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2 | Introduction and Background

RF limiters are required to protect sensitive receiver electronics from interferers
« Co-site and multi-user interference: powerful Tx signals reflected back into Rx chains

* Prevent damage to receiver components such as LNAs

Traditional approach: Anti-parallel shunt diodes between trace and ground
» Advantages: fast, inexpensive, commonly available

- Disadvantages: capacitance, non-linearity, increasing leakage with power

Proposed Approach: Metal-Insulator Transition Limiters
+ Device response is determined by R, /R 0of temperature dependent film — broadband operation
- “Slow” thermal response should improve linearity relative to diode limiters

Previous related work
» CW and pulsed power response at powers up to 4 Watts (Limoges, France)

* Numerous two- and four- terminal switch reports with VO, films (TSC, U. Dayton, others)

New contributions of this work
« Characterization of Planar Metal-Insulator Transition Limiters to Powers > 10 Watts

* Discussion of Failure Mechanisms
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3 | Integrated VO, Device Technology

* 4-mask flow allowing for top and bottom contact to
VO, film

+ VO, film is reactively sputtered and then annealed to
achieve proper stoichiometry

« Enables fabrication on a range of substrates
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5 |Interdigitated Limiter Response vs. Temperature

- Representative device with 48 squares of material
+ Sheet resistance varies from 140 Q/o (100° C) to 140 kQ/o (25° C)

« Silicon substrate contributes 0.1-0.2 dB of loss
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6

Response as a Function of Device Size vs. Temperature

 Devices range in size from ~5 squares of material to ~420 squares of material
« Shunt resistance ranges: On-state: ~94 kQ to ~1 kQ, Off-state: ~94 Q to ~1 Q

* |solation in blocking state matches simple prediction well and is independent of frequency

* Insertion loss in passing state higher than simple calculation and increases with frequency
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7 | CW Power Sweep: Interdigitated Limiter

 Device Triggers in “Stages”

+ Transition at One Point Lowers Voltage
Across All VO, Material

* The amount of remaining material that
transition depends on the VO, resistance
and lateral vs. vertical thermal
conductivity of the device

« Maximum Isolation >20 dB
* |solation increases with higher power
* Flat leakage
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8 | Interdigitated Limiter: Pulsed

« As power increases, triggering time decreases

Spike Leakage [uJ]
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9 | Tapered Limiter: CW Response

* Repeated measurements
with increasing power until
device failure is observed

« >50 Watt (47 dBm) Power
Blocking Reversibly
Demonstrated

* Two failure modes:

« Center Conductor: fails in
blocking state due to open
circuit in center conductor

* VO, Film: fails in passing
state due to destruction of
the shunt resistive element
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o | Tapered Limiter: Threshold Shift After Repeated Cycles

* Observed reduction in
limiting threshold after
repeated cycles

* Appears to be dependent on

time and cycle history

« Suggests changes or
damage to VO, film during
cycling
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11 | Failure Mechanisms

VO2 Destruction Due to Current Crowdmg
Primary failure mechanism is localized burnout of S e e r—
VO, film due to current crowding in the conductive F il -2
layer

Increasing areas of damage observed with multiple
cycles or increasing power

Mitigation Approaches:

 Increase film resistivity ratio

. The_rmal engineering ’go encourage lateral, rather than ST R t
vertical, heat conduction Increasing cycles

» Design device to ensure power dissipation is lower in
high-temperature blocking state than power
dissipation in low-temperature passing state
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12 | Conclusions

* VO,-based Metal-Insulator Transition Limiters Offer Excellent RF Performance
» Low insertion loss in passing state
+ High isolation in blocking state
- Flat leakage with increasing power

- However, the Nature of the Transition Presents Several Challenges
» High spike leakage due to slow thermally-triggered response
« Threshold shifts with temperature (and possibly history)
 Device failures due to current crowding

* Intentional Material and Device Engineering may Address these Challenges
+ Active temperature stabilization may be required to address threshold variations
- Better material properties will improve on/off ratio and burnout thresholds
» Device thermal optimization may mitigate failures due to current crowding and VO, burnout
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