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Background/Motivation

• GHG reduction goals are aggressive
• EPA Clean Power Plan targets 30% reduction by 2030
• 85% reduction by 2050

• Fossil fuels are important for domestic energy security and 
reliability

• Options to reduce GHGs for fossil fuels are needed
• Post-combustion and pre-combustion CO2 capture
• Oxy-combustion
• Chemical looping combustion
• Pressure gain combustion
• Direct-fired supercritical CO2

Advanced Combustion
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Adv. Combustion
Why Is NETL/RIC Doing This Work?

• Determine if  options are technically 
feasible

• Gather data and information for strategic 
decision making
 Is technology worthy of  additional 
investment and development?

• If  it is feasible, THEN
• Help developers overcome technical 

issues
• Help technology be successful 
• Ultimate commercialization  produces 

jobs and growth

Advanced Combustion NETL R&IC Focus

Advanced Combustion Systems Technology Program Plan,  
http://www.netl.doe.gov/research/coal/energy-systems/advanced-combustion, 

http://www.netl.doe.gov/research/coal/energy-systems/advanced-combustion
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Advanced Combustion: CLC
Where Are We Now?

• Preliminary techno-economic analyses (TEAs) have been completed (DOE/NETL – 2014/1643)

• Significant amount of  uncertainty  very little proven reliable operating data
• Operability and reliability are major challenges for technology feasibility
• Oxygen carrier makeup costs are a key factor for circulating reactor systems

• Technology gaps identified by developers
• CLC test facilities exist

• Operating experiences are limited to less than ~100 hrs
• Data quality and reliability need improved 

• TEAs require proven reliable operating data

DOE/NETL – 2014/1643 , Guidance for NETL’s Oxycombustion R&D 
Program: Chemical Looping Combustion 
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Objectives

• Produce a data set to develop a kinetic model for incorporation into a CFD 
model; used to design and optimize complete CLC system

• Examine effect of  several reaction parameters on oxygen carrier (OC) 
performance to determine most significant

• Observe how performance of  OC changes over time and property changes 
that may account for them

• Identify and propose additional experiments for completing kinetic model
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Experimental

• Multicycle Isothermal Reaction/Oxidation (Micromeritics 2950HP)
• 10% H2 (Ar bal.) / Air
• 10% CH4 (Ar bal.) / Air

• Operating Conditions
• Mass Canadian Hematite = 0.2 g
• Gas flow rate = 30 sccm
• T = 700, 800, 900°C
• Cycle time = 5 min
• 10 cycles per run

• SEM/EDS – Fresh and Spent (900°C)
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Hematite Reduction/Oxidation
Multicycle Hydrogen Reduction/Air Oxidation
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Hematite Reduction/Oxidation
Effect of Temperature
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Hematite Reaction
Multicycle CH4/Air Experiments
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Hematite Reaction
Multicycle CH4/Air Experiments

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0 1 2 3 4 5

CO
2

Co
nc

en
tr

at
io

n 
(%

)

Time (min)

700°C - Carbon Burn-off - Cycle 1

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 1 2 3 4 5

CO
2

Co
nc

en
tr

at
io

n 
(%

)

Time (min)

700°C - Carbon Burn-off - Cycle 10



11

Hematite Reaction
Multicycle CH4/Air Experiments
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Hematite Reaction
Multicycle CH4/Air Experiments
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Hematite Reaction
Multicycle CH4/Air Experiments
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Hematite Reaction
Multicycle CH4/Air Experiments
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Hematite Reaction
Multicycle CH4/Air Experiments
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SEM/EDS Characterization
Fresh vs. Spent Hematite (900°C)

Fresh # Fe (wt%) Spent # Fe (wt%)

1 68.9 1 73.9

2 62.3 2 63.2

3 60.3 3 70.8

Average 63.8 Average 69.3
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Summary

• Kinetic data set was generated for Canadian hematite OC from a series of  
multicycle fuel reaction/carrier oxidation experiments for use in CFD models

• OC reduction in hydrogen, followed by air oxidation, showed changes in 
reducibility over 10 cycles and with temperature

• Increase in reduction only leveled off  for 900°C within 10 cycles

• OC reaction with methane, followed by oxidation, showed an increase in 
conversion with temperature and number of  cycles

• Carbon accumulation observed for 900°C; incomplete burn-off  with 5 min oxidation

• Surface concentration of  Fe increased during the 10 cycle methane reaction 
experiments at 900°C

• Further variables to test: oxidation T and time, effect of  product gases 
• Deactivation kinetics still to be measured for model; must consider 

mechanical attrition
• Expand to fluidized bed and solid fuel experiments
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Thank you.

Questions?
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Other Slides
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Hematite Reaction
Multicycle CH4/Air Experiments

Fresh Spent ICP
1 68.90701 73.87923 57.27
2 62.27045 63.1886
3 60.28093 70.75227

63.81946 69.27337
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BACKGROUND/MOTIVATION

• GHG reduction goals are aggressive
• EPA Clean Power Plan targets 30% reduction by 2030
• 85% reduction by 2050

• Fossil fuels are important for domestic energy security and 
reliability

• Options to reduce GHGs for fossil fuels are needed
• Post-combustion and pre-combustion CO2 capture
• Oxy-combustion
• Chemical looping combustion
• Pressure gain combustion
• Direct-fired supercritical CO2

Advanced Combustion
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ADV. COMBUSTION – WHY IS NETL/RIC DOING THIS WORK?

• Determine if  options are technically feasible
• Gather data and information for strategic 

decision making
 Is technology worthy of  additional 
investment and development?

• If  it is feasible, THEN
• Help developers overcome technical issues
• Help technology be successful 
• Ultimate commercialization  produces jobs 

and growth

Advanced Combustion Systems Technology Program Plan,  http://www.netl.doe.gov/research/ coal/ energy-sy stems/adv anced -combustion, retrieved 6/28/2016

Advanced Combustion NETL R&IC Focus

ADV. COMBUSTION – WHY IS NETL/RIC DOING THIS WORK?

http://www.netl.doe.gov/research/coal/energy-systems/advanced-combustion
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ADVANCED COMBUSTION: CLC – WHERE ARE WE NOW?

Ref:  DOE/NETL – 2014/1643 , Guidance for NETL’s Oxycombustion R&D Program: Chemical Looping Combustion 

• Preliminary techno-economic analyses (TEAs) have been completed (DOE/NETL – 2014/1643)

• Significant amount of uncertainty  very little proven reliable operating data
• Operability and reliability are major challenges for technology feasibility
• Oxygen carrier makeup costs are a key factor for circulating reactor systems

• Technology gaps identified by developers

• CLC test facilities exist
• Operating experiences are limited to less than ~100 hrs
• Data quality and reliability need improved 

• TEAs require proven reliable operating data

ADVANCED COMBUSTION: CLC – WHERE ARE WE NOW?
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