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The design of satellites usually includes the objective
of minimizing mass due to high launch costs, which is
complicated by the need to protect sensitive electronics
from the space radiation environment. There is growing
interest in automated design optimization techniques to
help achieve that objective. Traditional optimization
approaches that rely exclusively on response functions (e.g.
dose calculations) can be quite expensive when applied to
transport problems. Previously we showed how adjoint-
based transport sensitivities used in conjunction with
gradient-based optimization algorithms can be quite
effective in designing mass-efficient electron/proton
shields in one-dimensional slab geometries. In this paper
we extend that work to two-dimensional Cartesian
geometries. This consists primarily of deriving the
sensitivities to geometric changes, given a particular
prescription for parametrizing the shield geometry. We
incorporate these sensitivities into our optimization
process and demonstrate their effectiveness in such design
calculations.

I. INTRODUCTION

Satellites in orbit around Earth encounter harsh
radiation environments due to trapped electrons and/or
protons. Electronics and other components often require
shielding; the amount needed depends on the orbit and the
mission lifetime. The mass of shielding adds to launch
costs and/or subtracts from satellite capabilities, so there is
motivation to optimize the shielding to minimize the mass.
If multiple shielding materials are under consideration, the
optimal design is not obvious due to competing physical
processes.'

In recent years there has been a growing body of work
in the radiation transport community on the use of adjoint
problems to inexpensively obtain sensitivities of output
quantities of interest to various input parameters. In one
strain of research these sensitivities have been derived by
means of a Lagrangian approachP These sensitivities can
be used directly, or through an intermediate response
surface, to answer various analysis questions. In the works
cited above and related work the emphasis has been on
material sensitivities which have been used primarily to
inform uncertainty quantification (UQ) studies.

Other recent work has also used adjoint problems to
obtain sensitivities by means of a variational approach. In
addition to material sensitivities this work has also

examined geometric changes. In Ref 4 the sensitivities of
k-eigenvalues to the radius of a sphere, the thickness of a
shell, and the height or radius of a cylinder were derived.
In Ref 5 perturbation formulas for reaction rates and
boundary fluxes with respect to the thickness of a slab or
the radius of a sphere were derived, where "perturbations"
may be large changes in the geometry (in essence the
perturbation equations are extrapolations of the sensitivity
equations defined for differential changes). Such equations
are exact when the perturbations are "smalP, but are
inexact for larger changes. In Refs. 6 and 7 perturbation
equations for leakage fluxes due to nonspherical changes
in spherical geometries were derived. In some cases, the
equations are exact for small perturbations, but for other
changes the equations are always approximations. In Refs.
8 and 9 the sensitivities of certain leakage fluxes with
respect to the radii of spheres or the heights or radii of
cylinders were used to perform least-squares optimization
analyses to solve for up to three unknown geometric
variables in an inverse problem.

Recently we have applied adjoint-based sensitivities to
the question of design optimization for satellite shields.'
We derived sensitivities to key design parameters for
shielding in one-dimensional slab geometries by means of
a Lagrangian analysis. We incorporated these sensitivities
into a gradient-based optimization algorithm and
demonstrated the effectiveness of this approach for the
design of combined electron/proton satellite shields.

In the present work we extend the above approach to
two-dimensional Cartesian geometries. Our previous work
had derived sensitivities with respect to material changes
that are valid for any geometries, so the current work
focuses on geometry changes. This consists first in
defining a parametrization of shield geometries that
encompasses the desired design space and that is amenable
to analysis. We then derive transport sensitivities with
respect to changes in those geometric parameters. Finally,
we incorporate those sensitivities into our design process
and apply them to some problems of interest.

II. THEORY

In this section we present the theory of transport
sensitivities and how they are used in design optimization
calculations. First, we review the general theory of adjoint-
based transport sensitivities. Next, we describe our
previous work in one-dimensional transport sensitivities as
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applied to satellite applications. Finally, we derive
sensitivities for multi-dimensional geometries.

ILA. Previous Work

H.A.1. General Theory of Transport Sensitivities

We begin by briefly reviewing previous work that
derived a general expression for sensitivities.3 The general
problem to be considered is

alp + at (r, =

fE, dE' l4m d121 cr-s(r, —> E' —> E)ip(r, , 12' , E + q

(la)

= IPb (r, it E), (r E apin • ?I < 0} (lb)

R = fD dr fE dE f47r dthp(r , 12 , E)qt (r, E) (lc)

Equation (la) is the familiar Boltzmann transport equation
with boundary conditions given by Eq. (lb) and response
given by Eq. (1c). In the case of satellite shielding one
important response is dose to a component with qt =
ad (r, E)/ V .

For simplicity of notation we may express Eq. (1a) as

LIP + = SIP + q

We also define a general inner product

f p dr JE dE f d.flab E (a, b)

(2)

(3)

We introduce a Lagrangian and its derivative with respect
to a general input parameter p:

L = (0,qt) — (ot, Lip + — szp — ) (4a)

clL aL aL alp
clp ap alp ap (4b)

After combining Eqs. (2)-(4) and performing various
manipulations it can be shown that

cccip = [(1/), + (10,2)— (ipt, (4, (L + C — s))*)+
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If we impose the condition that ip and tP t satisfy the
following forward and adjoint problems:

(L + C — s)ip = q (6a)

(Lt + ct — st)ot = qt (6b)

then Eq. (5) reduces to

, ,Rib ôqt)+ (ipt (ipt ((L+ c—s))*)] = 
dp

ac _
ap dp
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Eq. (7) indicates that the sensitivity of a response R to
a parameter p is given by inner products involving a
forward solution an adjoint solution 01', and derivatives
of transport operators and sources; no other output
quantities or derivatives are needed. The same ip and ot
are needed for any arbitraryp; only the inner product varies
for different parameters. Thus, two transport solves in
conjunction with numerous relatively inexpensive inner
products may be used to obtain any number of sensitivities.
This reduction in the number of transport calculations
(relative to fmite difference techniques) is the key to
potential improved algorithmic performance.

II.A.2. Application to Satellite Shield Design in One-
Dimensional Slab Geometry

In previously reported work we derived transport
sensitivities for relevant design parameters in one-
dimensional satellite shielding applications!' We present
here the essential results of that analysis.

One important design parameter is material selection.
We assumed in our previous work that a satellite shielding
region consists of a homogeneous mixture of one or more
base materials (e.g. elements). We do not necessarily
envision that one would be able to use such a mixture in a
real application, but this approach simplifies the analysis.
With the above assumption we derived the following
expression for the sensitivity of a transport response (e.g.
dose to an electronic component) to the volume fraction

Pm,i of material m in region i:
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We note that the above equation is valid for general
geometries.

Another important design parameter is the physical
geometry. The sensitivity of a transport response to the
location x, of an interface between two constant-density
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material regions 1 and 2 (one of which could be a void
region) is given by:

daC OScR 

ci = — (11)9' 

( 

j.) (iPt,g' Li) 1 P + (IP 

dq 

=11Pm,2 (Cit,g ,m,2 — CIS ,g g ,m,2) f “"ti, g aLfwgkx1, a)
n,i.t rv‘,/,

g m 47r

(at,g,m,i (15,gg,m,1) f AN); (x

m 47r

+ f gt (x,11)Ipm,1M(E.gg,mi — fig o gigmol)D

g 4rz g m

f P gt (X, n) pm,2 — fig° P w(x,,

g 4rz g m

+

I3 1 1 
d,g,1 f dniP g(X 

P1141
— / dh f f dr0 g(r , S1)

1 
g 4rz g 4rz D1

1 y 1

p2V2 L-46 dh8,2 f dal P g(xi, p2 v22 d.8,2 f dfl f dr1P g(r n)
g 4rz g 4.7r D2

(9)

The above expression is valid only for one-dimensional
slab geometries.

II.B. Extension to Multidimensional Analysis

In this subsection we extend our previous work to two-
dimensional Cartesian geometries. As noted earlier the
expression we derived for the sensitivities to materials is
valid for all geometries. Therefore, we will focus on the
sensitivities to geometrical factors.

There are numerous ways that one could parametrize
geometries, which will affect the expression for geometric
sensitivities. For our purposes we will focus on the
situation that we depict in Figure 1. Here we show two
material regions (with arbitrary outer boundaries depicted
by the thin solid curves), with the interface between them
shown as a thick dashed curve. That interface is defined
by several "contra' points (we have arbitrarily chosen six
points for this example), with a line segment connecting
adjacent points defining the interface. We have chosen a
"centre" point pc, with rays ri through rm emanating from
that point and passing through the points that define the
interface. We may modify the geometry by allowing each
point defining the interface to move along its ray towards
or away from p„ subject to the constraints that it must stay
within the two material regions. The material regions may
or may not completely surround pc; in this example they do
not.

r,
4 _________

rl

4 ---

r6

-

-------- pc

Fig. 1. Parametric definition of material interface
geometry.

The derivation of geometric sensitivities will focus on the
movement of individual control points and their effect on
the local interface. To be more specific, we will examine
the area between any two adjacent rays in Figure 1 and how
the associated pair of control points affects the local
geometry and derived quantities. To that end we arbitrarily
choose to focus on the region between r2 and r3 to illustrate
our derivation. That region is depicted in Figure 2, in
which we have added more details necessary for our
derivations. We relabel rays r2 and r3 as b and t,
respectively, to emphasize the generality of our analysis.
We depict points pi through pN+i (in this figure N=4),
placed equidistantly along the material interface; our
analysis will examine the limit as N increases. At times we
will refer to pi and pN as pb and pt. We also depict points
pi through pin and pri through pni (with additional "b" and
"r labels) along the left and right region boundaries; their
locations are defined by rays emanating from the central
point and passing through the points on the interface. A
subtle observation to note is that as pb and pi move along
their rays due to changing geometries, the points in
between will follow a path that differs from the rays we
depict, which is a consequence of the requirement that they
be equidistant along the interface; this will affect our
analysis. We must emphasize that these additional points
only appear in our analysis for the sake of defining
subregions and do not define or constrain the geometry
beyond what was depicted in Figure 1. A subregion like
that depicted in Figure 2 may be thought of as a "building
block" or "unit cell" for the design of the shield; increasing
the number (while decreasing the size) of these subregions
through the addition of more control points may improve
the quality of the design.
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Fig. 2. Depiction of analysis points in region defined by
two control points.

To continue our analysis, we will again focus on
certain details. We arbitrarily pick the volume bounded by
points p3 and pa in Figure 2, which we depict in Figure 3
with some details omitted and others added. Here we show
two control volumes to the left and right of the interface
which we have defined by adding line segments that are
approximately perpendicular to the two rays (the error in
the approximation will tend to zero as N increases). The
line segments define a new (x', y') coordinate system.
Note that these line segments will not in general become
colinear with the material boundaries as N increases.

PI4
le iiii -...,... fp
/ ,

P13 -,, '''' I P4
I ,.... 'r,...x --....4:-.....

p31 -- ,:---/Pra
1 --- P-„

_
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Fig. 3. Definition of differential control volumes.

With the above geometric definitions, we may now
proceed with our sensitivity derivations. The requirement
that the numbered points on the interface in Figure 2 be
equally spaced yields:

fin = fib + n (fit — fib) (10)

To simplify some aspects of our analysis we define

n =
n-1
N

n' will vary between 0 and 1. This yields:

l5n = (1 — n'Vb + nii5t (12)

We introduce hb and ht, the distance of the control points
from the central point, with the following definitions:

fib = fic +hbg
fit = fic + htf

(13a)

(13b)

where we also define g and t to be unit vectors.
We express the location of each point pn (as it moves

due to control point motion) in terms of the control and
central points as well as its unperturbed location:

= 1 ((xbyt YbXt)(Xc xn) —)(14a)
An d (Xb Xt)(XcYn YcXn)

1 ((XbYt YbXt)(Yc Yn) —) (14b)52n =
(Yb Yt)(xcYn Yc-rn)

d = (xb — xt)(Yc Yn)
(Yb Yt)(Xc Xn) (14c)

We substitute Eq. (13a) into Eqs. (14) to express zn

and jin in terms of hb:

xn =
(((xc hbbx)Yt ()lc hbby)xt)(xc xn)

d ((xc hbbx) Xt)(Xcyn YcXn)

(15a)

Yn =
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d
((yc hbby) Yt)(XcYn YcXn)

(15b)

d = ((xc hbbx) xt)(Yc Yn) —

((Yc hbby) Yt)(xc — xn)
(15c)

Taking derivatives with respect to hb yields

a -±..n 1
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—111 [bx(Yc Yn) by(xc xn)]
(16a)
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We obtain similar expressions for — and —. We also

aht aht

will need the directional derivative of each of the points
with respect to the (x', y') coordinate system:

V nc,b13n = [ ria 111a 1T 15 n — 15 c 

ahb ahb-I 115n-15cl
(17)

The volumes of the regions to the left and right of the
material interface are given by

vl = Z I (3t — 13lb) x (3it —13b)1
vr = I (3,t —13b) X (13t — 13,b)1

(18a)

(18b)

The derivatives of the volumes with respect to geometry
changes are:

OV1 avr
ahb an,
aV1 — aV r

aht ant

= — 
2
g X 03t — /301 (19a)

= 
2

X 03t — 1301 (19b)

With the above expressions we can now address
transport sensitivities. We will show here some of our
derivation with respect to the collision operator, which is
given by

= 1[11(x' — .X1 — 11(x' — pn)][H 071 — y pn)
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The derivative of the collision operator with respect to the
location of the bottom control point is given by:

ahb
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With the above we may derive the contribution of the
collision term to the transport response sensitivity:

+Iv
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Taking the limit as N oo yields the collision contribution
to the transport sensitivity with respect to movement of one
of the control points for one subregion:

aR
lim  
N,00 onb

9

= f dn f dse
g m 4g ao,

• fiVnc,b73014 (5, 1-1)1Pg(s,

Pmr (Cit,g,m,r — Us ,gthm,r) f f ds?
47-r op,.

• n'Vnc,b 7344 (s 11)0g (s, 1/)
(23)

Analogous expressions are obtained for the scattering
and response operators. Their sum yields the overall
transport sensitivity of the desired response to movement
of one of the control points on the interface between two
constant-density material regions.

We note that the term ffVnc,b73n in Eq. (23) appears
to be the surface transformation function described in Ref.
11, which defines the magnitude of the perturbation of a
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given point on a surface in the direction of the surface
normal. Our function consists of two components. The
term Vnan is related to the distance that a surface point is
from the relevant control point and varies from zero to one.
The term F • 71 accounts for the fact that in our analysis the
surface points do not move along the surface normal.

III. RESULTS

In our previous work we implemented transport
sensitivities in postprocessing tools for the SCEPTRE
deterministic radiation transport code, which includes
adjoint capabilities.12 These sensitivities were
incorporated into an analysis process that includes Dakota
optimization algorithms; we used the NPSOL solver!' In
the present work we have incorporated our new geometric
sensitivities into that workflow. The use of complicated
two-dimensional geometries requires generation of finite
element meshes, which we handle with the Cubit mesh
generator" to obtain meshes with triangular elements.

As an example of our design optimization tools we
examine the problem that is depicted in Figure 4. Sensitive
components to be protected are within a 10" x 10" box.
Two of the sides of the box consist of 50 mils of aluminum
On one side we provide r of aluminum, meant to represent
the presence of a larger structure such as a satellite body.
On the final side we provide 1/2" of aluminum, meant to
represent other equipment or electronics boxes. This
asymmetry is intended to illustrate how the design tool
adjusts to the environment. We choose to examine the
proton environment for a circular orbit at 2000 km altitude
as defined by the AP8 model in Spenvis,15 which is
stressing enough to clearly show the behavior of our
algorithm. This environment is isotropically incident on
all sides of the problem. For our current purposes we
neglect the electron environment, both because the proton
environment dominates the response and because we use a
simple model for proton physics that allows for faster
runtimes.

Inside the box are four silicon components near the
corners and one component (or component region) in the
center. For all the components we perform forward and
adjoint runs with void in those regions to avoid self-
shielding effects, with later postprocessing determining the
response of each silicon component from the unperturbed
radiation field. On the inside surface of the box is one
shielding region, and surrounding the central component is
a second shielding region. The intention is to provide a
greater level of shielding to the central component(s),
perhaps due to a higher sensitivity to radiation. Each
shielding region is defined by eight points, which are free
to move along the arrows to make that portion of the shield
thinner or thicker, thus yielding two 8-sided polygons
whose shapes we need to determine. (The mesh resolution
will in general be finer than this parametrization, but the

shield surfaces will still be defined by eight line segments.)
The choice of only sixteen total control points is arbitrary;
adding more may improve the design but does nothing to
improve the accuracy of the sensitivity calculations. We
impose constraints on the points so that the shields do not
overlap the structure, components, or each other. For these
studies the shields consist of polyethylene at nominal
(constant) density.

Fig. 4. Initial geometry for design optimizations.

For our initial design study, we impose the
requirements that the components in the corners are limited
to 100 krad annual dose and the central region is limited to
40 krad. Our objective is to minimize the shielding mass.
Since this problem consists of five responses and sixteen
design parameters we will need to evaluate 80 sensitivities
at each design point. Starting with the initial design in
Figure 4, our optimizer produces the sequence of designs
depicted in Figure 5 as it searches for a mass-optimal
solution that satisfies the dose and geometric constraints.

We also report our adjoint-based sensitivities and
finite-difference-based sensitivities for the dose to the
center component (for relative step sizes of 0.1, 0.01, and
0.001) in Table I as evaluated for the final design in Figure
5d. In the table the points are labeled according to the
associated ray (numbered counter-clockwise starting in the
lower-left corner of Figure 4) and the shield (p 1 for the
outer shield and p2 for the inner shield).
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Fig. 5a. Second design iteration, 40 krad limit on central Fig. 5c. Fourth design iteration, 40 krad limit on central
region. region.

• •

Fig. 5b. Third design iteration, 40 krad limit on central Fig. 5d. Fifth (and final) design iteration, 40 krad limit on
region. central region.
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Table I. Adjoint and finite difference sensitivities for design of Figure 5d.

Control
point

Adjoint
sensitivity
(krad/cm)

FD sens.
(0.1 step

size)

Relative
difference

FD sens.
(0.01 step

size)

Relative
difference

FD sens.
(0.001 step

size)

Relative
difference

r1::p1 0.5533 0.5104 0.0775 0.5633 -0.0181 0.3578 0.3533
r2::p1 0.6709 0.6333 0.0561 0.6233 0.0710 0.9644 -0.4374
r3::p1 0.3611 0.3379 0.0643 0.3596 0.0041 0.3549 0.0173
r4: :pl 0.2758 0.2728 0.0109 0.3034 -0.0999 0.4305 -0.5606
r5::p1 0.4944 0.4457 0.0984 0.4775 0.0341 0.5857 -0.1847
r6: :pl 0.8796 0.8216 0.0659 0.8758 0.0043 1.0354 -0.1772
r7::p1 0.6155 0.5749 0.0660 0.6388 -0.0378 0.6259 -0.0169
r8::p1 0.8694 0.8129 0.0650 0.8539 0.0178 0.7315 0.1586
r1::p2 -0.5798 -0.5379 0.0722 -0.5598 0.0344 0.1695 1.2924
r2::p2 -0.6726 -0.6187 0.0801 -0.5973 0.1119 -1.3661 -1.0311
r3::p2 -0.3359 -0.3264 0.0284 -0.3181 0.0530 -0.0995 0.7039
r4::p2 -0.6286 -0.6161 0.0198 -0.4518 0.2813 -1.1644 -0.8524
r5::p2 -0.4543 -0.4336 0.0455 -0.4173 0.0814 0.4040 1.8892
r6::p2 -0.7885 -0.7324 0.0711 -0.7496 0.0494 -0.8296 -0.0521
r7::p2 -0.6869 -0.6385 0.0705 -0.6520 0.0508 -0.3199 0.5343
r8::p2 -0.7572 -0.6895 0.0895 -0.6040 0.2024 -0.3140 0.5854

We make a few observations about the design and
design sequence:

• The sequence of designs appears nearly
monotonic with respect to the geometry.
This will not always be true for the optimizer
we use, which may perform design iterations
that are intended to guard against settling on
a local rather than a global minimum.

• There is a slight amount of shielding in the
upper left portion of the outer shield. This is
desirable, since the dose to the component in
that corner will slightly exceed requirements
if only the aluminum were present.
Elsewhere that outer shield has the minimum
thickness we allowed to ensure valid mesh
creation.

• The irmer shield is asymmetric in a marmer
that is physically plausible, with more
shielding facing the thirmer aluminum
structure and the least facing the thickest
aluminum structure.

• The "blockiness" of our design is not an
approximation to the geometry; it is the
optimal geometry for the number of control
points and the placement of their associated
rays.

• There are some differences between our
adjoint-based sensitivities and those obtained
by finite difference calculations. We note
that we did not use a highly-resolved mesh
for these calculations, so there will be
numerical errors in both types of sensitivities,
in addition to the usual error of finite-
difference estimates. With a more highly
resolved mesh we would expect improved
agreement with smaller step sizes.

In Figures 6 and 7 we depict the fmal design produced
in two other design studies in which the requirement on the
central component is 30 krad and 20 krad, respectively.
We observe here that more shielding is supplied as the dose
requirement is lowered (as expected), and the shields
maintain their asymmetry. For the latter study an
interesting phenomenon occurs: all but one of the control
points of the inner shield are at their maximum extent,
forcing additional shielding in the outer layer. This nicely
illustrates how the optimizer respects constraints and
adjusts accordingly.

8



Fig. 6. Final design, 30 krad limit on central region.

Fig. 7. Final design, 20 krad limit on central region.

IV. CONCLUSIONS

In past work we created a design optimization process
for satellite shields in one-dimensional slab geometry that
makes use of adjoint-based transport sensitivities. In the
present work we have extended that capability to two-
dimensional Cartesian geometries. We have derived
sensitivities to a general description of geometric changes,
incorporated those sensitivities into our design process, and
applied the capability to some realistic problems. The
design process appears to behave as expected, yielding
physically plausible designs that respect dose and
geometric constraints.

One strength of our approach is that we can define an
arbitrarily complicated geometry (depending on the
number of control points we choose) and obtain accurate
sensitivity equations for that geometry. The resulting
designs will meet the design requirements, although one
can potentially improve on them by adding more geometric
degrees of freedom. In the results we reported we limited
ourselves to sixteen control points, but there is no
fundamental reason why we couldn't use more. There will
be additional computational costs to determine the
sensitivities, but the adjoint formulation allows us to
perform just two transport solves per design iteration.

In future work we hope to apply our tools to even more
general problems. The problems we examined in this work
had proton-only environments; we need to apply our tools
to combined proton/electron environments as we have in
one-dimensional slab geometries. We reported on design
optimization that looked strictly at geometric changes for
fixed materials; we need to perform optimization
calculations that allow for both geometry and materials
changes. Our goal is to create a generally useful design
tool that allows analysts to examine a rich design space to
help inform engineering decisions for future space
missions.

NOMENCLATURE

C = collision operator
b = bottom control ray in subregion
Ct = adjoint collision operator
D = spatial domain, discrete angular flux to angular flux
moment operator

V nc,b13n = directional derivative of point pn
E = particle energyg = energy group index
H = Heaviside function
hb = distance along bottom ray to control point
ht = distance along top ray to control point
i = region index
L = streaming operator
Lt = adjoint streaming operator
= Lagrangian

m = material index
M = angular flux moment to discrete angular flux operator
SZ = particle direction
p = design parameter
pc = central point
Pb = bottom interface point in subregion
pn = nth interface point in subregion
pin = nth left boundary point in subregion
pm = nth right boundary point in subregion
Pt = top interface point in subregion
pmi = material volume fraction
= angular flux
t = adjoint angular flux

q = transport source

9



qt = adjoint transport source
r = spatial coordinate
r, = ith control ray
pi = density of region i
R = response to radiation
S = scattering operator
St = adjoint scattering operator
o-d = dose cross section

= group-to group delta scattering cross section
vs = scattering cross section
o-t = total cross section

= multigroup scattering operator

t = top control ray in subregion
V, = volume of region i
x' = rotated x-coordinate
zn = perturbed x-coordinate of point pn
y' = rotated y-coordinate
pn= perturbed y-coordinate of point pn
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