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Radiation damage and induced microstructural change

present an on-going materials challenge
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Nanostructured materials trap defects and gasses,

limiting evolution and minimizing deterioration

* Nanostructured ferritic alloys (NFA) are
formed by mechanical alloying for fine grains
and high densities of nanoscale features

* Resistance to creep and coarsening at
high temperature

* Voids/bubbles kept small and off grain
boundaries via abundant nucleation

* Ogxide dispersion strengthened (ODS) alloys
are promising NFAs, as Y, Al, and Ti based
nanoparticles are fully incoherent and very
stable with 1rradiation

* With proper chemistry, NFA ODS materials
have also shown improved high temperature
oxidation resistance vs. conventional claddings

G.R. Odette, 2008
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Difficulties joining these advanced alloys, however,

require unconventional techniques

* Conventional fusion techniques degrade microstructure
via heat input and local melting
* Growth of nano-scale grains
* Coarsening, agglomeration, or redistribution of
ODS particles in molten regions

* Other solid-state welding techniques impractical for
small/thin cladding applications

e Capacitive discharge resistance welding (CDRW)
* Projection welding focuses current to an intense,
short-lived point
* Collapsing projection forces out surface oxides,
provides bonding layer material
» Capacitive discharge guarantees rapid thermal
cycles, no excess heating
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The projections in CDRW were adapted for
joining cladding tubes to caps

\ Fsq Feq &1 * Tube edge acts as our projection. Contacts

g cap chamfer for entire circumference
* Advantages:

* Reduced machining costs, precision

* Steep angle guides tube deformation

* Material flowing/spattering back into
tube captured in groove

Cap

* Disadvantages:
* Lower tolerance for shape, diameter
variations
* Complicates removal of cold work

Tube

E W’ Cross-section View

We Manufacture Innovation
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CDRW is controlled by complex interplays of

load, peak current, and pulse duration

Electrode
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* Washer stack maintains sub-ms mechanical follow-up

* The deposited heat would be determined by peak current
and pulse duration, but...

Alignment '

Plate | * The contact area 1s changed as load collapses the tube edge

(projection), for a quench-like effect
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Several materials were joined in order to better

bound the CDRW parameters

Materials Conditions
Ferritic Steel 430SS Load 2—-3N
B126Y Peak
FeCrAl Kanthal Current 15-30kA
ODS MA956 Duration 2—-5ms

EWI

We Manufacture Innovation
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Weld conditions were rapidly screened

using optical microscopy
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Detailed microstructural analysis followed using EBSD

FeCrAl

Cl>0.1
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Cl>0.1

Detailed microstructural analysis followed using EBSD

FeCrAl

Base
Material

Mechanically
Affected
~100 pm

Recrystallized
~50 um
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Detailed microstructural analysis followed using EBSD

FeCrAl

Base
Material
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Affected
~100 um
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Note the difference between
“hard” and “soft” components.
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Analysis of similar and dissimilar joints

leads to several key take-aways

1. No issues were observed with dissimilar materials — as expected given
the lack of mixing

2. Only 1in 25 welds was rejected for failure to seal, most issues arose
from excess flow or constraint problems

3. The zones commonly seen in welded materials were either significantly
reduced (~2x thinner) or absent in the CDRW joints

4. Joints between “hard” and “soft” components produced very different
weld microstructure across the interface, which could result in issues for
some combinations (e.g., hard-tube/soft-cap, refractory/non-refractory)
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Accelerated irradiation testing was carried out

using protons and heavy-ions
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Preliminary characterization of proton irradiated

joints revealed no significant change to oxides
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Conclusions

 CDRW was used to join similar and differing ferritic alloys. Weld quality varied, but produced
solidly bonded joints in most cases.

« CDRW joints showed considerably thinner — or absent — weld zones than more conventional
techniques, suggesting that weld performance (e.g., strength, resistance to degradation) will
be favorable. The thickness of recrystallized material, where it existed, increased at lower
loads, higher peak currents, and longer pulse durations — as expected.

 Analysis of proton and heavy-ion irradiated samples is only beginning, but CDRW joined ODS
material showed no significant changes to dispersed particles to 5 dpa.

 Future work in this line will focus on additional ODS materials (i.e., 14YWT) and include
additional, time prohibited testing of the welds (e.g., He leak, nano-/mesoscale mechanical).
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