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Background and Motivation N=|NAnoNaL
== |ENERGY
T L [FEShNoLoGy
Allam Cycle (NetPower) LABORATORY
* Direct-fired (Allam) cycle operates at very high !
pressures (300 bar) with CO, dilution. o[BS
* There is a lack of experimental data and e uran
modeling experience at these conditions. N |
* CFD is expected to play a key role in combustor Eihance
design (flame holding, heat release, CO s
formation etCo oo Jo ) -
’ ) T T C S
* CO has a significant impact on cycle efficiency. Figure 1. BASIC ALLAM CYCLE NATURAL GAS FLOW
DIAGRAM.
* Combustion sub-models have not been validated Pont Pressure (Bar)  Temperature (<C)
.S Turbine Inlet (A) 300 1150
at these conditions. b Ottt ) . -
CO2 Compressor Inlet (D) 30 20
CO2 Compressor Outlet (E) 80 65
CO2 Pump Inlet (F) 80 20
CO2 Pump Outlet (G) 300 55

Combustor Inlet (T) 300

750
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Three Combustion Modeling Approaches

Three of many...

1) No Turbulence Chemistry Interaction (Laminar).
* Ignores sub-grid fluctuations 1n temperature and concentration.
* Similar to fast mixing at the sub-grid scale.

2) Flamelet Model.
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e Assumes turbulent flame is an ensemble of strained laminar flamelets.

* Pre-tabulated table of thermodynamic properties as a function of

mixture fraction and local strain rate. Stagnation

Plane

3) Filtered Density Function (composition PDF

transport).

e Transport equation for single-point joint PDF solved OF,  ol{u) F
(therrgocheglical state). sep ] atL + [“(;:Z% L

e Chemical source term is closed but molecular mixing must be l
modeled. p

* Solved by Monte-Carlo methods (Lagrangian “particle” tracking). =3\ v+

* Coupling with flow solver through density.
0Yq
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Computational Setup

Single Injector Domain
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Large Eddy Simulation with transported -
equation.

16 Species skeletal mechanism from UCE.* 0, mass fraction 0.250
Incompressible, pressure-based solver. 2°¢ U_ (m/s) 54
order in space and time. Max Courant # ~ 1. .

| 1.9e-3
CO, added to oxidizer stream to change O, r(m) ©
concentration. U’ (m/s) 7.5
ANSYS Fluent V18.2 S.(m/s) 0.58

Tign (S) 1.5e-3
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3D 590k hex cells
m.= 0.04762kg/s

Phi =0.95
T,= 476K
T,=1014K
P = 300 bar
2.9 MW

0.138
94
2.2e-3
10.7
0.082
1.6e-3

0.070
180
2.0e-3
23.8
0.05
2.0e-3




Borghi Diagram for Oxy-Combustion = [y
TLJIAs8RRT0Ry

* Three cases shown for 300 bar oxy-combustion define a range of
conditions (O, from 7-25%) spanning the thickened, corrugated
flame regime and stitred reactor.

* Significantly outside the range of Gas Turbines

gas turbine and IC engine IC Engines
operation. e sCO2 25%02
e Re# and/or Ka# significantly larger u’ls,
than gas turbines or IC engines. 10

Cprrugated Flame
v X (Ott@ICE)
~ -

= - u'=s,

* Requires assessment of
appropriate turbulent combustion
models. Laminar

Flame

S
ks Winkled Flame
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Effect of O, Concentration =

Laminar Model TL

* Lifted flame at 25% O, transitions to autoignition reaction at 7% O,.
* Similar behavior for both Laminar and FDF models.

* Flamelet model unable to predict autoignition behavior for 7% O, case.

Instantaneous Temperature (K)

Mean RR (W/m?3)

02 mass

T(K)

2.70e+03
2.59e+03
2.48e+03
2.37e+03
2.28e+03
2.15e+03
2.04e+03
1.93e+03
1.82e+03
l.7le+03
l.6E0e+03
1.49e+03
1.38e+03
1.27e+03
l.16e+03
1.05e+03
9.38e+02
8.28e+02
7. 1Be+l2
G.05e+02
4.95e+02

14%

7%
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Results for Case 1 (25% O.,) N= ?ﬁﬁfﬂ%’iﬁm
- =7 TL LABORATORY

e Similar flame shape for all three models (lifted flame).

* Peak CO concentration similar for Laminar and FDF models although FDF predicted
lower exit CO (3.0% vs 4.4% mass fraction). Maybe better burnout?

Laminar FDF Flamelet




Results for Case 2 (14%

O,)

N=
TL

* Similar flame shape for Laminar and FDF models, Flamelet model predicts

intermittent flame attachment to injector.

* Similar trend in CO for Laminar and FDF models (similar peak CO and better

burnout for FDF model).

Laminar

Flamelet
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CO Formation and Destruction ¥E ENERGY

16 Species Skeletal Mechanism* LABORATORY

* Main CO formation paths:

HCO+M=H+CO+M Path Flux Analysis
HCO + O, =CO + HO, (o)
* Main oxidation path: (o

CO +OH=CO,+H

* Since Laminar and FDF models show similar temperature and OH
profiles, “burnout” is not likely the cause of discrepancy in exit CO.

—\

25% 02 OHavg

Scale = 1.2e+06
Reaction path diagram following C
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Centerline profiles for Case 2 (14% O.,) [ENERCY
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Mean Mass Fractions LABORATORY
le+0
0.1 - le-1
— O2 laminar
s |/ \\ e CO laminar| & le-2
g —  O02FDF S 1le-3
& ; e CO FDF ﬁ 1e-4 —— CH4 laminar
% O Ol i ...... % 1e_5
e . TR < CH3 laminar
S e S le6 { 7 CH3FDF ™\ e
qJ ...... G_)
= E le-7 P CH4 FDH
le-8 0 e HCO laminar
0.001 . . . . 1e9 I HCO FDF ~~—=—=-—__i 7
0.00 0.05 0.10 0.15 0.20 0.2 0.00 0.05 0.10 0.15 0.20 0.25
axial distance (m) axial distance (m)

* More rapid decay in CO (and O,) concentration for FDF model (left plot).

* Right plot shows higher concentrations of unburned fuel for Laminar model (higher
CH,, CH;, HCO).
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Centerline profiles for Case 2 (14% O.,) T [rcsmiorocy

Net Formation and Destruction of CO LABORATORY

e CO destruction dominates in Net Formation and Destruction

of CO for Laminar Model
post-flame zone but CO 1000 | 300
formation is still significant. cOformation |-
100 o CO destruction
e “Pockets” of unburned fuel, —~ CO net rate 200 @
. = =
CH,; and HCO apparent with T 10- 150 =
laminar model. o i 100 £
C < 1] 50
* Somewhat counterintuitive g . ©
° ° - o +—
since laminar model assumes 01 f"’.g 02
. o« o ' &
fast sub-grid mixing. 5 - -50
0.01 +—— -100

0.00 0.05 0.10 0.15 0.20 0.25

axial distance (m)
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Mixture Fraction for Case 2 (14% O.,)

T (K)

Instantaneous mixture fraction plots show departure from equilibrium

on fuel-rich side.

Laminar model tends to show higher temperatures (and CO) on fuel-

rich side.

laminar
2100 - FDE
Equilibrium
2000 -
1900 1 '
v.\:.?..?cf'c' (XY
. . .. ‘...: ”::.!.e
1800 - -t
1700 * ; . ; ; .
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Mean Combustor CO Emissions

* All models predict CO emissions much higher than equilibrium values.

* Laminar model tends to overpredict CO compared to FDFE

TL
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* Flamelet model in good agreement with FDF at 25% and 14% O, concentration.

0.05

mean CO mass fraction
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mean CO mass fraction
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Concluding Remarks N=[HaTionAL
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* Decreasing O, concentration changes combustion regime from lifted flame to
autoignition type of process.

* Combustor CO emissions are a strong function of O, concentration (via
temperature, OH) and well above equilibrium.

* Flamelet model performed well at 25% and 14% O,

. . e Computational Time
but can not predict autoignition.

a1
o

. 14% O2
* FDF model provides the most robust treatment of

TCI but computationally expensive. Use as a
“benchmark case” for comparison.

N
o

w
o

* Need experimental data for validation!

N
o

seconds per time-step

=
o

l[aminar FDF flamelet

U.S. DEPARTMENT OF




Backup Slides
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50 MW Conceptual Combustor = [Hinay:
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SSME Preburner type combustor — 21 coaxial injectors, 4M Cells

Oxidizerin

Fuel i CO, (T=1015K)
uelin 0, (T=1015K) D=0.125m
CH4 (1 kg/s, T=496 K)

Purge in
CO, (T=1015K)

=300 bar
50 MW Thermal Input
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Results for Case 3 (7% O,) =

Flamelet

Laminar

FDF

* FDF and Laminar model show autoignition behavior. Estimated induction time of ~2 msec
corresponds to heat release location.

* Flamelet model predicts flame like behavior.
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