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Nuclear Reactor Accidents

■ When the nuclear facilities cooling
system fails during a nuclear reactor
accident, one possible scenario is a core
breach

■ A core breach occurs when a viscous
molten mixture of nuclear fuel (UO2),
cladding, and structural supports,
deemed "corium" breaches the
containment vessel in a nuclear reactor

■ Temperature of this material can
exceed 3000 ° Celsius

■ The molten corium can escape
containment forming a melt pool,
flowing along the reactor cavity ablating
the concrete structure

■ The corium can react with water and
concrete to form hydrogen gas, which is
highly combustible
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We are developing predictive
models of corium spreading to
incorporate into MELCOR,
Sandia's Nuclear Reactor Safety
Code

2



Corium Spreading
• Corium flow is characterized by an undulating

flow where the corium transitions between
solid/liquid phase change

• Corium flow is difficult to model using
conventional methods

• High temperatures involved with high
Peclet number

• Low viscosity of melt, temperature-
dependence and solidification

• Use a CVFEM-CDFEM methodology to model
corium flow

• Multiphase flow and heat transfer

• Follow surface topology and material
breakup with advanced free surface flow
algorithms

• Modeling effort motivated to aid in the
development of more accurate low-order
spreading models for MELCOR and to
engineering new design methods to prevent
containment breach in a nuclear accident
scenario
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TMELCOR is an
integrated, engineering-
level code to model and
simulate severe reactor
accidents

Important Severe Accident Phenomena

Accident initiation
Reactor coolant thermal hydraulics
Loss of core coolant
Core meltdown and fission product release
Reactor vessel failure EMIC
Transport of fission products in RCS and Containment
Fission product aerosol dynamics

 • Molten core/basemat interactions
Containment thermal hydraulics
Fission product removal processes
Release of fission products to environment
Engineered safety systems - sprays. fan coolers. etc
lodine chemistry. and more
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Finite Element Methods for Moving Interfaces in
Fluid/Thermal Applications Tested at Sandia
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Enriched Finite Element Methods

ALE Diffuse LS XFEM CDFEM

• Separate, static
blocks for gas and
liquid phases

• Static discretization

• Mesh quality can be
become a problem,
leading to re-
meshing of
geometry
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• Single block with
smooth transition
between gas and
liquid phases

• Static discretization

• Interface "smearing"

• Single block with
sharply enriched
elements (weak or
strong) spanning
gas and liquid
phases

• Interfacial
elements are
dynamically
enriched to
describe phases

• Separate, dynamic
blocks for gas and
liquid phases

• Interfacial elements
are dynamically
decomposed into
elements that
conform to phases
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Conformal Decomposition Finite Element

Method (CDFEM)
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■ Properties

• Supports wide variety of interfacial conditions (identical to boundary fitted mesh)

• Avoids manual generation of boundary fitted mesh

• Supports general topological evolution (subject to mesh resolution)

■ Similar to finite element adaptivity

• Uses standard finite element assembly including data structures, interpolation, quadrature

■ Modeling the molten flowing corium poses challenges for numerical models due to

presence of large Peclet numbers and Reynolds numbers
• GFEM technique is sometimes inadequate for suppressing spurious oscillations

• CVFEM discretization for advection dominated flow and heat transport

• CDFEM tracks the corium/air interface on an existing background mesh

■ CVFEM-CDFEM approach
• Spreading of molten corium in 2D and 3D

• CVFEM formulation suppress spurious oscillations associated with high Pe and Re flow regimes
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Governing Equations

Conservation Equations

N7 • u = 0

p + (u • V) u) = —V p + V • (11 (Vu + V uT))

pcp oT ( + u • vr)- v • (kV T) =

Level Set Equation

(u • V)(.6 = 0
/)l

Interface Boundary Conditions

= xEI E

[— pi p(x) (V u ± V u l )1A = x e
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Time-discretization scheme (2nd Order)
Momentum Prediction Levelset Advection 

(V • ii) widn = 0,
fcr

I P 
7 211— 2un + -u VA, • widn

1 n-1
nn 2 

At

▪ —PI + VW) • Vwidn

▪ a ((I — nn) + AtVii) • Vwicir = 0,

Sandia
National
Laboratories

Momentum Correction 

(V • un+1) widD = O.
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Verification and validation (capillary wave decay)
• Perturb two-phase interface with sinusoidal disturbance

• Interface shape should decay with specific frequency and rate (Prosperetti,
1981) at small amplitudes

• Accurate prediction of capillary wave frequency and amplitude decay

• CDFEM discretization of interface accurately captures surface tension
dynamics

• 2nd order mesh convergence observed

Interface Dynamics
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Viscosity model
• Ramacciotti (2001) temperature-dependent viscosity model

used for psuedo-solidification.

Table 1: Some static properties for the corium melt

Property Value (Units)

Density (pm) 8000 (kg • I11-3 )

Specific Heat (Cp) 565 (J • kg-1 • K-1)

Thermal Conductivity (km) (2.88 W • m-1 • K-1)

Surface Tension (y) 0.45 (N • m-1)

Liquidus Temperature (TL) 2910 (K)

Solidus Temperature (Ts) 2860 (K)

Emmisivity (E) 0.80

TL — T
f =  Ti, — Ts
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Viscosity as a function of temperature (Ramacciotti,
2001)
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Interface Modeling
Navier-Slip Condition 

((— pi p (V u + V uTr idf s = Prnli (14 — widFs,
P

Corium/Steel Heat Transfer

Ts — Tm = 0 on Fs

(icsVTs — kmVTm) = (Ts — Tm) on rs

Corium Radiactive Heat Decay (Na et. al; 2017) 

4d = 0.09540C°26

Corium/Air Radiative Heat Transfer

= Crad (T4 — Tr4er)

Corium/Air Convective Heat Transfer

q = h (T — T „t)
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CVFEM - CDFEM

• Large temperature gradients, low
thermal diffusivity of corium, and
relatively large scale makes this a
highly unstable two-phase flow
problem

• Control volume finite-element
methods (CVFEM) allow for a finite-
volume discretization to be used in
an existing finite-element framework

• Suitable for high-Peclet number
flows where advection can be
treated with an upwinding technique

• CVFEM used in conjunction with
CDFEM can be used to simulate high
Peclet number, two-phase flows
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GFEM-SUPG vs CVFEM
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• Spurious oscillations in temperature observed using a GFEM-SUPG approach

• Spurious oscillations not present in CVFEM approach

• Upwinding seems to be effective in stabilizing temperature
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FARO L26 Corium Spreading Exp.
• Approximately 160 kg - 80% UO2,
20% Zr02

• Spreading plate — stainless steel
• Pressure constant
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Geometry for simulations of corium
spreading in the FARO L26s experiment
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2D Corium Spread Modeling
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2D Corium Spread Modeling (cont.)

Temperature (Kelvin)
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3D Corium Spread Modeling
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Figure I 2: Contours of (a) temperature and (h) viscosity taken at a time snapshot - 10 s at vinous ft :.) planes showing the three-dimensional

effects of the melt solidification process.
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Figure I l: Material phase btocks of the melt (blue)• and steel (yellow) as a function of tune as the nnelt spreais and solidifies for the 3D simulation

in an isometric view (left) and top-down view (right). First evidence of solidification °mum at r 2.04 s.
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3D Corium Spread Modeling (cont.)

Time = 0.000
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Corium Spreading Simulations

• FARO-L26s Experiment
simulated — 80% UO2, 20%
Zr02

• 2D/3D simulations
completed

• Heat loss through the melt
boundary modeled

• Psuedo-solidification

modeled using Ramacciotti
viscosity model.

• Good agreement with

experiments
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2D Curront S. mulation
3-D Curront S. mulation

Co FARO L215S Expcir meal
Kawarbara a. Oka (20-12)

12 Na ca. al (2017)
YelY9 ei. al RI311)

0

8
0 6

La_
0_6

hire 1:5'

Simulation results compared to experiment
and other computations
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Conclusions and Future Work

■ Excellent agreement with 2D simulations

■ 3D simulations under-predicted corium spreading front
although same physics captured

■ More surface area exposed to trough side-walls

■ Higher solidification effect

■ Slip lengths remain model dependent

■ Scale problem up to the reactor scale (metric tons)

■ Include concrete ablation model

■ Develop a reduced-order model for MELCOR
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