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Background ) S
= Some basics:

= Focus on 3D elements (degree p)
= O(p3) degrees of freedom, O(p®) matrix entries

= Matrix storage may be prohibitive for larger p y
— Interest in matrix-free approaches a—*e ° P N
= Simple approach: Te nl o, o0
= O(p®) operations for element matrix Te R o ¢
= O(p®) for matrix-vector products :- e ° o °®
= Optimized approaches: st
P p_p _ “ p=4hex
= Sum factorization method (Orszag, 1980) element

— See refs for tensor product and simplicial elements
= O(p®) operations for matrix (optimal)
= O(p*) for matrix-vector products
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= A case for BDDC.:

= Treat each higher order element as a subdomain
= Challenging computations isolated to individual elements

= Coarse problem involves assembly of lower order elements
= We know how to solve this problem

= Existing theory available and promising numerical results

= So what’s the challenge?

= Dirichlet & Neumann problems at subdomain level involve large
dense matrices, leading to memory & computational concerns

= What to do?

= Develop BDDC preconditioner for easier problem that avoids
large dense matrices & use in Krylov method for original problem
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= Related work*:

= Pavarino (2007):
= Theory, 2D examples, exact solvers, single element subdomains

Klawonn, Pavarino, Rheinbach (2008):
= Theory, 2D focus, exact & inexact FETI-DP solvers

Pavarino, Widlund, Zampini (2010)
= Theory, 3D focus, almost incompressible elasticity, exact solvers
Isogeometric analysis: BCPS13, BPSWZ14

Bertoluzza, Pennacchio, Prada (2017)
= Virtual element method, 2D only, theory for triangular elements

Discontinuous Galerkin

= Talk today:

= Focus on memory efficiency & inexact solvers

*see Chapter 7 of TWO0S5 for a nice discussion of earlier non-BDDC work 5




Approach

= Let’s get our feet wet

= Exact solvers for dense element matrices (not memory friendly)

= BDDC coarse space based on edge averages

p

© apLrbwbdN

abhLhwWbD

Takeaway: Hex mesh results look great = focus on them for remainder of talk

4x4x4 hex mesh 6x6x6 hex mesh 8x8x8 hex mesh

iter cond iter cond iter cond
10 2.0 11 2.1 11 2.2
9 1.7 10 1.8 10 1.8
12 2.4 13 2.5 13 2.6
13 2.7 14 2.8 14 2.8

4x4x4 tet mesh 6x6x6 tet mesh 8x8x8 tet mesh

lter cond iter cond iter cond
12 2.3 13 2.4 13 2.5
20 8.5 21 8.5 21 8.5
29 15.2 29 15.1 29 15.1
35 21.3 35 21.3 36 21.3
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= How to avoid dense matrices?
= Use old idea from Orszag (1980)
= See Chapter 7 of TWO05 for discussion and other applications

K,  Kn
(dense) (sparse)
Memory O(p°) O(p?)

Factorization work O(p?) O(p®)
Factorization memory  O(p®) O(p*3)
AMG initialization O(p3)
AMG memory O(p3)

Recall optimized matrix-vector
products require O(p*) work

* |t's been said “A good preconditioner of a good preconditioner

remains a good preconditioner” ;




Approach ) 5=,

= Just how good is this preconditioner?
= Calculate min and max eigenvalues of Kpx = AK,x

= Gauss-Lobatto integration for K,

= Gauss-Lobatto integration for each constituent linear element of
K; gave better results than standard Gauss quadrature

p Amin Amax Amax/ Amin
2 0.42 2.25 5.3
4 0.50 2.51 5.01
6 0.49 2.64 5.35
8 0.48 2.69 5.60
10 0.47 2.72 5.79

Takeaway: Pretty good approximation, but no need for super accurate inexact solvers 3
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= Qverview:

= Construct BDDC preconditioner M~ for A,
= A; obtained from assembly of K; matrices
= Each K} matrix treated as its own subdomain

= Use either sparse direct solver or AMG preconditioner for local
Dirichlet and Neumann problems of BDDC

= Either way, no longer solving an interface problem

= Care needed for inexact solution of Neumann problems
= Neumann problems used to construct coarse matrices
= Inexact solvers should satisfy a null space property (see D07)

= Solve linear system Apx = b using a Krylov method with M1
as the preconditioner

9
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= First step: How well does M-! precondition A, ?

Unit cube, 64 subdomains, DBC on one side, solver tol 10-6,
edge-based coarse space, sparse direct subdomain solvers

p iterations condition #
2 7 1.4
3 8 1.7
4 10 2.2
5 12 2.7
6 14 3.2
7 15 3.8
10 19 5.6

= How well should M- precondition A,?
= Corollary C.2 of TWO05: K(M_lAp) < K(M_lAh)K(Ai_llAp) -
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Same problem but now BDDC preconditioner for original higher
order problem (sparse direct or AMG subdomain solvers®)

sparse direct AMG
p iterations condition # iterations  condition #
2 17 5.6 17 5.7
3 15 5.1 18 5.7
4 17 7.0 20 7.4
5 21 9.9 24 10.8
6 23 13.5 27 14.3
7 25 17.8 31 18.6

*V-cycle, single pre/post smoothing step, max coarse size 10, semi-coarsening ”
————



Recap ) e
= Effective BDDC preconditioner for higher order elements

= Challenging computations isolated to elements
— Problem looks like standard one after first level of coarsening

= Memory:
— O(p?) for sparse direct subdomain solvers
— O(p3) memory for AMG subdomain preconditioners
— Note: there are order p3 unknowns in the problem

= Work (per iteration):
— sparse direct subdomain solvers
» O(p®) initialization phase, O(p*) solve phase
— AMG subdomain preconditioners
» O(p3) for both initialization and solve phases

= Looks promising for direct solvers & AMG preconditioners

12




Sandia
References i) s

= Beirao da Veiga, Cho, D., Pavarino, L.F., and Scacchi, S., “BDDC
preconditioners for isogeometric analysis”, Math. Models Methods Appl.
Sci., Vol. 23, pp. 1099-1142, 2013.

= Beirao da Veiga, L., Pavarino, L.F., Scacchi, S., Widlund, O.B., and
Zampini, S., “Isogeometric BDDC Preconditioners with Deluxe Scaling”,
SIAM J. Sci. Comput., Vol 36, pp. A1118-A1139, 2014.

= Bertoluzza, S., Pennacchio, M., and Prada, D., “BDDC and FETI-DP for
the virtual element method”, Calcolo, Vol. 54, pp. 1565-1593, 2017.

= Dohrmann, C.R., “An approximate BDDC preconditioner”, Numer. Linear
Algebra Appl., Vol. 14, pp 149-168, 2007.

= Klawonn, A., Pavarino, L.F., and Rheinbach, O., “Spectral element FETI-
DP and BDDC preconditioners with multi-element subdomains”, Comput.
Methods Appl. Mech. Engrg., Vol. 198, pp. 511-523, 2008.

= Qrszag, S.A., “Spectral methods for problems in complex geometries”, J.
Comput. Phys., Vol. 37, pp. 70-92, 1980.

= Pavarino, L.F., “BDDC and FETI-DP preconditioners for spectral element
discretization”, Comput. Methods Appl. Mech. Engrg., Vol. 196, pp. 1380-

1388, 2007.
13




National

Sandia
References ) fat

= Pavarino, L.F., Widlund, O.B., and Zampini, S., “BDDC preconditioners for
spectral element discretizations of almost incompressible elasticity in three
dimensions”, SIAM J. Sci. Comput., Vol. 32, pp. 3604-3626, 2010.

= Toselli, A. and Widlund, O., Domain Decomposition Methods — Algorithms
and Theory, Springer Series in Computational Mathematics, Vol. 34, 2005.

= Optimized approaches for element matrices and matrix-vector
products:

= Melenk, J.M., Gerdes, K., and Schwab, C., “Fully discrete hp-finite
elements: fast quadrature”, Comput. Methods Appl. Mech. Engrg., Vol.
190, pp. 4339-4364, 2001.

= Ainsworth, M., Andriamaro, G., and Davydov, O., “Bernstein-Bezier finite
elements of arbitrary order and optimal assembly procedures”, SIAM J.
Sci. Comput., Vol. 33, pp. 3087-3109, 2011.

= Ainsworth, M., Davydov, O., and Schumaker, L.L., “Bernstein-Bezier finite
elements on tetrahedral-hexahedral-pyramidal partitions”, Comput.

Methods Appl. Mech. Engrg., Vol. 304, pp. 140-170, 2016.
14




