density regions in the fluid simulations spread further than in the
PIC computation. In addition, although the electron density is not converged, the electron density is over-
predicted in the low density region in the fluid code compared to the kinetic approach. This difference then
leads to an overpredition in the electric field as well in this region as suggested by the electrostatic approxi-
mation, Eq. 176. Additional differences in the electric field can also be seen in the inner region between the
two modeling approaches.
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Figure 7-1. Electron number density profiles as a function of spatial resolution.
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Figure 7-2. lon number density profiles as a function of spatial resolution.
7.2. Neutral Expanding One-dimensional Slab

The second PIC/Multifluid comparison is of a neutral expanding one-dimensional "slab". The situation is
very similar to the previous example with two exceptions. First, positively charged particles are assumed to
have the same mass as electrons and will be referred to as positrons. Second, a background gas with density
ratio Ns = 0.01 is surrounding the slab. Robinson [107] has derived both kinetic and continuum solutions
for this problem, valid for short wave propagation time durations. The two solutions are quite different. The
kinetic solution is assumed to be collisionless. It is smooth and diffused compared to the fluid soltion which
is assumed collisional containing expansion, slip discontinuity and shock waves resembling two apposing
shocktubes.

The domain is L = 0.02 m and the slab width is Lp = 0.001 m. The number density in the slab is n¢ = n;9 =
1.0e16 and the temperature is T, = T; = 10,000 K. Solutions for electrons or positrons should be equivalent
so we consider just one species. Intial drift velocities are zero and pressure in the slab is determined by
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Figure 7-3. Electric field profiles as a function of spatial resolution.
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Figure 7-4. Comparison between electrostatic and electrodynamic electron
number densities for Ax =2L/16384.

Py = pgo? where pg = neom, is mass density, 0 = \/kp T,/ m, and kg is Boltzmann’s constant. Density and
pressure in the background are p; = Nspg and P; = Nsp(o respectively. At time ¢ = 0, similar to a shocktube,
the slab begins to expand outward.

Comparisons for number density, velocity and pressure between Aleph PIC solutions and the kinetic analytic
solution and between Drekar multifluid solutions with the fluid analytic solution at ¢ = 2 ns are shown in
Figure 7-5 respectively. For these comparisons, 2048 cells were used. Note that the Aleph solutions agree well
with the kinetic and Drekar multifluid solutions agree well with the fluid analytic solutions.

For the densities used in this problem collisions are not important and so the kinetic solution is the expected
instead of the fluid solution. To see why, we estimate the Knusen number K#n. The Knusen number is defined
as (Kn = A/L = 10”) where A is the mean free path and L is a characteristic length scale. For a continuum
assumption to be valid, Kn < 1.

Using PIC terminology, Kn = 1 Uine where o, = wd? is the cross sectional area of the particle. If this scaling
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holds for the continuum assumption, o, or n, can be increased in order to decrease Kn. In order to capture
the fluid solution in the PIC code, and test consistency between the two formulations, d was artificially in-
creased by a factor 1.58e7 to reduce Kn = 1.3e — 4, and elastic collisions were activated using a variable hard
sphere model. The results are shown in Figure 7-6. Notice now that the PIC solution is capturing the three
wave solution approximating the fluid solution instead of the kinetic including the shock and slip disconti-
nuities.

Studies like these are important for establishing consistency between PIC and multifluid plasma descriptions.
We have initiated PIC/Multifluid comparisons of a neutral gas injected into a hot plasma. These simulations
include ionization and recombination of plasmas with multipe charge states. These results will be reported
in the future.
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Figure 7-5. Comparision of PIC solution with elastic collisions between like
species with an ion/electron multifluid model to analytic solutions.
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8. CONCLUSIONS

Critical DOE and Sandia science and weapons applications require analysis of strongly electromagnetically
(EM) driven experiments producing complex multiphysics plasmas. These include pulsed-power experi-
ments for radiation effects, dynamic materials, magneto-inertial fusion (MIF), and basic high energy density
physics. Our overarching goal in this project has been the initial development of a unique, robust, and ac-
curate implicit/explicit IMEX) computational physics/mathematical approach for multi-fluid multi-physics
plasma research that will help to uniquely position SNL at the forefront of continuum computational analysis
supporting pulsed-power sciences.

The key research and development results of this effort include:

* We have carried out the development and demonstration of new implicit/implicit-explicit (IMEX)
time-integration and scalable iterative solvers for multifluid electromagnetic plasmas for simulations
with high electromagnetic (EM) CFL, high plasma oscillation / cyclotron frequencies and zero electri-
cal conductivity regions. We have also demonstrated scalable solution of full-Maxwell’s equations in
the long-time-scale / low-frequency limit, as well as the solution of a full multifluid electromagnetic
plasma formulation in the single-fluid MHD limit for visco-resistive and Ideal MHD. These capabilities
are necessary for efficient simulations of multifluid plasma systems extending to

higher densities,

strong magnetic fields,

domains with significant charge separation and quasi-neutral sub-regions,

multi-scale physics requiring high resolution meshes ( 1 micro meter)

* This unique implicit/IMEX Eulerian formulation has has been demonstrated for multifluid electro-
magnetic plasma systems with fully-ionized collsionless systems, as well as partially ionized collisional
plasma systems with ionization/recombination effects modeled with an integrated coronal model.

¢ The multifluid formulation was demonstrated to be reasonably robust and accurate on a significant
number of verification type problems. These included linear waves of the multifluid system (including
magnetized and unmagnetized systems), collisional relaxation problems for damped plasma oscilla-
tions, long-time scale integration for equilibrium charge level distributions for the coronal model of
classical plasmas, and also to allow solution of the full multifluid EM plasma systems in the asymptotic
limit of visco-resistive and ideal (dispersive) MHD.

¢ The multifluid EM plasma model, implicit/IMEX formulations and solution methods appear very
promising for advanced computational analysis of complex multiple-time-scale multifluid plasma
systems and have been demonstrated for smooth solutions, and prototype multifluid shock systems.

* We have demonstrated quantitative long-time-scale time-integration of ionization/recombination to
an equilibrium solution for the charge-level distribution or a number of atomic species (H,He,Be,Ne,Al,Ar)
compared to direct-solution of a coronal model for plasma equilibrium.

¢ We have demonstrated a initial proof-of-principle demonstration of the solution of the full multifluid
EM plasma model with collisions, ionization/recombination for a reasonably realistic Ar gas puff Z-
pinch configuration driven with a specified boundary condition for a transverse electromagnetic wave
specified by an electric field. The results while very preliminary have some very encouraging aspects of
being able to track the ionization front in the Ar gas as it penetrates the plasma, couples the magnetic
field to the load, and implodes the gas puff. Clearly as outlined in our report there are significant issues
that must still be addressed but these initial results are encouraging.
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* The development and evaluation of new adaptive embedded error-control for IMEX time integration
methods that enforce both strong-stability-preservation and L-stability properties for time integration
of complex multiphysics multifluid EM plasma systems.

e Completed development of an implicit iteratively limited algebraic flux correction (AFC) continuous
Galerkin finite element (FE) method for general conservation law systems (e.g. Euler), for ideal/resistive
MHD, and an implementation for the full multifluid EM plasma model.

e The development and an initial demonstration (both quantitative and qualitative results) that the
Drekar IMEX multiphysics multifluid EM plasma code can be applied as a valuable applied math and
computational algorithm development R&D platform for challenging problems of critical importance
to SNL and DOE. Clearly, further development and a much more comprehensive quantitative eval-
uation of these algorithms and the corresponding software implementations is required. However,
we believe there is a credible path forward for the successful algorithms, mathematical models, and
this prototype research code as a technology-base to help contribute to the development of a next-
generation multiphysics multifluid EM plasma capabilities at SNL.

¢ As an important specific pulsed power mission impact, this activity has also influenced the develop-
ment of new capabilities in the ALEGRA production MHD code which is now using an IMEX-like time
discretization, inspired by Drekar’s approach, to simulate a single fluid plasma with classical Ohm’s
law. While this model is not capable of describing important physics such as the Hall effect (described
by the multifluid model), this new generation ALEGRA model benefits from non-degeneracy in the
limit of zero conductivity and low density removing fast magnetosonic time-step restrictions. The
transfer of ideas and methodology from a research code to a production code demonstrates the in-
creased maturity and technology readiness of the IMEX approach to continuum plasma physics. This
new full-Maxwell hydrodynamics (FMHD) model in the ALEGRA production code is expected to en-
able more robust and efficient solutions of challenging pulsed power and HEDP relevant applications
(Comments contributed by A. Robinson and D. McGregor of the ALEGRA development team.)

¢ Astwo additional important specific pulsed power mission impacts, the R&D carried out in this LDRD
effort has also (1) very significantly enabled the development, implementation and evaluation of the
EMPIRE-fluid effort in the context of solution methods, multifluid plasma verification problems, and
for important comparisons of solutions for challenging problem for evaluation of the EMPIRE-fluid
multifluid formulation, (2) also enabled progress in the GCLDRD for hybrid fluid/kinetic modeling
and comparisons between PIC and multifluid models.
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APPENDIX A. NOTATION

A1.

Notation Used in Discussion

The following notations are assumed throughout:

1.

10.

11.

88

When used as a subscript, the symbol e will be used to denote quantities associated with the electron
species.

. N4 denotes the number of atomic species, which are indexed by a, B € {1,..., Na}.

zq denotes the maximum tracked charge state of atomic species @. We note that this value may be
different than the maximum charge state z[}'®* for the species; ie., 0 < z4 < z7®*.

. An ordered pair («, k) will be used to denote associations with neutrals (k = 0) or ions (k > 0) of atomic

species a with charge state k. We assume always that k = 0.

. Ns d=8f{(a, k:a=1,...,Na;k=0,...,24} is the set of all neutral and ion species.

Standard non-bold fonts will be used for scalar quantities in R.
Bold fonts will be used for vector quantities in R? (eg., v for velocity).

Bold fonts with a single underline will be used for second-order tensors in RS o R® (eg., IT for shear
stress).

An exponent applied to a vector quantity will be used to denote the dot product of that quantity with
itself: ie., v2 = v-v.

Quantities associated with a particle species s will be denoted as follows:

mg particle mass ps scalar pressure

ns number density IT, shear stress

ps mass density Es total energy

gs electric charge es specific internal energy
Zs signed charge number h; heatflux

u, average fluid velocity Ts; temperature

These quantities satisfy the following relations:

1
ps = mgns, Ev= Epsui +pses,

qs=—Zs(e.

The following constants are used:
a) kg is the Boltzmann constant.
b) egis the vacuum electrical permittivity.

c) g is the (negative) elementary electric charge; ie., the charge of one electron.



APPENDIX B. MULTIFLUID MODELS WITH AVERAGED HEAVY

SPECIES DYNAMICS

We now consider reduced multifluid models in which certain sets of charge states for each species are com-

bined into a single fluid representation.

B.1. Neutral, Averaged lon Model Description

In the first model, the separate fluid equations for the individual ion charge states are replaced by a single
fluid representing an average ionization state. The electron and neutral equations remain as in Section 3.1,
with appropriate modifications to the interaction terms. In the remainder of this section, the subscript (a, i)

will be used to denote quantities related to the averaged ionization state for atomic species a.

Define the total ion number and mass densities by

def &
Na,i) = Z Na,k)
k=1

Za
def
Pai) = D Pk
k=1

respectively, and define the mean ion velocity u(,,;) and total ion energy &4, by

Za
def
Pla,iWa,i) = Z P(a,k)W(a, k)
k=1

Za
def
Eaiy = ) Ep-
k=1
Defining the average ion charge state Z(q ;) by

= def &
N, Zai) = Y, knak,
k=1
the average ion charge is then written as qq,j) = — Z (4,i) g and satisfies

Za
9(a,i) M a,i) = Z ia, k) Y a,k)-
k=1

- . - . L . . Z,
The ionization fractions {f4 1)} k“‘: . and ion mass fractions { f(Zl k)} k"‘: | are defined by

def "(a,k)
fah =

N(a,i) ’
fm def O(a,k)
@R oy

respectively. If one assumes that m, <« m(q,0) and makes the approximation

def
Mg = M(q,0) = M(q,1) " = M(a,zq)»

(177a)

(177b)

(178a)

(178b)

(179)

(180)

(181a)

(181b)

(182)

then it follows that f(Z’ 0= fiap for k=1,...,24. Given (181a) and (181b), the number and mass densities of

the individual ionization states are given by

N, k) = fia, k) Nia,i)
— m
Pk = figpPain

(183a)
(183b)

89



respectively. If one assumes further that the ion drift velocities Wy, x) = U(q, k) — U(q,;) are zero and the ion spe-

cific internal energies are all equal (ie., (k) = €(q,i) for k=1,..., z,), then the momenta and energy densities
of the individual ionization states are given by

Pl Wak) = fig 1y Pla,iWa, i) (183c)

& = fanain (183d)

respectively. We will assume in the remainder that the approximation (182) is made so that fi ) = f(Z’ 0 for
each k. ,

Continuity. Summing (4a) with s = (a, k) for k = 1,..., z, and applying the relations (177b) and (178a) yields
the following continuity equation for the total ion mass density:

0 0
3:10@i + V- (P an) =Cia sy + Sty (184)
where
(0] def [0] (0] def 0]
Cog Zc(a,k) and S, ZS(%,@. (185)

Summing the contributions due to ionization and recombination reactions, the collision source C ([0] ; can be
written explicitly as
0] _ ion rec
Cla,i) = Ma (F(a,()) - F(a,l)) : (186)
The collision sources C, 0 e ([2] 0 remain as in (8).

Momentum. Summing (4b) with s = (a, k) for k =1,..., z4, assuming the ion drift velocities w, ) are zero,
using the relations (178a) and (180), and transforming the system into a reference frame moving with the
mean ion velocity u, ;) yields

at(P(a,i)“(a,i))+V'(P( HWa,i) ®Wa,i) + Pla, z)“'n(al))
1 1
= Ga,i"a,i) (E+ U, xB)+Cl , +S[)

(a, l) (a,1)’

(187)

where
C [1]

(a,1)

def 1 1]
Z C @0 and S

(a,1)

d f
= Z 8l (188)

Summing the contributions of the collision terms for each charge state, the collision source C("lx] ;) can be
approximated by*

Zq

[y _ i cx,[1]
C(a i) = MaU(q, O)FI(?xr,IO) MaU(q, ,)T ) T Mele Z ](rfz?k) * Z Ria, ;s +C(a,i) 4 (189)
k=2 seANaI~(a,i)
where
Zo Zq 2p
def def def
o= ¥ Ryt R, i;0 = > R, 1);(8,0)» R, i) = Z Z R, k)80 (190)
k=1 k=1 =1¢=1
and
cx,[1] de ) ex cx cx
C(a i) ma (W@,0) — W) L Y R0 ~ R0, (19D
with
cx def cx def cx def
1—‘(ot i Z F (a,k)’ R(a i);(a,0) — Z R(a k);(a,0)’ R(a 0);(a,i) — Z R(zx 0);(a,k)* (192)

4To be consistent w1th the assumption (182), the third term on the right of (189) can be assumed to be small, and may be neglected
in cases where the electron and ion velocities are of a comparable magnitude.
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Energy. Summing (4c) with s = (a, k) for k=1,..., z,, applying the relations (178b) and (180), and trans-
forming the system into a reference frame moving with the mean ion velocity u, ;) under the assumption
that the individual ion diffusion velocities w, ) are small yields

2 2
= q(e,i) e, i) Wa,i) * E"'C” +S[]

(a,i)’

(193)

0:E iy + V- [(&a,i) + Pla,i)) Wa,i) + Wa,i) T 5y + Piayi)
where

c def 2] s def [21
(a i) Z C(a k) and (oc i) Z S (194)

Summing the contributions of the collision terms for each charge state, the collision source C([ a] ;) can be

approximated by®
cl — 1 2y rion _ l 2 4 rrec
@~ |3 MWy o) T Mal(a,0) |1 (,0) > Moy iy +Mala,1) [ (g1
1 (195)
2
* (2 Meltg + meee) Z Topt 2 (e Rais+ Quaiys) +Cy £)1,
S€EANAT~(@, i)
where
def & def ¢ Za 2P
Qu,ise = 3, Qua,kyser Q(a,iy;(8 Z Q(a, k):(8,0)» Qa,i);(B,1) Z Y Qb0 (196)
k=1 k=1¢=1
and
cx,[2] def 1 2 2 cx cx . cx
@i — 5Ma (W0 “(mz’)) Lia,n @0 "Rig, 0,0 = W@ Rig 00,
2 (197)
CX CX
+ Q@0 ~ La0iaiy
CX CX .
with F(a iy R(a 1:(a.0) and R(a 0):(a,i) SiVen by (192), and
def def
Qa0 = ZQak) @0 ad Qo = ZQaO) (@,k)* (198)

B.2. Fully Averaged Model Description

We now consider a reduced multifluid model wherein the individual ion and neutral states for each atomic
species are combined into a single fluid representing an averaged ion-neutral state. In the remainder of this
section, the subscript @ will be used to denote quantities associated with this average ion-neutral state for
atomic species a.

Define the total number and mass densities for species a by

def &
Mg = 3 Wiy (199a)
def &
Pa = ) Pk (199b)
k=0

5As was the case for the momentum equation, the third term on the right of (195) may be neglected in most cases.
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respectively, and define the mean species velocity u, and total species energy &, by average species charge
state Z, by

Za
def
Patla = Y PraWak) (200a)
k=0
d f
= Z Ew b (200b)

respectively. Defining the average species charge state Z, by

= def &
faZg = 3, KPig,ks (201)
k=0

the average species charge is then written as g, = —Z4 g and satisfies

Za
Gutle = Y, Gakilitm ki (202)
k=0

Analogously to the neutral, averaged ion model described in the preceding section, the ionization fractions
and mass fractions of the charge states are defined by

n
- d:ef (a,k) . (203a)
Ny
e dEE PG (203b)
Pa

respectively. These values can be used to define quantities such as mass (p(q,x)), momentum (0, k) Ug k),
and energy densities (€4 i) for the individual charge states in terms of the aggregated quantities (ie., pq,
Paly, Eq), as was done before in (183). The approximation (182) is again made for constructing this model.

Continuity. Summing (4a) with s = (a, k) for k =0, ..., z, and applying the relations (199b) and (200a) yields
the following continuity equation for the total species density:

0:pa+V-(pguy) =CY + S, (204)

where

(205)

o] def [0] o] def (0]
Ca kzcak) and Sy kZS(ak)

Summing the contributions due to ionization and recombination reactions, the averaged collision source
reduces to C,[,?] = 0. The electron collision source C(LO] remains as in (8a).

Momentum. As was the case for the average ionization model described in Appendix B.1, we will assume
in the remainder of this section that the individual ion and neutral diffusion velocities relative to the mean
species velocity uy are small, and neglect their contributions. Summing (4b) with s = (a, k) for k=0,..., z4,
applying the relation (200a), and transforming the system into a reference frame moving with the mean
species velocity u,, yields

0:(paa) + V- (pgug ®uq + pol + 1T ) = Gang (E+uy x B) +CH + S, (206)
where
(1] def <& (1 (1] def 1
ol /;oc(“'k) and S, Z Bl (207)
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Summing the contributions for each ionization state, whilst noting that the terms due to charge-exchange
interactions cancel, the averaged collision source reduces to

Cz[xl] = meue Ty + Z Ra;s) (208)
SEARA~Q
where
. def & def <& &
o= ¥ Iy, Rae = ) R e Ry = Z Y Rip:5.0» (B#a). (209)
k=1 e k=0 =0¢=0

In this case, the collision source CE] for the electron species can be approximated as
def "4 ;
CHEY (meuglo" — meu I +Reya), (210)
a=1
where I'¢ is given in (209) and
Zg=1

ion def def &
rgrs )y Flgnk) Rea = Z Re;(a,k)- (211)

Energy. Summing (4c) with s = (a, k) for k=0,...,z4, applying the relations (200b) and (202), and trans-
forming the system into a reference frame moving with the mean species velocity u, yields

0:Ea+ V- [(Eq + Pa)ug +ug T, +hy]| = Gungug -E+CZ + 82, (212)

where

(213)

(2] def 2] (2] def 2]
Ca kz Cop and Sg kz Siap-

Summing the contributions for each ionization state, whilst noting that the terms due to charge-exchange
interactions cancel, the averaged collision source reduces to

1
Co' = Smewgly+ Y (ua-Rags + Quss), (214)
2 SEARA~Q

where I';%, Rg;e, and Ry, are given in (209), and Qge, Qq;p are defined in a similar manner; ie.,

Qae & Z Qa, kyer Qu; ;B f Z Z Qa,b); B,6) (B # ). (215)
k=0

=0¢=0

For the electron collision source, we employ the following approximation:

C[Z] def 4 me (1 2 rion A eff 10n 1 2 s Trec
Z - Emaua""paea a Z Z (Pak) (a,k) 2meuez a
a=1""a a=1 k=0 a=1 216)
+ Z (ue Rea"’Qea)"’Qrady
where
def &
Qs = Y, Qaita b 217)
k=0

and ri;;n, I'e¢, and R, are given in (209) and (211).
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APPENDIX C. BRIEF DESCRIPTION OF BRAGINSKII MODEL

The theoretical development of anisotropic transport and transport coefficients for plasmas can be found
in [24, 59]. Anisotropic transport is due to the effects of strong magnetic fields. For the case of heat flux, the
heat flux vector is dependent on magnetic field direction. In ionized plasmas, the heat flux characterized by
drift and thermal components

h, = hi+h]
h, = h!
h, = —KﬁV||Te—Kj_VJ_Te+Kf\BXVJ_Te.

where h¥ and h! are drift and thermal components and the subscript/superscript (e, i) depict electrons or
ions. Braginskii [24] derived thermal conductivity coefficients for fully ionized plasmas

o1 T5/2

e _ — e

K| = 5.763 x 10 T
Kj

k¢ = 1.4747—— ~«x¢/|B|?

i @)’ i /|1BIl

Kj

K% = 0.7911—~Kﬁ/||B||.

(WeTe)

We are mainly interested in the thermal components within the context of MHD modeling. From scaling
arguments, it can be shown that the thermal conductivity coefficient for electrons dominates over ions

1<ﬁ/1<|"| =~ 49,

Note that the heat flux vector representing the thermal component h, ~ h! is a kinematic relationship de-
pendent the magnetic field vector

A

b = B/[B]|
VT = (VT-b)b
v, T = VI-V|T

therefore we arrive at a model for anisotropic heat transport appropriate for MHD,

h=—xV|T-k, V. T+x,bxV, T (218)

We tested the anisotropic formulation (218) on a relatively straightforward test problem. A square compu-
tational domain 4 x 4 was constructed using element counts: 64 x 64, 128 x 128, 256 x 256 and 512 x 512. A
temperature "ring" was placed inside the square with a clipped Gaussian cross section which has a known
integrated thermal energy (in this case Cv < T > where <> represents the average). The integrated ther-
mal energy for this Gaussian shaped ring was 19.97300199. The density was constant p = 1 and so was the
specific heat Cv = 2.0. A constant background azimuthal magnetic field ||B|| = 1 that decays as 1/r was super-
imposed on the mesh. Parallel thermal conductivity x| = 1, perpendicular x | = 0 and rotational x, = 0 were
held constant. The solution of this diffusion problem for temperature for all time is constant equal to the
initial condition. Continuous Galerkin (CG) and algebraic flux correction (AFC) finite element formulations
were run for a time ¢ = [0, 1].

The evolution of the temperature in time with mesh refinement for CG and AFC are shown in Figure C-1.
The oscillatory nature of the CG solutions is evident in the overshoot of temperature. The AFC appears to be
converging to the correct solution.
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Figure C-1. Evolution of error of temperature ring profiles with anisotropic diffusion.
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Figure C-2. Temperature Ring profiles with anisotropic diffusion.

Cross-cut profiles for grid refinement levels for CG and AFC at ¢ = 1 are shown in Figure C-2. The CG solutions
for temperature are oscillatory due to the lack of any stabilization while the AFC solutions are non-oscillatory
though more diffused in the radial direction. The AFC does apply stabilization to diffusion fluxes.

Finally, the error is computed for each refinement level and plotted in Figure C-3. At these mesh levels, and
due to the oscillatory behavior, the CG is not convering monotonically while the AFC is.

We expect the results of applying the AFC stabilization for the very strongly anisotropic conduction heat
transfer for magnetized plasmas to improve with our current development of a smoothness indicator that
will be used to turn off the LED stabilization at smooth local extrema. Additionally we have demonstrated
the development of high-order methods based on Bernstein polynomial FE methods that will also improve
the convergence of the AFC method for these challenging problems.

Braginskii [24] also formulated a model anisotropic viscous stress tensor which is summarized in [59]. Let
n',n° represent viscosity coefficients for ions and electrons repectively. Unlike thermal flux in the case of
viscosity, the ion viscosity dominates,

176/7]8 = 39.
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Figure C-3. Error in the temperature ring with anisotropic diffusion.

Branginskii derived ion viscosity coefficients for fully developed plasmas

Il

T5/2 =

VA (()
3.5 10‘2717’ (parallel)

776 i 2 5
0.3125 ~ns/]|IB||* (perpendicular)
(wiTi)z TIO p p
an}
i ; L
0.5208( ) ~1,/1IB|| (gyration,drift)
iTi
217@.

The kinematic relationships taken from [59] are

'__aui auj 2 ”6uk
MU 0x; 0x; 3 Y oxg

In the absence of a magnetic field, this is particularly simple,

I;j =-noWij,

(219)

(220)

but in a strong magnetic field (w,7 > 1), the stress tensor becomes aligned with b. In the coordinate system
with the third axis parallel to the magnetic field, the components of the stress tensor are:

1 1
I = _EWO(WII + W) — Efll(Wu — Wa2) =13 Wiy,

1
I = -1 Wiz + 5773(W11 - Wa) =11,

I3 = =12 Wiz — 1y Wo3 =13y,

1 1
Iy = —Eﬂo(Wu + Wap) — 5771(W22 - Wh1) +n3Wio,

ITa3 = =N Waz + 1y Wiz = I3,
33 = =10 Ws3.

This model has been implemented in Drekar, however at present has not been fully tested.
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APPENDIX D. STRONG STABILITY PRESERVING EMBEDDED
RUNGE-KUTTA PAIRS

Any time integration method with a constant step size will perform poorly if the solution varies rapidly in
some parts of the integration interval and slowly in other, large parts of the integration interval, and if it
is to be resolved well everywhere by the numerical method [8]. A critical component of many integration
packages utilizing Runge-Kutta methods, making them an initial value problem (IVP) "solver" rather than
just a numerical integration subroutine, is its adaptive control of step-size based on local truncation error
estimation.

The embedded methods are designed to produce an estimate of the local truncation error of a single Runge-
Kutta step, and as result, allow to control the error with adaptive step-size. The key idea of embedded meth-
ods is that such a pair of methods will share stage computations. The two methods combines the stage
solutions differently, i.e b # b of varying order. Therefore, let us assume that the vectors b and b correspond
to order p and p, respectively. In general the assumptionis p < p.

S
Jn+1=yn+At Y biF; (222)
i=1

where the Fj, the internal stage computations, are the same for the higher order method.

The Runge-Kutta formula of higher order p yields numerical approximation u,1, just as before, is used to
advance in time. The solution j,.; is only used for error estimation and suggesting an optimal step-size. An
Embedded Runge-Kutta (ERK) method is represented with an extended Butcher Tableau of RK(A, b, b):

Embedded Runge-Kutta methods are crucial for automatic step size control, i.e. the method automatically
chooses the step size in each step. Let us consider the numerical solutions y,+; and y,+, with order p and
p = p—1, respectively. Taking into account Runge-Kutta methods and their embedded pairs we have an
approximation for the global error vector which is denoted by &,.. It can be calculated as

S ~
1 = Yn+l— Yn+1 = Atz (bj _bj)F(yf)'
j=1

The above formula shows that the Butcher form is efficient from the programming point of view.

Since we strive to keep the entire integration process local in time (i.e., we march in time with all the informa-
tion locally known) we attempt to control the local error or the local truncation error, rather than the global
error. The global error also relates to the tolerance in case it can be obtained as a simple sum of local errors.
Basically, by specifying an error tolerance ETOL a user can require a more accurate (and more expensive)
approximate solution or a less accurate (and cheaper) one.

The global error of the order p — 1 method can be approximated by the term M(A#)?, where M is an appro-
priate constant. On the other hand, from the local truncation errors we can conclude that |&,1]| = M(AH)".
Therefore, if the relation |&,+1] < € holds in case of a given tolerance ¢ > 0, then we accept the numeri-
cal solution y,+;. Otherwise, we have to choose a new step size Afpew. In this case we have the relation
8ni1 = M(Atpew)? < €. Since |8,411 = M(At)P, it implies that

M(A tnew)p ” &
M@ADP  Epyr
Hence, it requires the condition
1

& P
AI,‘newzzAt(~ )
€n+1
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In [32] we constructed several non-defective methods with large region of absolute stability and optimal er-
ror measurement. The new family of embedded pairs offer the ability for strong stability preserving (SSP)
methods to adapt by varying the step-size based on the local error estimation while maintaining their inher-
ent nonlinear stability properties. In this work we are interested in embedded pairs for the optimal strong
stability preserving (SSP) explicit Runge-Kutta methods. SSP explicit RK methods are extensively used in nu-
merical computation of hyperbolic conservation with total variable diminishing (TVD) spatial discretization.
In many hyperbolic PDE applications, the step-size is controlled by monitoring the CFL number, defined
by

CmaxAT
V=
Ax

where cnax is the largest wave speed present. Since the Lipschitz constant of the spatial discretization is typi-
cally proportional to cpax/AX, most schemes are stable up to a particular value of v. Inherent in this approach
to step-size control, is the assumption that one can integrate or time-step at or near the largest (linearly-
or nonlinearly-) stable step-size and still achieve an acceptable level of temporal error. This is reinforced
by experience showing that spatial error usually dominates temporal error in such problems [99]. However
making this assumption and relying on this experience is not enough; an approach that attempts to estimate
and control error while adaptively selecting time-steps is important to achieve accurate and inexpensive so-
lutions. Additionally when solving nonlinear PDEs in multiple dimensions, the error estimation provided by
embedded RK pairs is essentially free compared to the expensive evaluation of the right-hand-side.
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