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Metal Oxidation Modeling Challenge
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Modeling Toolbox
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State-of-the-art of Computational Modeling
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(Atkinson, Review of Modern Physics, 1985)

Wagner In this intermediate length regime,
Theory some common simplifications are

not applicable such as local charge
neutrality or constant electric field.
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Length Scale Gaps in Oxidation Theories
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Moderate film thickness regime:
The coupling of charge interaction,
ionic diffusion, and chemical reaction
have to be addressed.
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Oxidation Modeling in Pure Metals
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= Chemical reaction

Coupling = Mass transport
phyS.ICS with = Charge interaction
no viable .

: — ] = Evolving structure
simplification

* Evolving electric field
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Phase-field Method
Governing Equations for Metal Oxidation

Reaction Diffusion + EIectrom|grat|on
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The electric field, satisfying Poisson’s equation, is
solved by an efficient numerical scheme for
arbitrary dielectric heterogeneity

V-[e(r)Veo(r)]+ p; (r) =0
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Simulated Results on Oxidation Kinetics Modeling
Linear = Parabolic kinetics Transition
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Oxide Growth Rate vs. Film Thickness
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Space charge effect can not be ignored




Results on Electric Field in a Growing Oxide Film

Two dominant representations:

* Homogeneous electric field across the film

* Electric field decays to zero exponentially away from the
surface or interface
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Electric Field in a Growing Oxide Film
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On-going Effort: Internal = External Oxidation
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Significance and Overview
Fe-, Ni-, or Co-base structural alloys applied at high
temperatures invariably rely on formation of an externally
oxidized, slowly growing layer (mainly Al,O, or Cr,0,),
for oxidation protection. Consequently, the transition
from internal to external oxidation iIs a basis for design of N _

Fig. 1 Transition from internal

those alloys. to external oxidation in Co-

8.99%Ti at 900°C for 528h,
(G.H. Meier et al, 1976)

Outstanding challenges to model this with Phase-Field:

a) Modeling plasticity due to volume expansion with oxidation
1. Guo, X. H.; Shi, S. Q.; Ma, X. Q, Appl. Phys. Lett. 2005, 87;
2. Yamanaka, A.; Takaki, T.; Tomita, Y., Mater. Sci. Eng. A-Struct. Mater.
Prop. Microstruct. Process. 2008, 491, 378.

* Elastic-perfect plasticity — No hardening behavior
 Deviatoric stress-free strain only — No dilatational deformatian



On-going Effort: Internal = External Oxidation
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oxidized, slowly growing layer (mainly Al,O, or Cr,0,),
for oxidation protection. Consequently, the transition
from internal to external oxidation iIs a basis for design of N _

Fig. 1 Transition from internal
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8.99%Ti at 900°C for 528h,
(G.H. Meier et al, 1976)

Outstanding challenges to model this with Phase-Field:

a) Modeling plasticity due to volume expansion with oxidation
1. Guo, X. H.; Shi, S. Q.; Ma, X. Q, Appl. Phys. Lett. 2005, 87;
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b) Modeling coherency loss involving transition between coherent,
semicoherent, and incoherent interfaces



3D Phase-field Elasto-Plasticity Simulation Demo
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Ellipsoidal inclusion undergoes
5% elongation along x-axis

Plastic deformation zone in the matrix



Tangential strain

Interface Coherency Effect on Elastic Energy
A 3-D Simulation Demo

= L Phase-field simulation (coherent)
0.01F Analytical solution (coherent)
+ ——&—— PR simulation (with loss of cohererncy)
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Tangential strain for a spherical
Inclusion with Isotropic eigenstrain
of 2% volume change

Even for a
dilatational
Inclusion,
coherency loss
can appreciably
reduce elastic
energy.



Summary

* Developed a simulation capability
based on Phase-Field Method to
simulate oxidation in simple systems —
Oxidation kinetics and electric field

* Further development of the model is
on-going to advance this model into a
useful tool that can be used to
eventually predict the life of an alloy
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Electric Field in a Growing Oxide Film

Two dominant representations:

« Homogeneous electric field across the film
* Electric field decays to zero exponentially away from the
surface/interface assuming thermodynamic equilibrium

JI = = DIVCI + ZUI ECI Flux equations
cVeE = Z ZieN ACi Linearized Poisson Boltzmann
i

Two negatively charged transporting species
with identical valences: i.e. z1=z2=-1 for
electrons and interstitial anions

Assume coupled-current condition

E=Ae b L E°
o _ k.T D,—D, 70
ec DD,

|, = ek, T /N e%C

Space charge Quasi-neutrality

E=Ade""» +E”

-
Q
P

8

4

2

=

1=

L

I

Electric field magnitude

0 Distance from interface

Schematic of the electric field near an
interface with a decaying screening term
plus a permanent remnant term .



