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Background

Temperature is a critically important parameter for monitoring battery
State of Health (SOH) and can be used to apply real-time current limits
to Battery Energy Storage Systems (BESS). Further, limiting the
temperature is key to preventing thermal runaway events.While case
temperature is easily measurable, a simple model is required to estimate
the elevated core temperature. Previous work has shown the potential
for using a simple lumped capacitance thermal model with
experimentally determined internal conduction and external convection
thermal resistances for predicting core temperatures [1,2]. In this work,
the thermal resistance network model is expanded to multiple finite
volumes within a single cell to better resolve the internal temperature
distribution, and Nusselt number relationships are used to calculate the
convection resistance as a function of air velocity. By incorporating
velocity into the model, an additional decision variable may be added to
BESS control systems to help maintain optimal operating conditions. The
effects of varying electrical load and air velocity are explored.

Internal Temperature Model Results

Material and electrical properties for A123 LFP 18650 cell with |.l Ah
capacity and 4 A maximum charge current [4]. Experimentally
determined thermal conductivity and specific heat values were used [5].

Aggressive frequency regulation duty cycle [6]
Normalized cycle is adapted to maximum charging rate with zero SOC
change. | m/s air velocity maintains minimal temperature increases.
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Model refinements allow internal temperature gradient quantification for

multiple electrical loads and air velocities

Mean and maximum temperatures are significantly lowered with air
cooling: T, decreases 62% maximum and 60% mean at | m/s air velocity.
Future work includes experimentally determining model parameter by
cycling batteries and monitoring temperature within a wind tunnel.
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Thermal Resistance Model

General form: E'Sys = Egen +E, — E D
Core node: CyTy = ?IZRQ + Uy(T; — Tp) Uo =
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Case node: C.T, = U.(T,py, — T.) — Uy (T, — Ty)

Convective Heat Transfer Coefficient

Convection resistance can be calculated as a heated cylinder in cross

flow where: U, = hA and Nu = khl? = CRe™Pr" [3].
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Repeated full charge and discharge
Cycling between 0% and 100% SOC at maximum charge current and
discharge current limited by Arbin battery tester. Air velocity of | m/s is

able to cool cells while charging.
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Varied Air Velocity

* Highly effective cooling of coreand <™
case at low velocities

* 62% maximum core temperature
decrease between 0 m/s and | m/s

* Diminished cooling at increased
velocities: 4.2% decrease in
maximum core temperature )
between 5 m/s and 6 m/s
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