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Background/Motivation

* GHG reduction goals are aggressive
* EPA Clean Power Plan targets 30% reduction by 2030
* 85% reduction by 2050

* Tossil fuels are important for domestic energy security and

reliability

* Options to reduce GHGs for fossil fuels are needed

Post-combustion and pre-combustion CO, capture

Oxy-combustion
Chemicallooping combustion
Pressure gain combustion
Direct-fired supercritical CO,
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Why Is NETL/RIC Doing This Work?

* Determine if options are technically Advanced Combustion NETL R&IC Focus
feasible

. . . 801 Toda
* Gather data and information for strategic i E -
o . . [ Adwanced Turbines
decision making ol e
14y glﬂlmnmﬁmsuﬂ e
Adv. Eunprusnn

—> Is technology worthy of additional
investmentand development?

e If it is feasible, THEN

* Help developers overcome technical
issues
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2"-Generation
Target
$40/tonne

Cost of Capture, 2011 $/tonne C0,
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Crosscutting Research

* Help technology be successful ol

Transformational
Target

e Ultimate commercialization = produces o
]Obs aﬂd growth ‘ Today 2025 — 2-Generation 2035 - Transformational

Advanced Combustion Systems Technology Program Plan,
http://www.netl.doe.gov/research/coal/energy-systems/advanced-combustion,
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Where Are We Now?

* Preliminary techno-economic analyses (TEAs) have been completed (DOE/NETL-2014/1643)
* Significantamount of uncertainty = very little proven reliable operating data
* Operability and reliability are major challenges for technology feasibility

* Oxygen carrier makeup costs are a key factor for circulating reactor systems

* Technology gaps identified by developers

Exhibit ES-3 Cost of electricity breakdown comparison

B | e oo | osocmm |G

* Operating experiences are limited to less than ~100 hrs Capital o0 — —
* Data quality and reliability need improved Fixed 13 122 157
* TEAs require provenreliable operating data Variable 27 84 182
Maintenance materials 32 35 4.7
Water 04 0.4 09
Oxygen carrier makeup * 18.7 1.1 N/A
Other chemicals & catalyst 19 17 6.4
Waste disposal 14 17 13
Fuel 28.4 308 35.3
Total 115.1 104.7 137.3

*Fe.0s oxygen carrier makeup: 132 tons/day @ $2,000 per ton; Limestone carrier makeup: 439
tons/day @ $33.5 per ton

DOE/NETL - 2014/1643 , Guidance for NETL’s Oxycombustion R&D
Program: Chemical Looping Combustion
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* Produce a data set to develop a kinetic model for incorporation into a CFD
model; used to design and optimize complete CLC system

* Examine effect of several reaction parameters on oxygen carrier (OC)
performance to determine most significant

* Observe how performance of OC changes over time and property changes
that may account for them

* Identify and propose additional experiments for completing kinetic model
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Experimental Tl

e Multicycle Isothermal Reaction/Oxidation (Micromeritics 2950HP)

e 10% H, (Arbal) / Air
e 10% CH, (Arbal) / Air

* Operating Conditions
* Mass Canadian Hematite = 0.2 g
e Gas flow rate = 30 sccm
e T =700, 800, 900°C
* Cycle time = 5 min

* 10 cycles per run

* SEM/EDS — Fresh and Spent (900°C)
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Hematite Reduction/Oxidation ¥

Multicycle Hydrogen Reduction/Air Oxidation

Multi-Cycle Isothermal Reduction - 700°C
Full Oxidation at 700 Between Cycles
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Effect of Temperature
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Hematite Reaction

Multicycle CH4/Air Experiments
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Hematite Reaction

Multicycle CH4/Air Experiments

700°C - Carbon Burn-off - Cycle 1
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Hematite Reaction

Multicycle CH4/Air Experiments
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800°C - 10% CH, - Cycle 1
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Hematite Reaction

Multicycle CH4/Air Experiments

800°C - Carbon Burn-off - Cycle 1
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Hematite Reaction

Multicycle CH4/Air Experiments

900°C - 10% CH, - Cycle 1
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Multicycle CH4/Air Experiments
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Multicycle CH4/Air Experiments
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SEM/EDS Characterization

Fresh vs. Spent Hematite (900°C)
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2 62.3 2
3 60.3 3
Average 63.8 Average
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* Kinetic data set was generated for Canadian hematite OC from a series of
multicycle fuel reaction/carrier oxidation experiments for use in CFD models

* OC reduction in hydrogen, followed by air oxidation, showed changes in
reducibility over 10 cycles and with temperature

* Increase in reduction only leveled off for 900°C within 10 cycles

* OC reaction with methane, followed by oxidation, showed an increase in
conversion with temperature and number of cycles

 Carbon accumulation observed for 900°C; incomplete burn-off with 5 min oxidation

* Surface concentration of Fe increased during the 10 cycle methane reaction
experiments at 900°C

* Further variables to test: oxidation T and time, effect of product gases

e Deactivation kinetics still to be measured for model; must consider
mechanical attrition

* Expand to fluidized bed and solid fuel experiments
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Thank you.

Questions?

U.S. DEPARTMENT OF




NATIONAL
ENERGY

- N=
Other Slides T L [Estnotocy

LABORATORY

-.v"""‘l, U.S. DEPARTMENT OF
.8)ENERGY 20




-0.7

-0.8

IsoT 700

@ Cycle 1
®Cycle 2
® Cycle 3
© Cycle 4
@ Cycle 5
®Cycle 6
@ Cycle 7
@ Cycle 8

@ Cycle 9

@ Cycle 10




3

0.1 hd
L
-0.2 ‘
®
4
0.3 t
)
¢
-0.4 .
®

-0.5

-0.

-0.7

-0.8

-0.9

6

IsoT 800

®Cycle 1
® Cycle 2
® Cycle 3
® Cycle 4

®Cycle 5

®Cycle 6




o
)

3.2 4.2 5.2

-0.7

1.2 2.2
IsoT 900

®Cycle 1
@ Cycle 2

®Cycle 3
®Cycle 4

®Cycle5

®Cycle 6

®Cycle 7

®Cycle 8
®Cycle9

® Cycle 10




-0.

-0.2

-0.3

-0.4

-0.5

-0.6

-0.7

-0.8

-0.9

1

)
s
o

o8
©900-Cycle1 @@

@ 700-Cycle 1

®3800-Cycle 1




oo
PV oegegegs W o0 go g
(]

b ““0.0 e %0 0o

@ 700-Cycle 10
@ 800-Cycle 10
@ 900-Cycle 10

-0.5
-0.6
-0.7
-0.8
-0.9



10.0

700°C - 10% CH,

9.0

0000”"””

IRREEEX
!!.l-l‘.“-‘ll..‘

o0
(<)

¢
|

N
(<)

o
o

¢ Cycle 1
H Cycle 10

P
o

Concentration (%)
(92
=)

w
(<)

2.0

He

1.0 -

0.0 °

2 3
Time (min)




700°C - Carbon Burn-off
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800°C - 10% CH,
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900°C - 10% CH,
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Hematite Reaction

Multicycle CH4/Air Experiments

Fresh Spent ICP
1 68.90701 73.87923 57.27
2 62.27045 63.1886
3 60.28093 70.75227

63.81946 69.27337
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BACKGROUND/MOTIVATION

. . Presidential Energy-Related GHG Targets
* GHG reduction goals are aggressive @ \i’; k
* EPA Clean Power Plan targets 30% reduction by 2030 - / . _—
e 85% reduction by 2050 Y i
* Tossil fuels are important for domestic energy security and S50 [ggesaive e
reliabi]jty " GHG Targets \ *
* Options to reduce GHGs for fossil fuels are needed “rgo 1m0 a0 w10 a0 20 k0 20 2060
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* Determineif options are technically feasible Advanced Combustion NETL R&IC Focus
* Gatherdataand information for strategic —
decision making SeTtonne E “'-' g ——
L. [ ] M\enoed.Turblnes
- Is technology worthyof additional 50t £ r;;,,ﬂ:g;:m % v
investmentand development? % 10 Advancs () |2 =
. . . §40-- Adv. Compression ’ \
e If itis feasible, THEN £ T Gepration
i $40/tonne
* Help developers overcome technicalissues Rl
= g
* Help technology be successful T;é e g
* Ultimate commercialization = produces jobs S Bl é
g Chemical Looping,
and growth TN e |
Concepts
104 \ I :
Translﬁlrm:ttloml
\ / S10!t?:-nne
-
’ i Today 2025 - 2"-Generation 2035 - Transformational
Advanced Combustion Systems Technology Program Plan, - bittp:/ /[ www.netl. doe.gov/ research/ coal] energy-sy stems/ ady anced-com bustion,  retrieved 6/28/2016
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ADVANCED COMBUSTION: CLC — WHERE ARE WE Now? N=TL

* Preliminary techno-economic analyses (TEAs) have been completed (DOE/NETL- 2014/1643)
* Significant amount of uncertainty = very little proven reliable operating data
* Operability and reliability are major challenges for technology feasibility
* Oxygen carrier makeup costs are a key factor for circulating reactor systems

* Technology gaps identified by developers

Exhibit ES-3 Cost of electricity breakdown comparison

e CLC test facilities exist - E—
) ] o Cost Fe,0; ($MWh) | CaSO,($/MWh) ‘;’g’;’;;":ﬂ
* Operating experiences are limited to less than ~100 hrs

Capital 496 53.4 731

* Data quality and reliability need improved Fixed 113 122 157
* TEAs require proven reliable operating data Variable o7 84 132
Maintenance materials 32 35 47

Water 04 04 08

Oxygen carrier makeup * 18.7 1.1 N/A

Other chemicals & catalyst 19 1.7 6.4

Waste disposal 1.4 1.7 1.3

Fuel 284 30.8 353
Total 115.1 104.7 137.3

*Fe,0; oxygen carrier makeup: 132 tons/day @ $2,000 per ton; Limestone carrier makeup: 439
tons/day @ $33.5 per ton

Ref: DOE/NETL —2014/1643 , Guidance for NETL’s Oxycombustion R&D Program: Chemical Looping Combustion
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