

A Memory Efficient BDDC Algorithm for Higher Order Elements

Clark Dohrmann

**Computational Solid Mechanics &
Structural Dynamics Department
Sandia National Laboratories**

**25th International Domain Decomposition Conference
St. John's, Newfoundland, Canada
July 23-27, 2018**

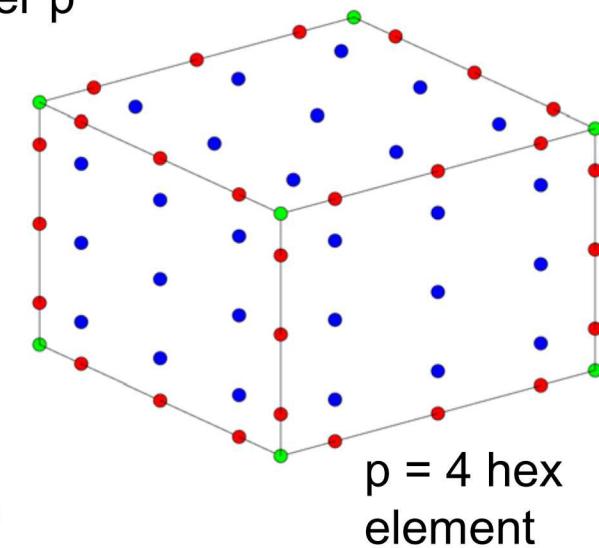
Outline

- **Background:**
 - Some basics
 - A case for BDDC
 - Related work
- **Approach:**
 - Avoid dense matrices
 - Allow for inexact solvers
 - Work and memory estimates
- **Numerical Results**
- **Recap**

Background

- **Some basics:**

- Focus on 3D elements (degree p)
 - $O(p^3)$ degrees of freedom, $O(p^6)$ matrix entries
 - Matrix storage may be prohibitive for larger p
 - Interest in matrix-free approaches
- Simple approach:
 - $O(p^9)$ operations for element matrix
 - $O(p^6)$ for matrix-vector products
- Optimized approaches:
 - Sum factorization method (Orszag, 1980)
 - See refs for tensor product and simplicial elements
 - $O(p^6)$ operations for matrix (optimal)
 - $O(p^4)$ for matrix-vector products



Background

- **A case for BDDC:**
 - Treat each higher order element as a subdomain
 - Challenging computations isolated to individual elements
 - Coarse problem involves assembly of lower order elements
 - We know how to solve this problem
 - Existing theory available and promising numerical results
- **So what's the challenge?**
 - Dirichlet & Neumann problems at subdomain level involve large dense matrices, leading to memory & computational concerns
- **What to do?**
 - Develop BDDC preconditioner for easier problem that avoids large dense matrices & use in Krylov method for original problem

Background

- **Related work*:**

- Pavarino (2007):
 - Theory, 2D examples, exact solvers, single element subdomains
- Klawonn, Pavarino, Rheinbach (2008):
 - Theory, 2D focus, exact & inexact FETI-DP solvers
- Pavarino, Widlund, Zampini (2010)
 - Theory, 3D focus, almost incompressible elasticity, exact solvers
- Isogeometric analysis: BCPS13, BPSWZ14
- Bertoluzza, Pennacchio, Prada (2017)
 - Virtual element method, 2D only, theory for triangular elements
- Discontinuous Galerkin

- **Talk today:**

- Focus on memory efficiency & inexact solvers

*see Chapter 7 of TW05 for a nice discussion of earlier non-BDDC work

Approach

- Let's get our feet wet

- Exact solvers for dense element matrices (not memory friendly)
- BDDC coarse space based on edge averages

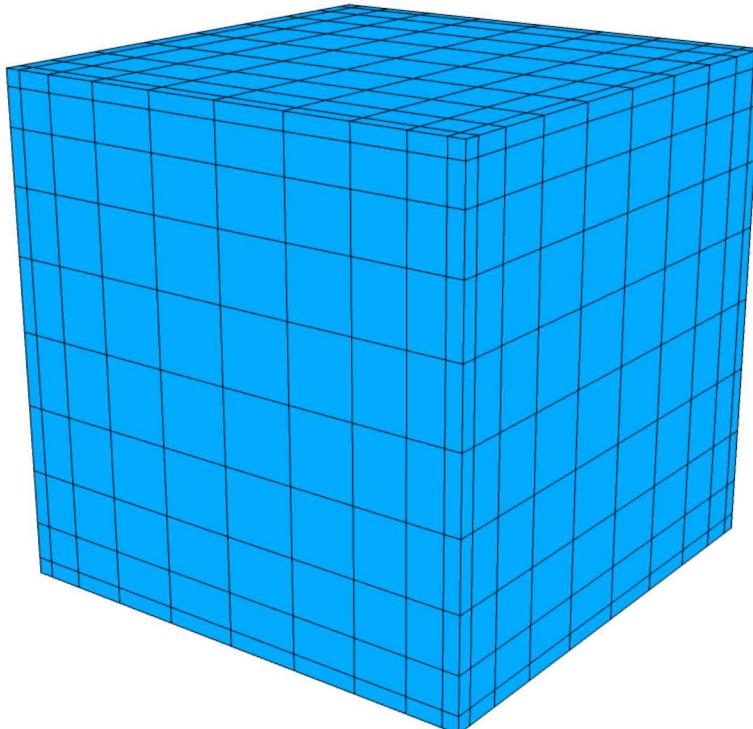
p	4x4x4 hex mesh		6x6x6 hex mesh		8x8x8 hex mesh	
	iter	cond	iter	cond	iter	cond
2	10	2.0	11	2.1	11	2.2
3	9	1.7	10	1.8	10	1.8
4	12	2.4	13	2.5	13	2.6
5	13	2.7	14	2.8	14	2.8

p	4x4x4 tet mesh		6x6x6 tet mesh		8x8x8 tet mesh	
	iter	cond	iter	cond	iter	cond
2	12	2.3	13	2.4	13	2.5
3	20	8.5	21	8.5	21	8.5
4	29	15.2	29	15.1	29	15.1
5	35	21.3	35	21.3	36	21.3

Takeaway: Hex mesh results look great \Rightarrow focus on them for remainder of talk

Approach

- **How to avoid dense matrices?**
 - Use old idea from Orszag (1980)
 - See Chapter 7 of TW05 for discussion and other applications



	K_p (dense)	K_h (sparse)
Memory	$O(p^6)$	$O(p^3)$
Factorization work	$O(p^9)$	$O(p^6)$
Factorization memory	$O(p^6)$	$O(p^{4/3})$
AMG initialization		$O(p^3)$
AMG memory		$O(p^3)$

Recall optimized matrix-vector products require $O(p^4)$ work

- It's been said “A good preconditioner of a good preconditioner remains a good preconditioner”

Approach

- **Just how good is this preconditioner?**
 - Calculate min and max eigenvalues of $K_h x = \lambda K_p x$
 - Gauss-Lobatto integration for K_p
 - Gauss-Lobatto integration for each constituent linear element of K_h gave better results than standard Gauss quadrature

p	λ_{min}	λ_{max}	$\lambda_{max}/\lambda_{min}$
2	0.42	2.25	5.3
4	0.50	2.51	5.01
6	0.49	2.64	5.35
8	0.48	2.69	5.60
10	0.47	2.72	5.79

Takeaway: Pretty good approximation, but no need for super accurate inexact solvers

Approach

- **Overview:**

- Construct BDDC preconditioner M^{-1} for A_h
 - A_h obtained from assembly of K_h matrices
 - Each K_h matrix treated as its own subdomain
- Use either sparse direct solver or AMG preconditioner for local Dirichlet and Neumann problems of BDDC
 - Either way, no longer solving an interface problem
- Care needed for inexact solution of Neumann problems
 - Neumann problems used to construct coarse matrices
 - Inexact solvers should satisfy a null space property (see D07)
- Solve linear system $A_p x = b$ using a Krylov method with M^{-1} as the preconditioner

Numerical Results

- First step: How well does M^{-1} precondition A_h ?

Unit cube, 64 subdomains, DBC on one side, solver tol 10^{-6} , edge-based coarse space, sparse direct subdomain solvers

p	iterations	condition #
2	7	1.4
3	8	1.7
4	10	2.2
5	12	2.7
6	14	3.2
7	15	3.8
10	19	5.6

- How well should M^{-1} precondition A_p ?

- Corollary C.2 of TW05: $\kappa(M^{-1}A_p) \leq \kappa(M^{-1}A_h)\kappa(A_h^{-1}A_p)$

Numerical Results

Same problem but now BDDC preconditioner for original higher order problem (sparse direct or AMG subdomain solvers*)

p	sparse direct		AMG	
	iterations	condition #	iterations	condition #
2	17	5.6	17	5.7
3	15	5.1	18	5.7
4	17	7.0	20	7.4
5	21	9.9	24	10.8
6	23	13.5	27	14.3
7	25	17.8	31	18.6

*V-cycle, single pre/post smoothing step, max coarse size 10, semi-coarsening

Recap

- Effective BDDC preconditioner for higher order elements
 - Challenging computations isolated to elements
 - Problem looks like standard one after first level of coarsening
 - Memory:
 - $O(p^4)$ for sparse direct subdomain solvers
 - $O(p^3)$ memory for AMG subdomain preconditioners
 - Note: there are order p^3 unknowns in the problem
 - Work (per iteration):
 - sparse direct subdomain solvers
 - » $O(p^6)$ initialization phase, $O(p^4)$ solve phase
 - AMG subdomain preconditioners
 - » $O(p^3)$ for both initialization and solve phases
 - Looks promising for direct solvers & AMG preconditioners

References

- Beirao da Veiga, Cho, D., Pavarino, L.F., and Scacchi, S., “BDDC preconditioners for isogeometric analysis”, *Math. Models Methods Appl. Sci.*, Vol. 23, pp. 1099-1142, 2013.
- Beirao da Veiga, L., Pavarino, L.F., Scacchi, S., Widlund, O.B., and Zampini, S., “Isogeometric BDDC Preconditioners with Deluxe Scaling”, *SIAM J. Sci. Comput.*, Vol 36, pp. A1118-A1139, 2014.
- Bertoluzza, S., Pennacchio, M., and Prada, D., “BDDC and FETI-DP for the virtual element method”, *Calcolo*, Vol. 54, pp. 1565-1593, 2017.
- Dohrmann, C.R., “An approximate BDDC preconditioner”, *Numer. Linear Algebra Appl.*, Vol. 14, pp 149-168, 2007.
- Klawonn, A., Pavarino, L.F., and Rheinbach, O., “Spectral element FETI-DP and BDDC preconditioners with multi-element subdomains”, *Comput. Methods Appl. Mech. Engrg.*, Vol. 198, pp. 511-523, 2008.
- Orszag, S.A., “Spectral methods for problems in complex geometries”, *J. Comput. Phys.*, Vol. 37, pp. 70-92, 1980.
- Pavarino, L.F., “BDDC and FETI-DP preconditioners for spectral element discretization”, *Comput. Methods Appl. Mech. Engrg.*, Vol. 196, pp. 1380-1388, 2007.

References

- Pavarino, L.F., Widlund, O.B., and Zampini, S., “BDDC preconditioners for spectral element discretizations of almost incompressible elasticity in three dimensions”, *SIAM J. Sci. Comput.*, Vol. 32, pp. 3604-3626, 2010.
- Toselli, A. and Widlund, O., Domain Decomposition Methods – Algorithms and Theory, *Springer Series in Computational Mathematics*, Vol. 34, 2005.
- Optimized approaches for element matrices and matrix-vector products:
 - Melenk, J.M., Gerdes, K., and Schwab, C., “Fully discrete hp-finite elements: fast quadrature”, *Comput. Methods Appl. Mech. Engrg.*, Vol. 190, pp. 4339-4364, 2001.
 - Ainsworth, M., Andriamaro, G., and Davydov, O., “Bernstein-Bezier finite elements of arbitrary order and optimal assembly procedures”, *SIAM J. Sci. Comput.*, Vol. 33, pp. 3087-3109, 2011.
 - Ainsworth, M., Davydov, O., and Schumaker, L.L., “Bernstein-Bezier finite elements on tetrahedral-hexahedral-pyramidal partitions”, *Comput. Methods Appl. Mech. Engrg.*, Vol. 304, pp. 140-170, 2016.