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Abstract

Data center cooling typically involves non-uniform
airflow and temperature distributions, which are affected
by the IT workload distribution. It is helpful to simulate
the airflow and temperature to optimize the workload
distribution. Traditional computational fluid dynamics
(CFD) simulation is usually time-consuming while
conventional reduced order models (ROMs), though
computationally fast, may generate inaccurate results
even after being fully trained. In Situ Adaptive Tabulation
(ISAT), contracting to conventional ROM, can make
prediction with error lower than a user-specified
tolerance. To demonstrate using of ISAT for optimal
workload distribution in data center, this paper presents a
preliminary study of an ISAT-based genetic algorithm
optimization platform. The ISAT is trained offline by
using the results from CFD simulations using a
hypothetical simple data center. The optimal workload
distribution determined by the platform leads to
approximately 6.8% of energy savings when compared to
the benchmark with a uniform workload distribution. We
note that the time cost for the entire optimization process,
including the training of ISAT is about 4 hours, which is
acceptable in the design phase.
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Introduction

ASHRAE (2015) recommends 27 °C as the maximum
inlet temperature for the IT equipment. In reality,
computer room air conditioners (CRACs) in many data
centers are operated at a significantly lower supply
temperature to avoid hot spots. While providing
redundant cooling, this leads to reduced cooling
efficiency (Tang et al. 2008). Therefore, it has been a
research topic on how to improve the energy efficiency
while still providing enough cooling to the data center
whitespace, where the IT equipment is placed. One of the
approaches is to optimize the workload distribution such
that CRACs can operate at a higher supply temperature or
lower airflow rate (Banerjee et al. 2010).

Moore et al. (2005) proposed several algorithms for
workload placement to maximize the supply air
temperature while ensuring the server inlet temperature
not exceeding the threshold. Tang et al. (2007)
investigated several load placement strategies to
minimize heat recirculation. Among these research, the

CFD simulations were conducted to obtain the thermal
map of the data center with regard to workload
distribution, which required huge computational efforts to
cover a large number of scenarios.

To reduce the computational cost, simplified airflow
models were proposed for fast prediction of indoor
environment. Zhang et al. (2009) developed a lumped
model to predict rack-inlet temperatures under various
supply airflow and rack-load scenarios. Since only one
effective aggregated rack and cooling unit were
considered based on a well-mixed assumption, the
lumped model may fail to capture local airflow pattern
and temperature distribution. Potential flow models were
used to predict the airflow and temperature distribution
(Toulouse et al. 2009). However, the potential flow model
is an approximate and simplified model, which may not
be as accurate as CFD, particularly when simulating the
jet flows from the perforated tiles.

Other than using physic-based models to generate
simplified  models,  statistics-based  approaches,
sometimes referred to as reduced order models (ROMs)
were also employed. Proper orthogonal decomposition
(POD) was used to predict the velocity and temperature
distribution in an office (Elhadidi and Khalifa 2005) and
rack-inlet temperature distribution in a raise-floor data
center (Demetriou and Khalifa 2013). Artificial neural
network (ANN) models were used to predict thermal map
of data centers (Moore et al. 2006), perforated-tile
flowrates and rack-inlet temperatures (Song et al. 2011).
However, the predictions of such statistics-based models
may become inaccurate when the queries lie beyond the
training domain.

To overcome the limitations of these simplified models,
an online self-learning ROM called in situ adaptive
tabulation (ISAT) was proposed. ISAT is a storage-and-
retrieval algorithm that was originally developed by Pope
(1997) to accelerate turbulent combustion simulations.
Tian et al. (2018) applied it in the indoor environment
simulation and presented promising results in terms of its
training and prediction. ISAT, which allows user to
specify an error tolerance, retrieves the output of a query
using linear interpolation if the error of such retrieval is
estimated within the error-tolerance. Otherwise, as
opposed to the conventional ROMs that would continue
the retrieving, ISAT will call a full-scale simulator (such
as CFD) to resolve the query. We will cover the detail of
the ISAT in the coming section.
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In this paper, we present an optimization platform based
on ISAT and genetic algorithm to optimize workload
distribution in a hypothetical data center. To accelerate
the training of ISAT, we employ a fast fluid dynamics
(FFD) model running on graphics processing unit (GPU)
(Tian et al. 2017; Tian, VanGilder, Han, et al. 2019; Tian,
VanGilder, Condor, et al. 2019) to simulate the airflow
and temperature distributions under different workload
distributions. With the optimal workload distribution
determined by the platform, CRAC supply-air
temperature can be increased approximately by 0.8 °C,
and this leads to 6.8% cooling energy savings.

Methodology
Introduction of ISAT and FFD

The idea of ISAT is to dynamically establish a lookup
table, based on which a new query can be quickly
evaluated by local linear regressions (Pope 1997).

In both training and evaluation stages, to answer a new
query, ISAT will first determine the nearest record to the
query point. If a query point is within the Ellipsoid of
Accuracy (EOA) of the nearest record in the ISAT table,
ISAT will estimate outputs using linear approximation
(retrieve). If the query point is outside the EOA of the
nearest record, ISAT will simultaneously perform a linear
approximation (retrieve) and a direct evaluation by
calling CFD simulations to determine the outputs.

Afterwards, the error between the solutions from retrieve
and direct evaluation will be compared. If the difference
is less than the total error tolerance, a grow action will be
executed to enlarge the current EOA of the record to
include the query point; Otherwise, an add action will be
performed to store the query point and its related data as
a new record in the ISAT table. The detailed description
of the workflow of the ISAT algorithm can be found in
(Tian et al. 2018).

To accelerate the training process, we employ FFD
running on graphics processing unit to perform the
airflow and thermal simulation. FFD is a faster alternative
to traditional CFD. FFD solves the same governing
equations as CFD does, but employs a different solving
technique. FFD was reported to be 50 times faster than
CFD and an additional factor of 30-1000 times speedup
can be achieved using parallel computing (Zuo and Chen
2010; Tian et al. 2017). Tian, VanGilder, Han, et al.
(2019) adopted FFD to simulate data center airflow and
found that FFD could achieve comparable accuracy to
CFD with the potential of significantly reduced solution
time. The readers may refer to (Zuo and Chen 2009; Tian,
VanGilder, Han, et al. 2019) for detailed description of
FFD.

Optimization platform based on ISAT-FFD

The idea of ISAT-FFD is that the prediction can be
retrieved based on an existing data record if the estimated
error is within a pre-defined tolerance. Otherwise, the
prediction will be obtained by calling FFD to conduct an
airflow and thermal simulation. We have conducted some
preliminary studies to evaluate using of ISAT-FFD for
indoor airflow simulations (Tian et al. 2018).
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Figure 1 Framework of the ISAT-based genetic
algorithm (GA) optimization platform

In this study, the optimization is performed based on
ISAT after it is fully trained offline using FFD
simulations. As shown in Figure 1, an optimization
platform that links ISAT-FFD with genetic algorithm
(Mitchell 1998) is developed to automate the whole
process from training/evaluation of ISAT to genetic
algorithm optimization.

The conventional airflow optimization evaluates the
fitness function (also called objective function, which
may be, for example, best thermal comfort) by directly
performing airflow simulations (e.g. CFD or FFD) to
predict the indoor velocity and temperature distribution
and then calculate the predicted mean vote (PMV) to
evaluate the thermal comfort. Different from conventional
method, the idea of this optimization platform is that we
first train a reduced order model ISAT by a series of data
set extracted from airflow simulations. For example, we
may use a series of data set including the boundary
conditions (as inputs) and the corresponding average
velocity and temperature at the occupant zone (as outputs)
to train the ISAT and store data in a database. Then the
ISAT should be able to predict the average velocity and
temperature at the occupant zone for a new boundary
condition based on existing neighboring points in the
database.

After the training finishes, the genetic algorithm is called
to perform optimization as shown in Figure 1. The genetic
algorithm first generates a series of candidate solutions
(initial population), which are then evaluated and sorted
with fitness function predicted by ISAT. Through



selection, crossover and mutation, better solutions will be
inherited to the next generation with a higher probability.
After iterations of the above procedure until the genetic
algorithm is converged, the optimal solution will be
exported. The advantage of this platform is that a fully-
trained ISAT should be able to evaluate the performance
of candidate solutions using the retrieve action (linear
regression) for most cases, which is much faster than full
airflow simulations.

Case Study

In the data center airflow management area, the rack-inlet
temperature is a critical parameter to evaluate the cooling
performance, which can be influenced by multiple factors,
such as, CRAC supply air temperature, and airflow
pattern near the racks (which may lead to mixture of hot
air with cool air). The maximum rack-inlet temperature
should not exceed 27 °C per ASHRAE specs (ASHRAE
2015). As a result, if the maximum rack-inlet temperature
is raised due to local hot spots caused by mixture of hot
air with cold air in front of the racks, the cooling system
has to lower supply air temperature or increase supply
flowrate, which leads to a lower efficiency of the cooling
system.

The workload distribution, which this paper is focusing
on, has significant effect on the airflow pattern near the
racks and further influences the rack-inlet temperature.
Therefore, we could eliminate the hot spots by optimizing
workload distribution and increase the supply air
temperature to improve the cooling.

FFD Modeling of the hypothetical data center

The whitespace (data center room where the IT
equipment is placed) is 6.7m, 5.5m, 3.7m in length,
width, and height, respectively. The total whitespace
floor area of the reference data center is 36.8 m? (396 ft?)
and the layout is shown in Figure 2. The data center
includes 10 racks with a total power of 60 kW. CRAC
pumps cool airflow to the raised-floor plenum, and the
supply airflows is distributed to the inlet of racks through
10 25%-open-area perforated tiles. The cool airflow is
then drawn into the racks, heated, and extracted from hot
aisles back to the CRAC directly through the room
without a ceiling plenum. We note that this hypothetical
data center is proposed to reflect a typical data-center
layout.

The total workload is evenly distributed over 10 racks in
the benchmark. The IT airflow is estimated as rack power
multiplying by 212 m3/h/kW (125 cfm/kW). The total

supply airflow rate is 12,750 m®/h, which leads to an air-
ratio of 1.

For modeling simplicity/convenience, we made the
following simplifications. First, only whitespace is
modeled, and the underfloor plenum is excluded. Since all
the perforated tiles in this case are 25% open-area-ratio,
to model the whitespace and under-floor plenum in a
detached way is justifiable, as the airflows in the two
spaces are fairly separated (Tian, VanGilder, Han, et al.

2019). Second, we employed a black-box rack model and
therefore workload is shifted from rack-rack (as opposed
to IT-to-IT). For the detailed description of the rack
model, refer to literature (Tian, VanGilder, Condor, et al.
2019).
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Figure 2 Plan view of the hypothetical simple data
center

Settings for FFD Simulations

As recommended by VanGilder and Zhang (2008), FFD
simulation adopted an uniform 6 inches (0.15 m) grid,
resulting into a total of 38,016 cells. Since FFD simulation
is inherently transient; we use a time step size of 0.1 s and
simulation time of 200 s, which is adequately long to
reach steady-state conditions. FFD employs a zero-
equation turbulence model (Dhoot et al. 2016). The FFD
simulation was performed on a workstation with 4
Intel(R) Xeon(R) E5-1603 CPUs and an AMD FirePro
W8100 GPU and the results of initial tests showed that the
time cost of a FFD simulation is about 61 s.

Training of ISAT-FFD

From sensitivity analysis, we found that the IT power of
the racks located at the ends of the rows have relatively
larger influence on the overall maximum rack-inlet
temperature. We assume that the powers of Rack-1 and
Rack-6 are always the same (represented by Input 1) and
the powers of Rack-5 and Rack-10 are always the same
(represented by Input 2). For other racks, we assume that
the remaining IT power is uniformly distributed over the
6 racks in the middle of the rows.

Table 1 Results of training ISAT-FFD models for the
three cases

Items\Cases Case 1-1 Case 1-2 | Case 1-3
No. of Queries 255,497 15,630 4,190
No. of Retrieve 253,673 15,433 4,103

No. of Grow 1,542 160 63

No. of Add 282 37 24
Training Time (hr.) 34.7 3.8 1.8

We proposed three cases with predefined total error
tolerances: 0.2 °C, 0.4 °C, and 0.6 °C for Case 1-1, 1-2,
and 1-3, respectively. The two inputs range from 1.0 kW
to 10.0 kW. The output is the maximum rack-inlet
temperature of the 10 racks. The results of the three cases
are shown in Table 1Table 1. In Case 1-1, the total
number of queries used in the training is 255,497, in
which 99.3% are retrieve actions, 0.6% are grow actions
and 0.1% are add actions. In Case 1-2 and Case 1-3, the
total numbers of queries drastically dropped to 15,630 and



4,190. Consequently, the numbers of the retrieve, grow
and add actions are also significantly decreased. As a
result, the training process takes 34.7 hours for Case 1-1,
and only 3.8 hours and 1.8 hours for Case 1-2 and Case
1-3.

[e) o)
1.4 Q Outliers

Error °C]
os
'

Extreme Values

Quartile 3

0.2
Median
Quartile 1

0.0 1 Ertreme Values

Case 1-1 Case 1-2 Case 1-3

Figure 3 Error distributions of evaluation points for the
three cases

After the training was completed, we evaluated the
accuracy of the ISAT table using 50 randomly-generated
data points (the same 50 data points for each case) and
correlated the prediction accuracy with the user-defined
total tolerance in the training. As shown in Figure 3, the
errors of ISAT predictions for the evaluated points are
generally within 0.2 °C, 0.45 °C and 0.85 °C for Case 1-
1, Case 1-2 and Case 1-3, respectively. Moreover, 75% of
the predictions of the queries are within 0.12 °C, 0.25°C
and 0.45 °C for the three cases, respectively. Generally,
we conclude that the ISAT prediction error is at the same
order of the total error tolerance specified at training
stage. To achieve a balance between prediction accuracy
and training cost, we think that 0.4 °C is a proper error
tolerance for this specific case.

Optimization of Workload Distribution

The optimization of the rack workload distribution was
performed based on the trained ISAT. Here we note that
although we chose 0.4 °C error tolerance in Case 1-2 for
training of ISAT, we also include the optimization results
based on Case 1-1 and 1-3 for comparison.

We set in GA the population size to be 30 and the number
of generations to be 100. The crossover and mutation
probabilities are set to be 0.6 and 0.1, respectively. The
fitness function of the optimization study is to minimize
the maximum rack-inlet temperature when the total
supply flow rate of the CRAC remains unchanged.

The optimization results are shown in Table 2. Generally,
the three cases obtain similar optimal solutions. The
optimal values of Input 1 and Input 2 are in the range of
about 1.0-1.3 kW and 9.6-9.9 kW, respectively. The
maximum rack-inlet temperatures with optimal workload
distributions are 15.4 °C from ISAT predictions for the
three cases. To evaluate the accuracy of the ISAT-based
optimization, we performed a FFD-based optimization.
The results show that there is only 0.1 °C difference

between the ISAT predictions and the results from FFD
simulations for the three cases.

Table 2 Optimization results of the three cases

Items\Cases Case 1-1 Case 1-2 Case 1-3
Fitness Minimize maximum rack-inlet
Function temperature
Input 1 (kW) 1.22 1.01 1.27
Input 2 (kW) 9.57 9.9 9.88
ISAT Output
°C) 15.4 15.4 15.4
Direct FFD
Simulation (°C) 155 155 155

Figure 4 compares the time costs for performing
optimization in different cases. The time cost of FFD-
based optimization (FFD-GA), which directly calls FFD
simulations to perform optimization, is roughly estimated
by the time cost of each FFD simulation (61s) and the total
number of FFD calls (3000) during the optimization. Case
1-1, Case 1-2, and Case 1-3, which first train ISAT using
FFD and then perform optimization by calling ISAT, take
only 69.1%, 7.7% and 7.1% of the time of the FFD-GA.
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Figure 4 Comparison of time costs for FFD-based
optimization (FFD-GA) and ISAT-based optimization
(Case 1-1, Case 1-2 and Case 1-3)

Evaluation of Energy-Saving Potential

The CRAC supply air temperature can be scaled up until
the rack-inlet temperature reaches maximum threshold
recommended by ASHRAE to improve cooling
efficiency. In the present case, the maximum rack-inlet
temperature is decreased by 0.8 °C from the benchmark
by optimizing workload. Therefore, the supply air
temperature of CRACs can be raised from 20.7 °C to 21.5
°C. Based on the empirical formula describe in (Moore et
al. 2005), the coefficient of performance (COP) is
estimated to be increased from 3.39 to 3.63, which results
in an energy saving of 1.1 kW. The cooling energy saving
percentage is estimated to be 6.8% by optimizing
workload distribution compared to the benchmark with a
uniform workload distribution.

Conclusion

This paper proposes an optimization platform that
integrates ISAT with a global optimization engine to seek



the optimal IT workload distribution. The platform is
demonstrated using a hypothetical data center, in which
ISAT is trained by using FFD simulations. With an error
tolerance of 0.4 °C, the training cost of ISAT is
approximately 3.8 hours and the optimization takes an
additional 0.1 hours. Compared to the benchmark having
a uniform workload distribution over racks, the optimal
workload distribution results into an increase of supply air
temperature by 0.8 °C, and this is estimated to save 6.8%
of cooling energy. In the future, we can further this study
by exploring advanced ISAT training method to reduce
training time cost and perform more case studies using
real data center layouts.
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