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2 Introduction and Background

RF limiters are required to protect sensitive receiver electronics from interferers
Co-site and multi-user interference: powerful Tx signals reflected back into Rx chains

Prevent damage to receiver components such as LNAs

Traditional approach: Anti-parallel shunt diodes between trace and ground
Advantages: fast, inexpensive, commonly available

Disadvantages: capacitance, non-linearity, increasing leakage with power

Proposed Approach: Metal-Insulator Transition Limiters
Device response is determined by Ron/Roff of temperature dependent film — broadband operation

"Slow" thermal response should improve linearity relative to diode limiters

Previous related work
CW and pulsed power response at powers up to 4 Watts (Limoges, France)

Numerous two- and four- terminal switch reports with V02 films (TSC, U. Dayton, others)

New contributions of this work
Characterization of Planar Metal-Insulator Transition Limiters to Powers > 10 Watts

Discussion of Failure Mechanisms
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3 Integrated VO2 Device Technology

4-mask flow allowing for top and bottom contact to
V02 film

V02 film is reactively sputtered and then annealed to
achieve proper stoichiometry

Enables fabrication on a range of substrates
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4 I V02 Limiter Designs

Thermally tunable shunt resistor between the center
conductor and ground

Thermal tuning is provided by RF dissipation within
the resistive film
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5 linterdigitated Limiter Response vs.Temperature

Representative device with 48 squares of material

Sheet resistance varies from 140 QL (100° C) to 140 k0/0 (25° C)

Silicon substrate contributes 0.1-0.2 dB of loss
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6 i Response as a Function of Device Size vs.Temperature

Devices range in size from -5 squares of material to -420 squares of material
Shunt resistance ranges: On-state: —94 kD to —1 kD, Off-state: —94 D to —1 D

Isolation in blocking state matches simple prediction well and is independent of frequency

Insertion loss in passing state higher than simple calculation and increases with frequency
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7 CW Power Sweep: Interdigitated Limiter
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8 Interdigitated Limiter: Pulsed

Limiting begins at 0.8 Watts of input power

As power increases, triggering time decreases

Amount of energy required to transition limiter is
approximately constant

Reducing spike leakage requires reducing transition time

Also observed history-dependent triggering (not shown)
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9 1 Tapered Limiter: CW Response

Repeated measurements
with increasing power until
device failure is observed
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Two failure modes:
Center Conductor: fails in
blocking state due to open
circuit in center conductor
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the shunt resistive element
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10 I Tapered Limiter:Threshold Shift After Repeated Cycles

Observed reduction in
limiting threshold after
repeated cycles

Appears to be dependent on
time and cycle history

Suggests changes or
damage to VO2 film during
cycling
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11 I Failure Mechanisms

Primary failure mechanism is localized burnout of
V02 film due to current crowding in the conductive
layer

Increasing areas of damage observed with multiple
cycles or increasing power

Mitigation Approaches:
Increase film resistivity ratio

Thermal engineering to encourage lateral, rather than
vertical, heat conduction

Design device to ensure power dissipation is lower in
high-temperature blocking state than power
dissipation in low-temperature passing state

V02 Destruction Due to Current Crowding
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12 1 Conclusions
V02-based Metal-Insulator Transition Limiters Offer Excellent RF Performance
Low insertion loss in passing state

High isolation in blocking state

Flat leakage with increasing power

However, the Nature of the Transition Presents Several Challenges
High spike leakage due to slow thermally-triggered response

Threshold shifts with temperature (and possibly history)

Device failures due to current crowding

Intentional Material and Device Engineering may Address these Challenges
Active temperature stabilization may be required to address threshold variations

Better material properties will improve on/off ratio and burnout thresholds

Device thermal optimization may mitigate failures due to current crowding and V02 burnout
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