

Sandia
National
Laboratories

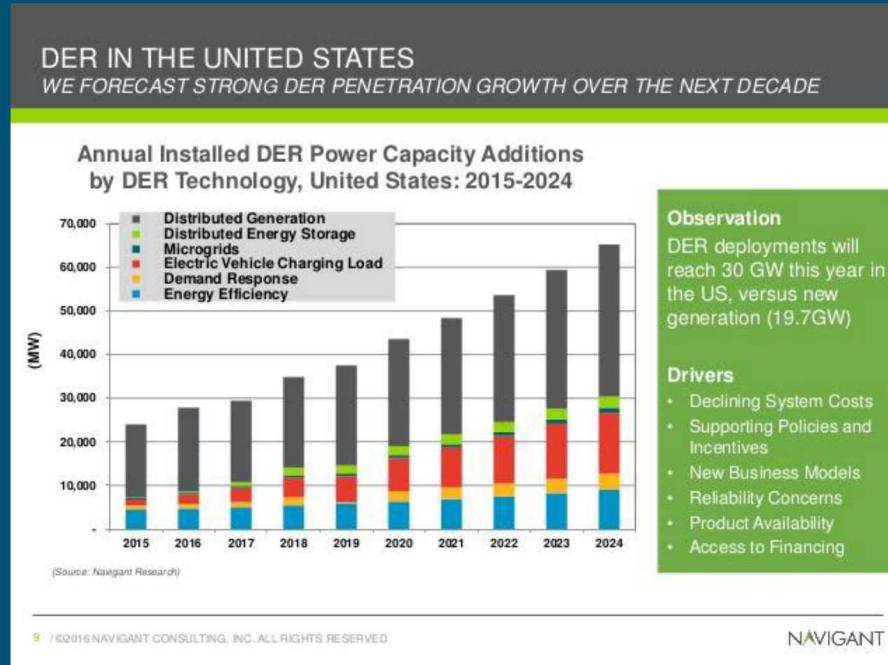
Introduction to Cryptography: Considerations for DER Systems

SAND #829970

PRESENTED BY
Christine Lai

Introduction

Emerging Cybersecurity Concerns for DER



Penetration of DERs is increasing in the grid; this enables and motivates the addition of grid-support capabilities

- IEEE Std. 1547 mandates new interconnection and interoperability standards to achieve these capabilities and allow **remote users** to change behaviors of many devices

Recent cyber attacks exploit ICS protocols shared by DER and bulk power systems

- The IEC 61850 communications standard is specifically targeted by the CrashOverride framework used in malicious attacks on the Ukrainian grid*

*<https://www.us-cert.gov/ncas/alerts/TA17-163A>
Image credit: Navigant Consulting, INC., 2016

3 | What is Cryptography?

Cryptography is used for securing communications in the presence of adversaries

- Historically, cryptography referred to encryption and decryption – the process of translating plaintext into ciphertext and vice versa

Modern crypto systems have many components:

- Encryption algorithms – symmetric and asymmetric
- Authentication protocol
- Identity management system
- Key exchange protocol
- Key management system
- Signing algorithm
- Public key infrastructure

All of these are needed to have strong cryptography!

Symmetric cryptographic algorithms

- Advanced Encryption Standard (AES), standardized in NIST FIPS 197
- Data Encryption Standard (DES, 3-DES), insecure but still used
- Many others for lightweight crypto, e.g., Blowfish, TEA (tiny encryption algorithm), etc. – but all have tradeoffs
- 128- or 256-bit keys are common for symmetric encryption

Asymmetric cryptographic algorithms, typically based on large prime factorization or discrete logarithms:

- Rivest–Shamir–Adleman (RSA), invented in 1978 and still used today
- Elliptic-Curve Cryptography (ECC), NIST FIPS 186-3, replacing RSA because smaller key sizes offer faster processing
- Longer keys are typically required for asymmetric algorithms (e.g. 1024- or 2048-bit for RSA, 256- or 384-bit for ECC)

Hash functions

- Secure Hash Algorithm (SHA-1, SHA-2, SHA-3), standardized in NIST FIPS 180
- Message Digest 5 (MD5), insecure but still used

Public-key cryptography

- Diffie–Hellman key exchange
- Public Key Infrastructure (PKI)

“We use 256-bit AES encryption”

- What is being encrypted?
- Offers no inherent security without proper key management, authorization, etc.

“The target area is only two meters wide. It's a small thermal exhaust port, right below the main port. The shaft leads directly to the reactor system.”

- System designers are often poor judges for the vulnerabilities in their systems

Weaknesses in modern crypto systems:

- Encryption algorithms are designed to be safe against current computing capabilities – logical flaws are rarely exploited without advancements in computing
- Vulnerabilities are typically introduced through flaws in implementation
- Systems should be protected evenly and within reason against your threat
 - Don't install steel doors on a straw hut but do install them on your bank vault

Use of security is mandatory for communications between utility servers and clients and is within the utilities' domain of responsibility:

- HTTP over TLSv1.2m
- TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 cipher suite with secp256r1 elliptic curve
- X.508v3 device certificate that chains to the Root-CA
 - SHA256 certificate hash
 - 160-bit Long-Form Device Identifier (LFDI)
 - 11-digit decimal plus 1-digit checksum Short-Form Device Identifier (SFDI)
- PKI authentication
- LFDI for authorization
- Server ACL

What are the implications?

- All components should be implemented to ensure system security
- Implied requirements: DER vendors must secure their private keys and install them on devices at time of manufacture