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Abstract—Power system inter-area oscillations can be damped
using distributed control of multiple power injections within
the interconnection. This type of control traditionally requires
system-wide measurements which are transmitted from dis-
persed, sometimes remote, locations and are subject to delays.
This paper evaluates the effect that delayed feedback signals have
on the stability of a two-area power system and presents delay-
dependent criteria for stability using two different implementa-
tions of a damping controller. The controllers are based on a
uniform proportional control action and use two feedback signals
one from each area of the two-area power system. Each of these
signals is subject to an independent delay. Using a Lyapunov-
based approach, sufficient conditions for stability that depend on
each time delay are found for a range of proportional control
gains. Numerical results show that the regions of time delays
for which the system is stable are reduced as the proportional
gain increases. Time domain simulations validate these stability
regions and show the varying responses for the two control
implementations and different values of the proportional gain.

I. INTRODUCTION

Small-signal stability analysis in power systems evaluates
the capacity of a system to successfully recover and maintain
synchronism after a small disturbance. Even though power
systems are intricate interconnections of nonlinear compo-
nents, small-signal stability can be determined by analyzing
a linearized version of the system. A particularly important
subject within small-signal stability is the study of inter-
area oscillations. Also known as global small-signal stability,
these oscillations arise when large groups of generators within
an area oscillate against those in a different area [1]. Inter-
area oscillations appear in power systems spread across large
swaths of land and with a sparse concentration of load and
generation.
Damping inter-area oscillations is critical to maintain a

secure and reliable power grid, and failure to properly address
this issue has led to catastrophic consequences. An example
is the 1996 blackout throughout the west coast of North

F. Wilches-Bernal, D. Schoenwald, and D. Copp are with Sandia National
Laboratories, Albuquerque, NM (e-mail: fwilche@sandia.gov). Ian Gravagne
is with the Electrical & Computer Engineering Department at Baylor Uni-
versity, Waco, TX. Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology and Engineering Solutions of
Sandia, LLC., a wholly owned subsidiary of Honeywell Intemational, Inc., for
the U.S. Department of Energy's National Nuclear Security Administration
under contract DE-NA0003525.
The authors would like to acknowledge the support of: the BPA Technology

Innovation Program, project number TIP 289, Dr. Dmitry Kosterev, POC,
with matching funds provided by the U.S. Department of Energy Office of
Electricity (DOE/OE) Transmission Reliability Program, Mr. Phil Overholt,
and the DOE/OE Energy Storage Program, Dr. Imre Gyuk.

978-1-5386-7138-2/18/$31.00 © 2018 IEEE

America [2]. Power system stabilizers (PSSs), utilizing local
measurements, are traditionally used to mitigate this problem.
It has also been shown that the use of remote signals in PSSs is
advantageous to damping these oscillations [3]. Damping con-
trol with system-wide information using distributed resources,
system components such as TCSCs, energy storage, and re-
newable resources has been proposed [4]—[7]. The use of High
Voltage DC (HVDC) links in the system for the purpose of
damping control has also been proposed and implemented [8],
[9]. These works show that damping control of inter-area
oscillations benefit from system-wide information. However,
remote signals are subject to communication latencies that
may impact their applicability in wide-area control.

This paper investigates the impact that delays in feedback
signals have on the stability of two different implementations
of a wide-area damping controller installed on a power system
affected by poorly damped power swings. The two controllers
are an HVDC-based controller and an Energy Storage (ES)
based controller. Each controller is distributed and uses wide-
area measurements from, and acts in, two different locations.
Without considering delays, the two controllers are identical
and provide sufficient damping of the inter-area oscillations.
The presence of delays makes the implementation of the
controllers different in practice and affects their transient
performance. In previous work, we analyzed time-domain
simulations to determine regions of stability of the closed-loop
systems that depend on the size of the asymmetric time delays
and the control gain [10]. In this work, we derive sufficient
conditions for stability of the closed-loop systems modeled as
systems of linear delay differential equations (DDEs).

Several techniques for determining sufficient conditions
for stability of DDEs with multiple asymmetric time delays
exist [11]. Some time domain approaches involve Lyapunov-
based stability and utilize a Lyapunov-Razumikhin func-
tion [12] or a Lypaunov-Krasovskii function [11], [13], [14].
In this paper, we apply the Lyapunov-Krasovskii stability
approach, that was introduced in [11], [13], to determine suffi-
cient conditions for stability of a power system with damping
control and multiple asymmetric time delays. Specifically, we
find delay-dependent conditions for asymptotic stability of a
system of DDEs describing the closed-loop system. These
conditions are represented by a system of Linear Matrix
Inequalities (LMIs). In addition, we investigate the effect that
changing the amount of damping in the system, along with
various time delays, has on system stability.
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II. POWER SYSTEM DYNAMICS AND DAMPING CONTROL

Power systems are a wide and complex interconnection of
multiple components. Due to the nature of these components,
and of the power network, the dynamics of interest for small-
signal stability can be initially analyzed by simplifying the
system, representing each synchronous generator with an elec-
tromechanical model (with only two states) and aggregating
multiple generators into a single equivalent one intended to
represent an entire area. Techniques for generator aggregation
and model reduction of power systems are usually based on
power system coherency [15]—[17]. In this work, the system
of study is shown in Fig. 1 and represents a two-area system
with an inter-area oscillation mode.

Gen. 2

L1 PL 2

Fig. 1: A two-area power system where each individual area is represented
by an aggregated generator.

Representing synchronous generators using the electrome-
chanical model, the dynamics that govern the system in Fig. 1
are [15], [16], for i = 1, 2,

(Si = SZwi

1
= Pmi — Pei; — Diwi — —wi — PL,,; PDi,

Ri

where the power flow in between the areas is

Pel = C12 sin(61 — 62)

pe2 = C21S111(82 — 61)

with C12 = Y12E1E2, C21 = Y12E2E1 and Y12 = X121.

E1 and E2 are the internal voltage angle of the generators,
X12 is the impedance of the transmission line linking the two
areas (which is assumed it is only reactive), and S2 is the per-
unit constant used for unit conversion. The power quantities

PLi, PDi stand for the aggregated load and a controllable
power injection in the ith area, respectively. Pmi represents
the mechanical power input to the ith machine, and Di its
respective damping. The variables Ri represent the governing
droop constant of the area. To study small signal stability,
a linear representation of system (1) is obtained. A block
diagram of the linear system is shown in Fig. 2, where

1

Gi(s) 2His + Di'

and Hi, is the inertia constant of the machine.
In matrix form, the equations that determine the dynamics

of the linearized version of the system are,

[,A.A.3(0 0 [A6(01
Co(t)]

1 [ 
L-(2H)-1T, —(2H)-1(D + R-1)] [Aw(t)] '

(2)

C1(s)

Fig. 2: Block diagram

(adapted from [1]).
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of the linear model of a two-area power system

1

R2

where 0 denotes a matrix of appropriate dimensions with all
elements equal to zero, and I denotes the identity matrix.
The states of the system are the generators' rotor angles
A8(t) = P.61(t) 062(t)F and angular velocities Aw(t) =
[Awi(t) Aw2(t)F . The matrix in (2) corresponds to the
system A matrix. The individual components of A are

[—C12 COS(61 — 62) Ci2 COS(61 — 62)
Ts =

C21 COS(62 — 61) —C21 COS(62 61)]

which is the synchronizing torque matrix that has a Laplacian
structure. Note that 81, 62 is the operating condition (at which
the system was linearized) of the rotor angle of Area 1 and 2
respectively. The matrices D, R, and H are defined as

D1 0 R rR, 0 1 H. [H1 0
D=

0 
D2 
' 0 

R2 
' 0 

H2

The system (2) has four eigenvalues. Due to the Laplacian
nature of Ts, one of the eigenvalues is at the origin, and
it is known as the system mode. Because the damping
and droop coefficients Di and Ri, respectively, are positive,
the remaining three eigenvalues lie in the left-half plane.
The input matrices for variations on the power injections

PD = [PD1 PD2]T and aggregated loads PL = [PL1 PL2]T
are

BD [(2H)-1] ' BL = [—(2H)-1].

Therefore, defining the state as x(t) = P.6(t)T AL4.1(t)T]T,
the linear dynamics for the two-area power system in Fig. 2
can be written as

(t) = Ax(t) + BDPD BLPL. (3)

A. Damping Control

Because the system in Fig. 2 is intended to represent a
power system prone to inter-area oscillations, it traditionally
has a pair of eigenvalues with low damping, which correspond
to the inter-area oscillation of the power system. This type of
system can be effectively stabilized by using a controller of
the form,

PD1(t) = —1CdP,C01(t) — ALO2 (t)) (4a)

PD2(t) = -PD1(t) = kd(Aw1(t) — ACO2 (t)) (4b)



where kd is a gain that can be chosen. The power injections
into each area of the system, PD1 and PD2, act with equal
magnitude but opposite sign. This type of control action
for the wNAPS has been proposed and successfully imple-
mented [8]. The controller equations (4) can be rewritten as

K(t) = [0 Ke] x(t),

where IG is a gain matrix given by

kKc = d kd[ kd _kd •
Because control is performed by modulating the power in-
jections PD2, the multiplication of K(t) with BD determines
the additional dynamics the controller imposes on the system.
Therefore, the system (3) can be rewritten as

X(t) = Ax(t) + BDK(t) + BLPL

= Adx(t) + BLPL,

where

Acl [
S-2/

= — (2Ho)-17', — (2H)-1(D + R-1 — Kc)].

B. Delay in the Feedback Signals

Power systems with dominant inter-area oscillations tend
to be dispersed and usually encompass large geographical
areas. In such types of systems, the implementation of the
controller (4) involves the transfer of information from distant
regions and is, therefore, subject to delays. This section
presents the effect that different time delays have in two
different implementations of this controller. Note that these
types of controllers are known as wide-area controllers and
are possible in power systems due to the deployment of Phasor
Measurement Unit (PMU) technology [18].

Area 1
Injection

Fig. 3: Power injections and measurements delay in a two-area power system.

1) Damping Control using HVDC: The controller in (4)
can be implemented using a controllable HVDC transmission
line. In this scenario there is only one controller with two
different actuation points, and the equations (4a)-(4b) with
the inclusion of time delays, Tl and T2, (neglecting losses)
become

PD1(t) = —kd(Awl(t — — AU/2 (t — T2))

PD2(t) = kd(Awl(t — — AL412 (t — 7-2)).

(5a)

(5b)

With this implementation, Prn(t) = -PD2(t) due to the
symmetric nature of an HVDC system. The dynamics of the
closed loop system (neglecting the aggregated loads PL) can
be expressed by the following DDE

(t) = Ax(t) + Air x(t — + x(t — 72),

where

—
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0
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—
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0
0
kd
2H1
—kd
2H2

(6)

Fig. 3 shows a diagram of the damping controller. In the
case of HVDC implementation, the single controller located
in either area is subject to two communication delays. If the
controller is located in Area 1, the measurement from Area
1 is the local one and will be subject to a delay of yl . The
remote measurement from Area 2 is subject to T2.
2) Damping Control using Energy Storage: Similarly, the

controller in (4) can be implemented using a pair of comple-
mentary Energy Storage (ES) devices with one located in each
area. In such a case, each controller is subject to its own set of
delays as depicted in Fig. 3. The controller located in Area 1
is subject to the same delays as in the HVDC case, where the
remote measurement from Area 2 (remote for the controller
in Area 1) is subject to T2, and the measurement from Area 1
is subject to T1 (local measurement for the Area 1 controller).
However, the controller in Area 2 observes a different set of
delays: The measurement from Area 1 is now subject to T2
(because, for the controller in Area 2, the measurement in
Area 1 is remote), while the Area 2 measurement is subject
to Ti . Hence, the equations describing the controller (4), using
ES components, in the presence of delays become

PD1(t) = —kd(Awl(t — — AU/2 (t — T2)) (7a)

PD2(t) = kd(Awl(t — T2) — ALJ2 (t — TO). (7b)

The closed loop dynamics of the system with damping
control using ES (again neglecting aggregated loads PL) can
then be expressed with the following DDE

X(t) = Ax(t) + Alsx(t — + Arx(t — 72), (8)

where

0 0

As = 

0 0 

[0 0

0 0

0 0
0 0
—kd
2H1

0

0
—kd
2H1-

AEs 
=

0 0
0 0
0 0

0 0

0
kd
2H1

0 0
0 0

kd 
2H1

0



Note that only differences in the DDEs describing the
closed loop dynamics (6) and (8) are the matrices As, Ar
and As, .A1-21V.

Because the systems in (6) and (8) have a Laplacian matrix
T, within their structure, they retain the eigenvalue at (0, 0),
which is unaffected by both the delays and the proportional
gain kd. To be able to analyze the stability of the system, the
size of the system is reduced by combining the two rotor angle
states 81 (t) and 82(0 into a single one: 812 (t) = 81(0 - 82(0 .
This state transformation reduces equations (6) and (8) to third
order. These reduced state equations are used in this paper
henceforth.
Even though it is natural to assume that local information

delay is smaller than remote delay, for full generality, in this
work no assumptions are made about the size of the delays. In
practice, these delays depend on the communication channels
linking the controller and the remote measurement devices.

III. STABILITY CRITERIA FOR SYSTEMS WITH TWO
ASYMMETRIC TIME DELAYS

In this section we present a Lyapunov-Krasovskii approach
to determining delay-dependent stability criteria for the sys-
tems (6) and (8). The following theorem, first introduced in
[13], gives delay-dependent criteria for asymptotic stability
of DDEs of the same form as (6) and (8). Further discussion
of this result, including discussion of its conservativeness as
compared to other related results, can be found in [11], [13].

For this result, we generically write systems (6) and (8) as

±(t) = Ax(t) + Aix(t - TO + A2x(t - 7-2)• (9)

Theorem 1 (Asymptotic stability [13, Theorem 1]). The
system (9), with time delays Ti > 0, i = 1, 2, is asymptot-
ically stable if there exist symmetric positive definite matrices
P = PT > 0 and Qi = Ciir > 0, i = 1, 2, symmetric
positive semi-definite matrices W = WiT > 0, Xii =T > 0,
Y,,, = YiT > 0, Zid = ZL > 0, i = 1, 2, 3, and any matrices
Ni, Si, Li, i = 1, 2, 3, and Xj3, Yu, Zu, 1 < i < j < 3,
such that the following LMIs hold

4)11 (1)12 4313
4. = 4)T- .2 - 4322 (1,23 < 0, (10a)

4)-13 (D-2r3 4)33

[X11 X12 X13 N1
Xj2 X22 X23 N2

=

‘113 =

where

k

> 0
XT3 X23 X33 1V3
N1T N1 N; Wi,

1 '

[
Y11 Y12 Y13 S1

17-1T2 Y22 Y23 S2

Y1; Y2T3 1/33 S3 ? 13 '
ST SI .SSE T/V2,

[
Z11 Z12 Z13 kL1-

Z13 Z22 Z23 kL2
ZT3 ZL Z33 kL3
kLT kL1 kLT w-3,_

1 if Tl > T2)
-1 if Tl < T2.

(10b)

(10c)

> 0, (lOd)

The elements of are defined as

(1,11 =PA+ AT P + Qi + Q2 + + NiT + + ST

+ ATTA 7-1X11 + r2Y11 k(T1 7-2)Z11,

4)12 =PA1 + N2 + S2 - L1 + AT T A1

+ r1X12 + r2Y12 k(1-1 7-2)Z121

4)13 =PA2 + + S-1 - Sl + Li + ATTA2

+ TiX13 + r2Y13 + k(ri 7-2)Z13,

(1)22 = Q1 N2 - - L2 - L-2r + T Al

+ 71X22 + r2Y22 k(r1 7-2)Z221

11)23 - - S2 + L2 - + T A2

+ T1X23 + r2Y23 + k(ri 3-2)Z23,

11'33 - - Q2 S3 - S-3F + L3 + + A-2FTA2

+ 7-1 X33 + r2Y33 k (1-1 r2 )Z331

where T = 7-1W1 + r2W2 + k(r1 r2)W3.

Proof. The proof can be found in [11], [13] using the
Lyapunov-Krasovskii functional:

V(x(t)) = Vi(x(t)) + V2(x(t)) +V3(x(t))
+ V4(x(t)) + V5(x(t)) + V6(x(t)),

where

Vi (x(0) = x(t)TPX(t)
t

V2 WO) = ft-ri XT (s)Qix(s)ds

173 (x(0) = ft-r2 XT (s)Q2x(s)ds

V4 (x(0) = f° f 61t ±T (s)Wi*s)dsdO1 

V5(x(t)) = f Iet XT (s)W2X(s)dsc1.0

V6(x(t)) = f riT2 ft+t

and 0 e , 0].

T(s)W3X(s)dsdO,

❑

In the next section, we present numerical results showing
the regions of asymptotic stability determined from the criteria
in Theorem 1 for examples of systems (6) and (8).

IV. NUMERICAL RESULTS

The test system of this study is the two-area power system
shown in Fig. 2. It is assumed that the two areas are identical
with the parameters given as, D1 + 1/Ri = D2 + 1/R2 = 0.1,
Hl = H2 = 5/2, and T, = 14. With these parameter values,
the open-loop system (when kd = 0) has a complex pair of
eigenvalues located at -0.01 ± 2.336j, which corresponds to
the least damped inter-area mode of the system. This mode of
oscillation is damped by increasing kd as is shown in Fig. 4.
These results show that when no delay is considered, the
modes of the inter-area oscillation move further to the left



in the left-half plane, thereby improving the overall stability
of the system. In this section, the effects of including delay
in the feedback signals on the stability of the system are
presented. The results are derived from Theorem 1. Several
values for the controller gain kd and time delays 7-1. and T2
are considered. In addition, several time-domain simulations
are presented and analyzed in order to validate the regions of
stability determined from Theorem 1.

x ka
o ka =0.1
• kd =0.5
A kd =1
o kd
* ka =5

4

-I -0.8 -0.6 -0.4 -0.2 0
Real Axis

Fig. 4: Effect of increasing kd on the modes of the system in closed loop
(without considering delays). Note that the eigenvalue at -0.02 is not affected
by variations in kd.

A. Regions of Stability

The stability regions for the linearized two-area power
system (2), as shown in Fig. 2, with the parameters given
above can be computed by solving the LMI conditions (lOd)
in Theorem 1. Because the conditions in Theorem 1 are
only sufficient conditions, these results are expected to be
conservative. Solving the LMIs (lOd) for both systems (6)
and (8) results in the same stability regions, and the resulting
stability regions are shown in Fig. 5. Note that although the
regions in Fig. 5 are sufficient conditions for stability of both
system (6) and (8), the two systems exhibit different responses
to loads PL. This can clearly be seen in the first swing of
the time domain simulations in Fig. 8 below. Fig. 5 shows
that, for all values of kd shown, the systems (6) and (8) are
asymptotically stable if both T1 and T2 are relatively small or if
at least one delay, 7-1 or T2 , is very close to zero. As the value
of the controller gain increases, Fig. 5 shows that the regions
of stability shrink. This is counter-intuitive as increasing the
controller gain kd increases damping and causes the poles of
the non-delayed system to move further to the left in the left-
half plane (as seen in Fig. 4). Therefore, both systems are
less robust to time delays as the gain kd increases. The time
domain simulations in the next section verify this.

B. Simulations in Time Domain

The time simulations in this section, presented to validate
the validating the regions of stability shown in Fig. 5, show
each system's response to a sudden change in load after
1 second, represented as a step function in Pm. Fig. 6
shows time simulation results when the delays considered are
7-1 = T2 = 0.4 and 7-1 = T2 = 0.6. In this case, because the
delays are identical, both the HVDC implementation of the
controller in (5) and the ES implementation of the controller in
(7) are equivalent. The results in Fig. 6 show that for identical
delays 7-1 = T2 = 0.4, the systems are always stable and
that increasing kd improves the damping. However, when the

delays are increased to 71 = T2 = 0.6, both systems are
highly unstable for the larger values of the proportional gain
(kd = 3 and kd = 5). This means that the values of kd that
provide a strong stabilizing effect when the delays are smaller
are highly destabilizing when the delays are larger. Fig. 7 also
shows a case where an increase in kd (in this case from 3 to 5)
changes the effect of the controller from effectively providing
damping to destabilizing both systems. As mentioned before,
the regions of stability shown in Fig 5 may be conservative.
Fig. 6b highlights this fact because, even though the point
7-1 = 7-2 = 0.6 is not in the region shown in Fig. 5c when
kd = 0.5, the time simulation shows that the systems (6) and
(8) are stable when kd = 0.5 and 7-1 = T2 = 0.6.

Figs. 8a-8b show time simulations, for both controller
implementations, when the delays are 7-1 = 0 and 7-2 = 1.0.
These results show that increases in gain always provide
damping to the system. That is, if only one signal is delayed,
even with large delay, as long as the other has no (or very
small) time delay, the controller still stabilizes both systems
(by providing damping). Figs. 8c-8d show the same results
when the delays are reversed and take values of 7-1 = 1.0
and 7-2 = 0.0. These results validate the regions of stability
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1 5

0.5 1 1 5

(f) kd = 5

Fig. 5: Regions of stability for systems (6) and (8) derived from Theorem
1 with the HVDC controllers (5a)-(5b) and ES controllers (7a)-(7b), respec-
tively, with several values for the proportional gain kd.
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Fig. 6: Time simulations for the test system with different implementations
of the controller. The delays considered are symmetric and with values of
71 = T2 = 0.4 and 1-1 = T2 = 0.6.
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Fig. 7: Time simulations for the test system with different implementations
of the controller. The delays considered are Tl = 0.4 and T2 = 0.5.
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Fig. 8: Time simulations for the test system with different implementations
of the controller. The delays considered are 1-1 = 0.0 and T2 = 1.0 in (a)
and (b) and Tt = 1.0 and T2 = 0.0 in (c) and (d).

appearing in Fig. 5 along both the 7-1. and 7-2 axes.

V. CONCLUSIONS

This paper studies the effect that multiple asymmetric time
delays have on the stability of a two-area power system with
a dominant inter-area oscillation. Two different distributed
control implementations based on a proportional action that
modulates power injections in each area of the system were
proposed for damping this oscillation. The controllers' feed-
back signals, which come from both areas of the system, are

subject to asymmetric delays. Using a Lyapunov-Krasovskii
approach, the paper presents delay-dependent criteria under
which the feedback systems are asymptotically stable. From
these criteria, regions of stability are derived for several values
of the proportional control gain kd. Numerical results show
that while increasing the proportional control gain is beneficial
for damping the oscillation when the delays are small, the
effect is inverted for larger delays, causing the systems to
go unstable. Therefore, the systems are less robust to larger
delays when higher values of kd are chosen.
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