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Motivation

Vehicle vibration is a maximum
when a reentry vehicle undergoes
laminar to turbulence boundary-
layer transition.

• Pressure fluctuations peak during
boundary-layer transition.

• Need to model fluctuations and spatial
distribution to define the vehicle
environments.

• Need to understand how component
response is generated as a result of
these environments in hypersonic flow.
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Boundary Layer Transition and Pressure Loading

Pressure fluctuations are
generated by turbulent spots in
the transitional boundary layer

■ Need to model spot growth and
spatial distribution to predict the
pressure loading.

■ Current models based on
correlations to incompressible flow
data.

We have developed a similar
model for high-speed flows using
a turbulent-spot approach.

Shadowgraph of turbulent spots on a
5° sharp cone at Mach 4.3 in NOL

Ballistics Range, from Reda.
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Boundary Layer Transition: Instability Wave Packets

The second-mode instability is one of the dominant boundary-
layer instabilities at hypersonic speeds.

■ Acts like a trapped acoustic wave in the boundary layer.

■ Dominant instability is 2D.

■ Typically occurs at frequencies near 200-400 kHz.

Too high to drive vibrational response of structure.

Second-mode waves in Mach 8 boundary layer.

Transitional Boundary Layer, Mach 8
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Turbulent Spot Pressure Loading

Transitional pressure loading is generated by intermittent turbulent
spots in the boundary layer.

• Individual spots contain broadband turbulent pressure fluctuations

• Intermittent passage of spots drives lower frequency vibration.

• Spots grow and merge into a fully turbulent boundary layer.
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How fast do the disturbances grow?

• Average leading edge
convection velocity of
0.95 U...

• Trailing edge convection
velocity varies with Re

between 0.64-0.75 U...

• Results agree well with
DNS and other high-speed
experiments.
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How fast do the disturbances spread laterally?

Triangular footprint is estimated for disturbances at four downstream locations.

• Lateral edges of disturbances as they change downstream are used to compute lateral
spreading angle.

Found angle of 15 degrees, much higher than expected.

• High-frequency pressure fluctuations have never been used to define the spot footprint before.

• May provide a different spreading angle than other experimental or computational methods.

Still one of the largest uncertainties in our models.
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Experimental Setup

We want to study natural transitional boundary layers on a cone at Mach 5 and 8 to
obtain transitional statistics.

■ Simultaneous schlieren imaging and high-frequency pressure measurements.

Seven degree stainless-steel sharp cone in Sandia's Hypersonic Wind Tunnel.

■ Axial array with closely spaced high-frequency pressure transducers.

■ Directly beneath schlieren viewing area.

Model installed in HWT.

Mic-062 A-screen
Kulites

Axial pressure-transducer array.
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Mach 5 Measurements, Re = 9.75 x 106/m

Schlieren Videos
- —

Intermittent formation of second-mode
wave packets that then break down to
isolated turbulent spots.

• Observed in both schlieren videos and
simultaneous pressure measurements.

Disturbances are surrounded by a smooth
laminar boundary layer.

• To model this behavior, need to be able
to distinguish instability waves from

turbulence.
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Separating Instability Waves from Turbulence

Separate instability waves from turbulence using a wavelet transform technique, and
the frequency range of fluctuations.

• Technique does a reasonable job separating the two regions.

• Can see evidence of waves at leading and trailing edges of turbulent disturbances.

— These techniques rely on thresholds that must be set from user judgement, and they change with Re, M.

— Still an area of high uncertainty.
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Mach 5 Transition Statistics

Developed techniques to separate
waves from turbulence in both
pressure measurements and schlieren
videos.

■ Compute separate statistics for
instability waves and turbulent
spots.

■ Both measurement techniques
show reasonable agreement.

Waves remain a small part of
transitional region.

Turbulent intermittency rises rapidly
through transition.
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Computation of Boundary-Layer Statistics, Mach 8, Re = 9.74 x 106/m

—
Schlieren Videos

Flow alternates between second-mode
waves and turbulence.

• Smooth, laminar boundary layer not
observed in transitional region.

Important to separate waves from
turbulence in this case.

• Wavelet transform technique used to do this

• Then, use this to compute boundary-layer
intermittency and burst rates for waves and
turbulence.
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Natural Transition Statistics: Intermittency

Instability waves

• Significant part of the flow prior
to development of turbulent
spots.

Turbulent spots

• Gradually begin to dominate
flow.

• Turbulent intermittency rises as
instability wave intermittency
decreases.
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Natural Transition Statistics: Burst Rate

Burst-rate computations
shows flow switches between
turbulence and waves.
• Equal burst rate for instability

waves and turbulence.

• High burst rate when intermittency
is near 0.5.

• Burst rate decreases as spots
merge into turbulence at locations
further downstream.
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Impact and Application

• Forms some of the first datasets in hypersonic flow characterizing spot growth and
transition statistics.

• Previous measurements are limited and few and far between.

• Datasets are actively being used at SNL.

• Implemented in turbulent spot models for transitional flow at SNL.

• Used for flight vehicle computations.

• This effort was important for workforce development.
• Joint work between SNL and Purdue university for my

MS/PhD degrees.

• I continued on to SNL full-time.

• The need for hypersonic experimentalists continues and
we are seeing a major shortfall in qualified candidates at
Sandia. 17 Applied Force - Magnitude (lbF)
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What challenges still persist ?

■ Uncertainty in lateral spreading angle.

■ Uncertainty in thresholds set for computing transition statistics.

■ Generalizing to additional cases at nonzero AoA.

■ Generalizing to other geometries.



What is the vibrational response to this environment?

Very limited hypersonic fluid-structure interaction
experiments prior to this work.

Designed a cone with integrated thin panel that will
vibrate from flow excitation.
■ Boundary layer characterized using pressure sensors

upstream and downstream of panel.
■ Panel response measured inside with accelerometers.

A spark perturber is used to create
periodic turbulent spots in the
boundary layer.
■ Simplified validation case for

modeling and simulation.



Structural Characterization

Hammer test was performed to determine the
structural natural frequencies of the panel and model.

■ Measure structural response to a known input.
■ Mode frequencies are obtained up to 10 kHz.
■ Can also characterize mode shapes.
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Py Mode, fs = 2.1 kHz

Sinusoidal mode shape in spanwise (y) direction.
■ Oscillates with time.
■ Peak amplitude away from panel center.

■ Finite size accelerometer will see motion primarily in y direction.
■ Also z direction motion from spanwise rocking.

■ (2,1) mode shape
■ Note: mode shape displacement

is exaggerated!
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Px Mode, fs = 3.4 kHz

Sinusoidal mode shape in streamwise (x) direction.
■ Oscillates with time.
■ Peak amplitude away from panel center.

■ Accelerometer of finite size will see dominate x motion.
■ Will also see z motion from accelerometer rocking.

■ (3,2) mode shape.
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Response to Isolated Turbulent Spots

Panel shows a clear response to
spot excitation

• Response lasts longer than
forcing input.

• Directionally dependent
because of mode shapes of
excited structural natural
frequencies.
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Response to Periodic Spots at Structural Natural Frequencies

Forcing panel at a structural natural frequency excites a strong
modal response.
• Dominant response in mode shape directions predicted by structural

characterization.
• Mode matched case.
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Response to Periodic Spots at Detuned Frequencies

Ratio response to baseline
response measured under
a laminar boundary layer.
• Largest panel response when

forcing frequency matches a
structural natural frequency.
• 200 times larger than under

a laminar boundary layer!

• Smaller responses at detuned
frequencies.
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Effect of Tunnel Noise

Similar measurements were
made under noisy-flow
conditions at Mach 5 in the
Sandia Hypersonic Wind
Tunnel.
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Effect of Tunnel Noise

Already strong forcing by
tunnel noise without
additional spot loading

Forcing at this frequency
strongly excites the Px mode.
• Dominant response in x and z

because of the mode shape.
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Flight-like Environments

In a flight scenario, natural
transition contains a more
random distribution of spot
locations and generation times.
• As the freestream Reynolds number

(Re) increases, approach more fully
turbulent flow over the vehicle.

• How does this effect the panel

response?

Incompressible turbulent-spot model
simulation, Vinod (2007).
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Natural Transition at Mach 5

Observe elevated vibrations
during transition, at frequencies
> 3 kHz.
■ Re = 7.5-19.7 x 106/m

■ How does this relate to the

turbulent spots?
Vibrations drop for a fully
turbulent boundary layer.
■ Re = 13.9 x 106/m

Re = 7.5 x 106/m
Re = 9.0 x 106/m
Re = 13.9 x 106/m

Z-Acceleration Spectra
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Natural Transition at Mach 5

Compute boundary layer statistics from PCB132 sensors upstream and downstream of panel.
• Peak burst rate occurs midway through transition.

• Average burst rate gives and estimate of the dominant forcing frequency of the panel.

Boundary-Layer Intermittency
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Natural Transition at Mach 5

Non-uniform spot spacing in natural transition.
• PDF of spots, shows highest probability at average burst rate.
• Higher frequency forcing over broad range of frequencies.
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Flight-Like Environments

Spot forcing distributions corresponds to elevated vibrational
frequencies over a broad, high-frequency range during transition.
• Vibrations drop for turbulent flow as burst rate decreases.
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Impact

■ Few previous hypersonic fluids-structure interaction studies.
Novel dataset used for code validation and physical discovery.

Being implemented for actual flight geometries and conditions on the computational side.

Provides a tie between the turbulent burst rate during transition and the predicted excitation
frequencies of a structure.
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Computational Efforts: Simple Validation Case
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Single Spots

Predicted Structural

Response
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Computational Efforts: Flight-like Case
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What challenges still persist?

■ Still need additional experiments covering other parameters
■ Predictions at angle of attack or on more complex geometries.

■ Temperature effects in flight.

■ Two-way coupled or nonlinear structures.
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Future Research

■ What are the next scientific questions in your field and why
are they important?

■ Continue to mature datasets and computational comparisons.

Move to more complex cases

■ Hypersonic wake flows

Potential FSI input for a flight vehicle.

Affects signatures.

■ Better diagnostics for hypersonic flows

Extend temperature and pressure sensitive paint techniques to higher

frequencies and better sensitivity.

Laser based flow field diagnostics, e.g. FLEET.

Better structural diagnostics: digital image correlation, miniature high-

frequency accelerometers.



Summary: Hypersonic Transitional Boundary Layer Pressure Fluctuations

Outcome: Measured turbulent spot growth parameters and transitional statistics for typical
hypersonic transitional boundary layers.

• Previous spot modeling efforts focused on incompressible flow.

Impact and Use:

• Most of this work was performed jointly between SNL and Purdue University

• Workforce development — I continued this into my full time position at SNL. U pstream
Downstream

• In use at SNL for flight vehicle predictions.

Pressure footprint of turbulent spot, Mach 6
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Re (x106/m)

Turbulent burst rates for hypersonic flow



Summary: Hypersonic Fluid-Structure Interactions

Outcome: Characterized thin panel response to hypersonic transitional and turbulent
boundary layers under noisy and quiet flows
• One of few hypersonic FSI datasets, used for code validation and physical discovery.

• Tied vibrational responses to turbulent burst rates during boundary-layer transition.

Impact and Use:
• Used for code validation and flight vehicle predictions at SNL.

Hypersonic fluid-structure
interaction panel model
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