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ABSTRACT

Presented in this document is a portion of the tests that exist in the Sierra Thermal/Fluids verification
test suite. Each of these tests is run nightly with the Sierra/TF code suite and the results of the test
checked under mesh refinement against the correct analytic result. For each of the tests presented in this
document the test setup, derivation of the analytic solution, and comparison of the code results to the
analytic solution is provided. This document can be used to confirm that a given code capability is
verified or referenced as a compilation of example problems.
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1. INTRODUCTION

The Sierra/TF Verification Manual is divided into chapters based on related capabilities. Each section of
a chapter represents a distinct verification test. Some problems that are not yet fully documented are
listed at the end of each chapter.

All of these verification tests are run nightly by the development team to continually verify code
accuracy under mesh refinement. The graphics and charts in this document are automatically generated
by the nightly test runs.

The test files for these problems may be found in the Sierra regression test repository. Most are in the
sub-directory called “verification.”

aria_rtest/verification

All tests are assigned the keyword “verification”. Those that appear in this document also have the
keyword “self-documenting”.

For each test, the approximate finite element solution 7}, is compared to the exact solution 7" using
several global norms, and in some cases using response quantities of interest. This is repeated over a
series of uniformly refined meshes (not necessarily nested) with mesh sizes { ; }, giving a sequence of
errors { E; }. For each pair of meshes, a convergence rate is estimated using the formula

= lOg(EZ/Egl)/log(hl/hzgl) (I.I)

The convergence of 7; to the expected rate is monitored as the mesh is refined. A test passes if all of the
estimated convergence rates on the finest pair of meshes are within a given tolerance of the expected
rates.
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2. BASIC THERMAL TESTS

2.1. STEADY HEAT CONDUCTION: HEX8 MESHES

This problem tests basic steady state heat conduction in a 3D domain. The geometry consists of a unit
cube. A variety of different source terms and boundary conditions are simultaneously applied. The
exact solution is a manufactured solution.

2.1.1. Features Tested

Basic heat conduction on Hex8 meshes; dirichlet, heat flux, and convective flux boundary conditions;
constant source terms; heat flux and source term from Encore user subroutines.

2.1.2. Boundary Conditions

At surfaces 4 and 6, the temperature is prescribed as a constant value. On surfaces 3 and s, a heat flux
condition is prescribed using a sum of a constant heat flux and a heat flux from an Encore function (user
subroutine). On surfaces 1 and 2, heat flux condition is prescribed using a sum of a convective flux
boundary condition (with constant flux and convective coefficient) and a heat flux from an Encore
function (user subroutine). Within the domain a source term is prescribed using a sum of a constant
source and an Encore function (user subroutine).

2.1.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both

blocks.

2.1.4. \Verification of Solution

A manufactured solution is chosen as
T(I,y, Z) =1+ (l’ - ZEQ)Q(y - y2)2(2 - 22)2'

The source and heat flux user subroutines are chosen so that the solution satisfies the heat equation
with the correct boundary conditions.
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For each mesh, the errors in the temperature solution are computed in the L?, L and H' norms. The
test passes, only if the observed rates of convergence in these norms are 2, 2, and 1, respectively (within a
tolerance).

1073 T T T T

104+

107}

Solution Errors

10 -

107

10-8 L L 1 L
10! 102 103 104 10° 10°
Num Nodes

Coarse Mesh Error Norms

Figure 2.1-1.. Steady Heat Conduction: Hex8 Meshes

Table 2.1-1.. Steady Heat Conduction: Convergence Rates for Hex8 Meshes
Num Dofs | L? H' L™

125 0.83 -127 0.74
729 2.20 0.98 2.07
4913 2.5 LO5 2.08

35940 2.08 1.03 194
274600 2.0§ LO2 L97

For input decks see Appendix 12.1.1.

2.2. STEADY HEAT CONDUCTION: HEX20 MESHES

This problem tests basic steady state heat conduction in a 3D domain. The geometry consists of a unit
cube. A variety of different source terms and boundary conditions are simultaneously applied. The
exact solution is a manufactured solution.

2.2.1. Features Tested

Basic heat conduction on Hex20 meshes; dirichlet, heat flux, and convective flux boundary conditions;
constant source terms; heat flux and source term from Encore user subroutines.
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2.2.2. Boundary Conditions

At surfaces 4 and 6, the temperature is prescribed as a constant value. On surfaces 3 and s, a heat flux
condition is prescribed using a sum of a constant heat flux and a heat flux from an Encore function (user
subroutine). On surfaces 1 and 2, heat flux condition is prescribed using a sum of a convective flux
boundary condition (with constant flux and convective coefficient) and a heat flux from an Encore
function (user subroutine). Within the domain a source term is prescribed using a sum of a constant
source and an Encore function (user subroutine).

2.2.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both

blocks.

2.2.4. \Verification of Solution

A manufactured solution is chosen as
T(l’,y, Z) =1+ (l’ - 5152)2(y - yQ)Z(Z - 22)2'

The source and heat flux user subroutines are chosen so that the solution satisfies the heat equation
with the correct boundary conditions.

For each mesh, the errors in the temperature solution are computed in the L?, L*> and H' norms. The
test passes, only if the observed rates of convergence in these norms are 2, 2, and 1, respectively (within a
tolerance).

Table 2.2-1.. Steady Heat Conduction: Convergence Rates for Hex20 Meshes
Num Dofs | L? H' L*®
2673 339 232 3.52
18780 319 215 3.3
60620 3.1 2.08 3.04

140500 3.08 2.06 3.01

For input decks see Appendix 12.1.2.

2.3. STEADY HEAT CONDUCTION: HEX27 MESHES

This problem tests basic steady state heat conduction in a 3D domain. The geometry consists of a unit
cube. A variety of different source terms and boundary conditions are simultaneously applied. The
exact solution is a manufactured solution.
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Figure 2.2-1.. Steady Heat Conduction: Hex20 Meshes

2.3.1. Features Tested

Basic heat conduction on Hex27 meshes; dirichlet, heat flux, and convective flux boundary conditions;
constant source terms; heat flux and source term from Encore user subroutines.

2.3.2. Boundary Conditions

At surfaces 4 and 6, the temperature is prescribed as a constant value. On surfaces 3 and s, a heat flux
condition is prescribed using a sum of a constant heat flux and a heat flux from an Encore function (user
subroutine). On surfaces 1 and 2, heat flux condition is prescribed using a sum of a convective flux
boundary condition (with constant flux and convective coefficient) and a heat flux from an Encore
function (user subroutine). Within the domain a source term is prescribed using a sum of a constant
source and an Encore function (user subroutine).

2.3.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both

blocks.
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2.3.4. \Verification of Solution

A manufactured solution is chosen as
T(z,y,2) =1+ (z — 2*)*(y — v*)*(2 — 2°)%.

The source and heat flux user subroutines are chosen so that the solution satisfies the heat equation
with the correct boundary conditions.

For each mesh, the errors in the temperature solution are computed in the L?, L and H" norms. The
test passes, only if the observed rates of convergence in these norms are 2, 2, and 1, respectively (within a

tolerance).
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Figure 2.3-1.. Steady Heat Conduction: Hex27 Meshes

Table 2.3-1.. Steady Heat Conduction: Convergence Rates for Hex27 Meshes
Num Dofs | L? H' L*®
12170 305 212 3.03
29790 3.10 2.07 3.0
59320 3.08 2.06 3.02
117600 3.07 2.05 3.0I

For input decks see Appendix 12.1.3.
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2.4. STEADY HEAT CONDUCTION: TET4 MESHES

This problem is identical to the one in Section 2.1 except that unstructured Tet4 meshes are used
instead. The meshes are obtained from Cubit.

2.4.1. Features Tested

Basic heat conduction on Tet4 meshes; dirichlet, heat flux, and convective flux boundary conditions;
constant source terms; heat flux and source term from Encore user subroutines.

2.4.2. Boundary Conditions

Same as in Section 2.1.

2.4.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both

blocks.

2.4.4. \Verification of Solution

Same as in Section 2.1.

Unlike the Hex8 case, we have observed in many cases, and in this test, that the convergence rate for the
temperature in the L* norm is somewhat less than 2, in this case about 1.9. The exact reason for this
behavior is unclear.

Table 2.4-1.. Steady Heat Conduction: Convergence Rates for Tet4 Meshes
Num Dofs | L? H! L=

145 121 056 136
1104 2.45 122 2.I0
7725 2.07 1.03 2.02

59640 .99 0.99 LII

For input decks see Appendix 12.1.4.
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Figure 2.4-1.. Steady Heat Conduction: Tet4 Meshes

2.5. STEADY HEAT CONDUCTION: TET4TET10
MESHES

This problem is identical to the one in Section 2.1 with the exception of constant thermal conductivity
and use of unstructured Tetro meshes. The meshes are obtained from Cubit.

2.5.1. Features Tested

Basic heat conduction with Tet4 solution on Tetio meshes; dirichlet, heat flux, and convective flux
boundary conditions; constant source terms; heat flux and source term from Encore user subroutines.

2.5.2. Boundary Conditions

Same as in Section 2.1.

2.5.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both

blocks.
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2.5.4. \Verification of Solution

Same as in Section 2.1.

Unlike the Hex8 case, we have observed in many cases, and in this test, that the convergence rate for the
temperature in the L norm is somewhat less than 2, in this case about 1.9. The exact reason for this

behavior is unclear.
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Figure 2.5-1.. Steady Heat Conduction: Tet4 Solutions on Tet10 Meshes

Table 2.5-1.. Steady Heat Conduction: Convergence Rates for Tet4Tet10 Meshes

Num Dofs | L? H! L*
865 .09 0.52 122
7831 226 112 190
58210 2.0I LOO 190
464400 .96 0.98 2.05

For input decks see Appendix 12.1.5.

2.6. STEADY HEAT CONDUCTION: TET10 MESHES

This problem is identical to the one in Section 2.1 except that unstructured Tetro meshes are used

instead. The meshes are obtained from Cubit.
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2.6.1. Features Tested

Basic heat conduction on Tetro meshes; dirichlet, heat flux, and convective flux boundary conditions;
constant source terms; heat flux and source term from Encore user subroutines.

2.6.2. Boundary Conditions

Same as in Section 2.1.

2.6.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both

blocks.

2.6.4. \Verification of Solution

Same as in Section 2.1.

Unlike the Hex8 case, we have observed in many cases, and in this test, that the convergence rate for the
temperature in the L norm is somewhat less than 3, in this case about 2.7. The exact reason for this

behavior is unclear.
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Figure 2.6-1.. Steady Heat Conduction: Tet10 Meshes

For input decks see Appendix 12.1.6.
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Table 2.6-1.. Steady Heat Conduction: Convergence Rates for Tet10 Meshes
Num Dofs | L? H!' L™
865 2.65 L§I 219
7831 3.32  2.08 3.4I
58210 3.04 2.07 2.58
464400 2.80 180 2.57

2.7. TRANSIENT HEAT CONDUCTION: HEX8 MESHES

This problem tests basic transient heat conduction in a 3D domain. The geometry consists of a unit
cube.

2.7.1. Features Tested

Basic transient heat conduction on Hex8 meshes; dirichlet, heat flux, and convective flux boundary
conditions; constant source terms; heat flux and source term from Encore user subroutines.

2.7.2. Boundary Conditions

At surfaces 4 and 6, the temperature is prescribed as a constant value. On surfaces 3 and s, a heat flux
condition is prescribed using a sum of a constant heat flux and a heat flux from an Encore function (user
subroutine). On surfaces 1 and 2, heat flux condition is prescribed using a sum of a convective flux
boundary condition (with constant flux and convective coefficient) and a heat flux from an Encore
function (user subroutine). Within the domain a source term is prescribed using a sum of a constant
source and an Encore function (user subroutine).

2.7.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both

blocks.

2.7.4. \Verification of Solution

A manufactured solution is chosen as
T(z,y,2,t) = (z —2*)? (y — ¥*)* (z — 2°)°m(t) + 1,
m(t) = 10* (1 — exp(—t) + t exp(—(t — 1)?))

The source and heat flux user subroutines are chosen so that the solution satisfies the heat equation
with the correct boundary conditions.
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For each mesh, the errors in the temperature solution at final time are computed in the L? norm of T
and T, L> and H"' norms. The test passes, only if the observed rates of convergence in these norms are
2,2, 2 and 1, respectively (within a tolerance).
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Figure 2.7-1.. Transient Heat Conduction: Hex8 Meshes

Table 2.7-1.. Transient Heat Conduction: Convergence Rates for Hex8 Meshes

Num Dofs | L*(T) L*(T) H' L*®
125 0.12 3.02  -0.89 -0.4§
729 2.09 3.28 0.98 1.85
4913 2.09 2.46 .o 186
35940 2.06 2.07 .04 196

For input decks see Appendix 12.1.7.

2.8. TRANSIENT HEAT CONDUCTION: TET4 MESHES

This problem tests basic transient heat conduction in a 3D domain as in Section 2.7. The geometry
consists of a unit cube and a single bulk fluid element.

2.8.1. Features Tested

Basic transient heat conduction on Tet4 meshes; dirichlet, heat flux, and convective flux boundary
conditions; constant source terms; bulk fluid element; heat flux and source term from Encore user
subroutines.
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2.8.2. Boundary Conditions

Identical to Section 2.7 except one convective flux boundary condition is now connected to a bulk fluid
element.

2.8.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both

blocks.

2.8.4. \Verification of Solution

A manufactured solution is chosen as in Section 2.7.

For each mesh, the errors in the temperature solution at final time are computed in the L? norm of T
and T, L*° and H' norms. As in Section 2.4, we see convergence rates for L that are slightly less than
o)
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Figure 2.8-1.. Transient Heat Conduction: Tet4 Meshes

Table 2.8-1.. Transient Heat Conduction: Convergence Rates for Tet4 Meshes

Num Dofs | L*(T) L*(T) H' L> L*®°(Tbulk)
146 1.20 219 0.7 136 2.53
1105 2.45 2.34 122 2.0 2.17
7726 2.07 2.16 1.03 2.02 2.26
59640 1.99 2.04 0.99 LOI 2.12,
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For input decks see Appendix 12.1.8.

2.9. TRANSIENT HEAT CONDUCTION: TET4TET10
MESHES

This problem tests basic transient heat conduction in a 3D domain as in Section 2.8. The geometry
consists of a unit cube.

2.9.1. Features Tested

Basic transient heat conduction Tet4 analysis on Tetro meshes; dirichlet, heat flux, and convective flux
boundary conditions; constant source terms; heat flux and source term from Encore user subroutines.

2.9.2. Boundary Conditions

Identical to Section 2.8

2.9.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both

blocks.

2.9.4. \Verification of Solution

A manufactured solution is chosen as in Section 2..8.

For each mesh, the errors in the temperature solution at final time are computed in the L? norm of T
and T, L*™ and H" norms. As in Section 2.8, we see convergence rates for L>° that are slightly less than
2.

Table 2.9-1.. Transient Heat Conduction: Convergence Rates for
Tet4 Solution on Tet10 Meshes

NumDofs | LX(T) L*(T) H' L*

865 1.09 2.03  0.52 L22
7831 2.26 1.95 LI2 190
58210 2.01I 2.00 LOO 190

464400 1.96 .98 0.98 2.05

For input decks see Appendix 12.1.9.
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Figure 2.9-1.. Transient Heat Conduction: Tet4 Solution on Tet10 Meshes

2.10. TRANSIENT HEAT CONDUCTION: TET10 MESHES

This problem tests basic transient heat conduction in a 3D domain as in Section 2.7. The geometry

consists of a unit cube.

2.10.1. Features Tested

Basic transient heat conduction on Tetro meshes; dirichlet, heat flux, and convective flux boundary
conditions; constant source terms; heat flux and source term from Encore user subroutines.

2.10.2. Boundary Conditions

Identical to Section 2.7

2.10.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both
blocks.
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2.10.4. \Verification of Solution

A manufactured solution is chosen as in Section 2.7.

For each mesh, the errors in the temperature solution at final time are computed in the L? norm of T
and 7', L* and H' norms. As in Section 2.6, we see convergence rates for L that are slightly less than

2.
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Figure 2.10-1.. Transient Heat Conduction: Tet10 Meshes

Table 2.10-1.. Transient Heat Conduction: Convergence Rates for Tet10 Meshes

Num Dofs | L3(T) L*T) H' L™
865 2.66 4.15 LSI  2.21
7831 3.32 2.04 2.08 3.40
58210 3.03 2.1§ 2.07 2.61
464400 2.79 2.02 180 255

For input decks see Appendix 12.1.10.

2.11. POSTPROCESS MIN/MAX

2.11.1. Problem Description

This problem tests the min/max postprocessors in Aria.
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2.11.2. Features Tested

min max postprocessors

2.11.3. Boundary Conditions

Dirichlet BCs are specified using the exact solution on surfaces 1-4.

A source term is applied within all blocks based on substituting the exact solution into the heat
conduction operator.

2.11.4. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant.

2.11.5. \Verification of Solution

The manufactured solution is

sin(7z) sin(8y).

For each uniformly refined mesh, the errors in the temperature solution are computed in the L4 H
and L*° norms and for various postprocessors. Additionally, the nodal maximum and minimum values
on both block 1 and surface 2 are computed using Encore postprocessors and the convergence of these
values is compared as well. Since the maximum and minimums are nodal, the location of the nodes will
reflect the max/min values produced for a given mesh. Provided that the mesh is uniformly refined
(without smoothing that may shift the nodal locations), every mesh refinement will produce a better
result, dependent on how much closer to the maximum/minimum true solution the new nodes are.

Table 2.11-1.. Min Max Postprocess: Convergence Rates
Num Dofs ‘ L? H' L*® error_ bl _mazx error_bl_min error_s2 max error_s2_min

625 2.00 1.00 189 1.92 0.40 0.46 2.83
37249 2.03 L02 L9I 1.88 2.37 1.99 2.37

2.12. ADAPTIVITY

This problem is identical to the one in Section 2.4 except that we use adaptive mesh refinement to refine
from a coarse base mesh obtained from Cubit.
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Figure 2.11-1.. Min Max Postprocess

2.12.1. Features Tested

Basic heat conduction on Tet4 meshes; dirichlet, heat flux, and convective flux boundary conditions;
constant source terms; heat flux and source term from Encore user subroutines; adaptive mesh
refinement; local error indicators based on jump in heat flux.

2.12.2. Boundary Conditions

Same as in Section 2.1.

2.12.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both

blocks.

2.12.4. \Verification of Solution

The mesh is adapted using code from Sierra/Percept that refines tetrahedral meshes without any
hanging nodes (conformal meshes only). The element error indicator is computed using a
residual-based error indicator in Encore, that computes the integrated jump in the normal heat flux
across inter-element faces. The input file is configured to refine elements so that the sum of the error in
the refined elements is approximately 75% of the total error in all elements.
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o

Because of variability in the meshes, we expect the error reduction to be noisy. In this case, we use linear
least squares to estimate the slope of the error on a log-log plot against mesh size. Since the solution is
smooth we also expect the meshes to eventually refine everywhere. We estimate convergence in the usual
error norms and observe rates close to the theoretical ones (second order convergence for the L? and L™
norms and first order convergence for the H' norm). Mesh size is estimated using the formula

h ~ N~'/3 where N is the number of nodes in the mesh.
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Figure 2.12-1.. Steady Heat Conduction: Tet4 Meshes (Adaptive Mesh Refinement)

Documentation for the following tests is in progress:

nlin_verifyl/1dnonlin_verifyl.test|np8
.|o_2d/aniso_2d.test |np8
0_3d/aniso_3d.test|np8
shell_2d/cyl_shell_2d.test|np8
shell_3d/cyl_shell_3d.test|np8
|in_C_fi/nonlin_C_fi.test|npl
|in_C_trap/nonlin_C_trap.test|npl
ce_parab/source_parab.test|npl
ce_parab_2d/source_parab_2d.test|npl
shell_axi/sph_shell_axi.test|npl
rical_shell/spherical_shell.test|np4
./11_nonlin/x11b11_nonlin.test|npl
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3. THERMAL BOUNDARY CONDITIONS

3.1. RADIATIVE HEAT FLUX

This problem tests the radiative flux boundary condition under steady state heat conduction in a 2D
domain. The geometry consists of a unit square.

3.1.1. Features Tested

Basic heat conduction on Quad4 meshes; radiative flux boundary conditions with constant emissivity
and reference temperature; radiation form factor from C-style user subroutine; temperature boundary
conditions from C-style user subroutine and constant values.

3.1.2. Boundary Conditions

At surface 3, the temperature is prescribed from a C-style user subroutine. On surfaces 2 and 4, a
constant temperatre boundary condition is used. On surface 1, a radiative heat flux condition is
prescribed. No source term is needed.

3.1.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant.

3.1.4. \Verification of Solution

A manufactured solution is chosen as

T(x,y) = 200 exp(—my) sin(mwx) + 600

For each mesh, the errors in the temperature solution are computed in the L?, H' and L™ norms. The
test passes, only if the observed rates of convergence in these norms are 2, 1, and 2, respectively (within a
tolerance).

For input decks see Appendix 12.2.1.

46



102 :

. L’
| H
[ = A
101}
w
S
u‘] 0
5 10°F
E
[=]
[72]
1071}
10-2 1 L
10! 102 103 104
Num Nodes
Coarse Mesh Error Norms

Figure 3.1-1.. Radiative Heat Flux

Table 3.1-1.. Radiative Heat Flux: Convergence Rates for Hex8 Meshes
Num Dofs ‘ B H I=

121 227 LI3 234
441 2.14 107 2.I7
1681 2.07 104 2.09

3.2. RADIATIVE HEAT FLUX FROM FORTRAN USER
SUBROUTINE

This test verifies that a user-supplied subroutine for convective coefficient and reference temperature
(restricted to a surface patch) produces the same results as the equivalent input syntax with constant
values. The user subroutine is applied to the entire exterior surface, while the case using constant values
must be applied only to specific sidesets that span a portion of the exterior surface.

3.2.1. Features Tested

Basic heat conduction on a Hex8 mesh; convective and radiative lux BCs, Fortran user subroutines.

3.2.2. Boundary Conditions

Convective and radiative flux BCs are applied to the exterior boundary.
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3.2.3. Material Parameters

The values of density, thermal conductivity, emissivity and specific heat are all constant.

3.2.4. \Verification of Solution

The test compares Exodus output between two input files. The first does not use any user subroutines
and instead relies on sidesets to apply the correct convective and radiative boundary conditions with
constant coefficients. The second uses a single convective boundary condition with user subroutines for
both the convective coefficient and reference temperature. The two input files produce results that agree
to the default tolerances in the exodiff script.

For input decks see Appendix 12.2.2.

3.3. CONVECTIVE HEAT FLUX

This problem tests the convective flux boundary condition under transient heat conduction in a 2D
domain. The geometry consists of a unit square.

3.3.1. Features Tested

Transient heat conduction on Quad4 meshes; convective flux boundary conditions with user
subroutines for convective coefficient and reference temperature; temperature boundary conditions
from C-style user subroutine and constant values.

3.3.2. Boundary Conditions

At surface 3, the temperature is prescribed from a C-style user subroutine. On surfaces 2 and 4, a
constant temperature boundary condition is used. On surface 1, a convective heat flux condition is
prescribed. No source term is needed. The initial condition is provided by a C-style user subroutine

3.3.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant.
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3.3.4. \Verification of Solution

A manufactured solution is chosen as
T(z,y,t) = 100 exp(—27*t) sin(rx) (cos(my) + sin(ry))

Because the solution is based on eigenfunctions, it satisfies the heat equation with no source term.

For each mesh, the errors in the temperature solution are computed in the L?, L™ and H' norms. The
test passes, only if the observed rates of convergence in these norms are 2, 2, and 1, respectively (within a

tolerance).
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Figure 3.3-1.. Convective Heat Flux

Table 3.3-1.. Convective Heat Flux: Convergence Rates for Hex8 Meshes
Num Dofs ’ ¢ g E®

121 222 121 2.22
441 203 LO9 212
1681 2.07 104 2.07

For input decks see Appendix 12.2.3.
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3.4. THERMAL CONVECTIVE FLUX (FORTRAN
SUB-ROUTINE)

3.4.1. Problem Description

This problem tests the convective flux boundary condition with a convective coefficient Fortran
subroutine for a steady thermal problem in a 3D domain whose geometry consists of a unit-sized
cube.

3.4.2. Features Tested

Convective Flux BC, Convective Coefficient Fortran Subroutine, user subroutine, integrated flux,
integrated power

3.4.3. Boundary Conditions

Convective flux boundary conditions are imposed on surfaces 1 and 2. Dirichlet BCs are specified using
the exact solution on surfaces 3-6. A source term is applied within all blocks based on substituting the
exact solution into the heat conduction operator.

3.4.4. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant.

3.4.5. \Verification of Solution

The manufactured solution is

T(z,y,2) = (x —2*)(y — y*)*(z — 22)* + (2 + 2%).

For each mesh, the errors in the temperature solution are computed in the L?, H', and L* norms.

Table 3.4-1.. Thermal Convective BC: Convergence Rates
Num Dofs | L? H! L*®

125 271 136 2.71
729 236 118 2.36
4913 2.18 109 218

35940 2.09 1.04 2.09
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Figure 3.4-1.. Convergence for 3D thermal steady convective flux BCs.

3.5. THERMAL CONVECTIVE FLUX (USER FIELD
FROM EXODUS READ-IN)

3.5.1. Problem Description

This problem evalutates a convective flux boundary condition with a convective coefficient and a
reference temperature from an exodus file for a steady thermal problem in a 3D domain whose
geometry consists of a unit-sized cube.

3.5.2. Features Tested

Convective Flux BC, Convective Coefhicient, transfers, user subroutine, integrated flux, integrated

power

3.5.3. Boundary Conditions

Convective flux boundary conditions are imposed on surfaces 1 and 2. Dirichlet BCs are specified using
the exact solution on surfaces 3-6. A source term is applied within all blocks based on substituting the
exact solution into the heat conduction operator.
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3.5.4. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant.

3.5.5. Verification of Solution

The manufactured solution is

T(z,y,2) = (z—2°)*(y — ¥*)*(z = 22)* + (2% + 2).

For each mesh, the errors in the temperature solution are computed in the L? H' and L* norms.
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Figure 3.5-1.. Convergence for 3D thermal steady convective flux BCs.

Table 3.5-1.. Thermal Convective BC: Convergence Rates

Num Dofs | L? H!' L™
125 2.74 136 271

729 236 118 2.36
4913 2.18 1.09 218
35940 2.09 105 2.09
274600 2.0 LO2 2.0§
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3.6. THERMAL HEAT FLUX

3.6.1. Thermal Heat Flux (Basic)
3.6.1.1. Problem Description

This problem tests a steady thermal solution on a unit cube with heat flux boundary conditions
imposed on one of the six surfaces. The mesh uses Hex8 elements.

3.6.1.2. Features Tested

Basic heat conduction, Calore style heat flux BCs, Integrated Flux Output, Integrated Power Output,
Hex8 meshes, user functions.

3.6.1.3. Boundary Conditions

Dirichlet BCs are specified using the exact solution on surfaces 2-6. On surface 1, a heat flux BC is
specified, using a heat flux of 2 — exp(1). A source term is applied within all blocks based on
substituting the exact solution into the heat conduction operator. The integrated flux and power are
calculated and output as global variables, which should both be equal for a surface with area of 1and
equal to 2 — exp(1) for all meshes considered.

3.6.1.4. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant with the same value for

both blocks.

3.6.1.5. Verification of Solution

The manufactured solution is

T(z,y,2) = (z — 2%)°(y — y*)?(z — 2°)* + 22 exp(2).

For each mesh, the errors in the temperature solution are computed in the L?, H', and L> norms. The
test passes, only if the observed rates of convergence are 2 (except for the L°° norm, with convergence
order1).
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Figure 3.6-1.. Thermal Heat Flux BC

Table 3.6-1.. Thermal Heat Flux BC

: Convergence Rates

Num Dofs | L? L~ H!
729 233 LIS 2.2§
4913 2.17 1..08 213

35940 2.09 1.04 2.07
274600 2.04 102 2.04

3.6.2. Thermal Heat Flux (Flux node variable user field)

3.6.2.1. Problem Description

This problem tests a steady thermal solution on a unit cube with heat flux boundary conditions
imposed on one of the six surfaces. The mesh uses Hex8 elements.

3.6.2.2. Features Tested

10°

Basic heat conduction, Calore style heat flux BCs, Flux Node Variable, User field, Field Scaling, Hex8

meshes, user functions, transfer.

3.6.2.3. Boundary Conditions

Dirichlet BCs are specified using the exact solution on surfaces 1 and 3-6. On surface 2, a heat flux BC is
specified, using a flux node variable user field. A source term is applied within all blocks based on
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substituting the exact solution into the heat conduction operator. Transfers are specified at the
surface.

3.6.2.4. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant with the same value for

both blocks.

3.6.2.5. Verification of Solution

The manufactured solution is

T(z,y,2) = (x —2°)* (y — y*)*(z — 22)> + 20 % (2> — 2) * (1 + 2 + y + 7).

For each mesh, the errors in the temperature solution are computed in the L?, H', and L* norms. The
test passes, only if the observed rates of convergence are 2 (except for the L norm, with convergence
order1).
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Figure 3.6-2.. Thermal Heat Flux BC

3.6.3. Thermal Heat Flux (Flux node variable user field)

3.6.3.1. Problem Description

This problem tests a steady thermal solution on a unit cube with heat flux boundary conditions
imposed on one of the six surfaces. The mesh uses Hex8 elements.
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Table 3.6-2.. Thermal Heat Flux BC: Convergence Rates
Num Dofs | L? L>* H!
729 236 231 LI8
4913 218 216 1.09
35940 2.09 2.08 1.04
274600 2.0§ 2.04 1.02

3.6.3.2. Features Tested

Basic heat conduction, Calore style heat flux BCs, User field real nodal vector, Hex8 meshes, user
functions, transfers.

3.6.3.3. Boundary Conditions

Dirichlet BCs are specified using the exact solution on surfaces 1 and 3-6. On surface 2, a heat flux BC is
specified, using a flux vector node variable defined as a user field. A source term is applied within all
blocks based on substituting the exact solution into the heat conduction operator.

3.6.3.4. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant with the same value for

both blocks.

3.6.3.5. Verification of Solution

The manufactured solution is

T(z,y,z) = (x— 2@y —v)*(z— 222 +20x (22 —2)« (1 + 2+ y + 27).

For each mesh, the errors in the temperature solution are computed in the L?, H', and L> norms. The

test passes, only if the observed rates of convergence are 2 (except for the L norm, with convergence
order 1).

Table 3.6-3.. Thermal Heat Flux BC: Convergence Rates
Num Dofs | L? L~ H!
729 236 231 118
4913 218 216 1.09
35940 2.09 2.08 1.04
274600 2.0§ 2.04 LO2
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Figure 3.6-3.. Thermal Heat Flux BC

3.6.4. Thermal Heat Flux (Fortran Subroutine)
3.6.4.1. Problem Description

This problem tests a steady thermal solution on a unit cube with heat flux boundary conditions
imposed on one of the six surfaces. The mesh uses Hex8 elements.

3.6.4.2. Features Tested

Basic heat conduction, Calore style heat flux BCs, Integrated Flux Output, Integrated Power Output,
Fortran subroutine, Hex8 meshes, user plugin.

3.6.4.3. Boundary Conditions

Dirichlet BCs are specified using the exact solution on surfaces 3-6. On surfaces 1 and 2, heat flux BCs are
specified, using Fortran subroutines. A source term is applied within all blocks based on substituting
the exact solution into the heat conduction operator.

3.6.4.4. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant with the same value for

both blocks.
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3.6.4.5. Verification of Solution

The manufactured solution is

T(z,y,z) = (x —2°)(y — *)?(z = 22+ (2 + 2)* 1 + =+ y + ).

For each mesh, the errors in the temperature solution are computed in the L? H' and L™ norms. The
test passes, only if the observed rates of convergence are 2 (except for the L norm, with convergence
order ).

Solution Errors

10-5 L I 1
102 103 104 10° 10°
Num Nodes

Coarse Mesh Error Norms

Figure 3.6-4.. Thermal Heat Flux BC

Table 3.6-4.. Thermal Heat Flux BC: Convergence Rates
Num Dofs | L? L~ H!
729 236 231 118
4913 218 216 1.09
35940 2.09 2.08 1.05

274600 z.%s 2.04 1.02
5




3.7. THERMAL RADIATIVE HEAT FLUX

3.7.1. Basic Calore-Style BC
3.7.1.1. Problem Description

This problem evaluates a steady thermal solution with radiative heat flux boundary conditions on a 3D
unit cube domain.

3.7.1.2. Features Tested

Basic heat conduction, Calore style radiative heat flux BCs, Integrated Flux Output, Integrated Power
Output, Hex8 meshes.

3.7.1.3. Boundary Conditions
Dirichlet BCs are specified using the exact solution on surfaces 2-6. On surface 1, a radiative heat flux BC

is specified with constant emissivity and a radiation form factor of 0.2. A source term is applied within
all blocks based on substituting the exact solution into the heat conduction operator.

3.7.1.4. Material Parameters

The values of density, thermal conductivity, specific heat, and emissivity are all constant values.

3.7.1.5. Verification of Solution

The manufactured solution is

T(@,y,2) = (2 = @y — 4z = 2V + T = (2~ 2).

For each discretization, the errors in the temperature solution are computed in the L% H' and L*>®
norms. The observed rates of convergence are 2 (except for the L> norm, with convergence order 1).

Table 3.7-1.. Thermal Radiative Flux BC: Convergence Rates
Num Dofs | L?> L>® H!

125 271 136 271
729 236 118 2.36
4913 2.18 1.09 218

35940 2.09 104 2.09
274600 2.0§ 1L.02 2.05
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Figure 3.7-1.. Thermal Radiative Flux

3.7.2. With Fortran Subroutines
3.7.2.1. Problem Description

This problem evaluates a steady thermal solution with radiative heat flux boundary conditions using
Fortran subroutines on a 3D unit cube domain.

3.7.2.2. Features Tested

Basic heat conduction, Calore style radiative heat flux BCs, Integrated Flux Output, Integrated Power
Output, Hex8 meshes, Fortran subroutines.

3.7.2.3. Boundary Conditions

Dirichlet BCs are specified using the exact solution on surfaces 2-6. On surface 1, a radiative heat flux BC
is specified with emissivity, reference temperature, and radiation form factor of provided by Fortran
subroutines. A source term is applied within all blocks based on substituting the exact solution into the
heat conduction operator.

3.7.2.4. Material Parameters

The values of density, thermal conductivity, specific heat, and emissivity are all constant values.
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3.7.2.5. Verification of Solution

The manufactured solution is

T(w,y,) = (2~ 2y~ 9Pz~ 2P +T — 2 (2~ 2).

For each discretization, the errors in the temperature solution are computed in the L? H' and L*>®
norms. The observed rates of convergence are 2 (except for the L> norm, with convergence order 1).
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Figure 3.7-2.. Thermal Radiative Flux

Table 3.7-2.. Thermal Radiative Flux BC: Convergence Rates
Num Dofs | L? L>* H!

125 2.72 138 2.59
729 236 118 230
4913 218 1.09 21§

35940 2.09 105 2.08

3.7.3. With User Subroutines
3.7.3.1. Problem Description

This problem evaluates a steady thermal solution with radiative heat flux boundary conditions with
user subroutines on a 3D unit cube domain.
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3.7.3.2. Features Tested

Basic heat conduction, Calore style radiative heat flux BCs, Integrated Flux Output, Integrated Power
Output, Hex8 meshes, user subroutines.

3.7.3.3. Boundary Conditions

Dirichlet BCs are specified using the exact solution on surfaces 2-6. On surface 1, a radiative heat flux BC
is specified with emissivity, reference termperature and radiation form factor provided by user
subroutines. A source term is applied within all blocks based on substituting the exact solution into the
heat conduction operator.

3.7.3.4. Material Parameters

The values of density, thermal conductivity, specific heat, and emissivity are all constant values.

3.7.3.5. Verification of Solution

The manufactured solution is

T(a,y,2) = (2~ a2y — 9Pz~ 2P 4T = D (2~ 2).

For each discretization, the errors in the temperature solution are computed in the L? H' and L*>®
norms. The observed rates of convergence are 2 (except for the L°° norm, with convergence order 1).

Table 3.7-3.. Thermal Radiative Flux BC: Convergence Rates
Num Dofs | L? L>® H!

125 2.72 138  2.59
729 236 118 230
4913 218 L.09 21§

35940 2.09 LO§ 2.08

3.8. ADVECTIVE BAR

Advective bar model verification tests.

3.8.1. Steady Advection-Diffusion

The three dimensional Barz meshes of one element block are generated in Cubit.
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Figure 3.7-3.. Thermal Radiative Flux

3.8.2. Features Tested

Steady heat conduction on 3D Bara meshes, Dirichlet boundary conditions, constant source term,
advection and SUPG stabilization.

3.8.3. Boundary Conditions

3.8.4. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in the

block.

3.8.5. \Verification of Solution

Solution verification is carried out by computing the error in the numerical solution based upon
comparison with the analytic solution.
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where v = pC'V//k where p is the density, C'is specific heat, & is the thermal conductivity and V' is the
advection velocity. In this test, we find that the convergence rate for the temperature in the L>° and 7

norms are 2.
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Figure 3.8-1.. Steady Advective Conduction: 3D Bar2 Meshes

Table 3.8-1.. Steady Advective Conduction: Convergence Rates
for 3D Bar2 Meshes

Num Dofs | L? L*®
21 2.14 201
41 2.07 2.06
81 2.04 2.03
161 2.02  2.0I
321 2.0I  2.01

3.8.6. Transient Advection-Diffusion

The three dimensional Bar2 meshes of one element block are generated in Cubit.

3.8.7. Features Tested

Transient heat conduction on 3D Bar2 meshes, Dirichlet boundary conditions and Encore function

source term.
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3.8.8. Boundary Conditions

Dirichlet boundary conditions on the bar ends based upon the manufactured solution 7'(x)

T(O)=T() =T,

3.8.9. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in the bar
block.

3.8.10. Verification of Solution

Solution verification is carried out by computing the error in the numerical solution based upon
comparison with the analytic solution.

T(z) =T; + Atxz(z — 1) exp(—Bt) exp(—Bzx)

In this test, we find that the convergence rate for the temperature in the L> and L? norms are 2.
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Figure 3.8-2.. Transient Heat Conduction: 3D Bar2 Meshes

3.8.11. Transient Advection-Diffusion in 2D

The two dimensional Bara meshes of one elment block are generated in Cubit.
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Table 3.8-2.. Transient Heat Conduction: Convergence Rates for 3D Bar2 Meshes

Num Dofs | L? L*®
21 2.33  2.02
41 212 1.97
81 2.0 1.98
161 2.02  1.99

3.8.12. Features Tested

Transient heat conduction on 2D Barz2 meshes, Dirichlet boundary conditions and Encore function
source term.

3.8.13. Boundary Conditions

Dirichlet boundary conditions on the bar ends

3.8.14. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in the bar

block.

3.8.15. \Verification of Solution

Solution verification is carried out by computing the error in the numerical solution based upon
comparison with the analytic solution.

T(x) =T; + Atz(x — 1) exp(—Bt) exp(—Bx)

In this test, we find that the convergence rate for the temperature in the > and L? norms are 2.

Table 3.8-3.. Transient Heat Conduction: Convergence Rates for 2D Bar2 Meshes

Num Dofs | L? L*®
21 2.33  2.02
41 202 1.97
81 2.0§ 1.98
161 2.02  1.99
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Figure 3.8-3.. Transient Heat Conduction: Bar2 Meshes

3.9. SOLUTION VERIFICATION

This test is for a Mock AFF (including a metal case, foam, mock components, and
temperature-dependent properties) that uses extrapolation to determine an approximation to the exact
solution as a function of the results from three levels of meshes.

3.9.1. Features Tested

Extrapolation, Radiative flux boundary condition

3.9.2. Material Parameters

Constant density, emissivity. Temperature dependent user functions for specific hear and thermal
conductivity.

3.9.3. \Verification of Solution

Quantities of interest are the maximum, minimum, and average temperatures on both blocks and
points. There is no manufactured solution in this case, instead an extrapolated solution is calculated and
used to measure convergence and approximate the absolute error for a given mesh resolution.

Documentation for the following tests is in progress:

|nic_material_decomposition/organic_material_decomposition.test|np4
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Figure 3.9-1.. Mock AFF Solution Verification
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4. THERMAL CONTACT

4.1. 1D FLAT CONTACT

This problem tests thermal contact along a flat surface using 3D domains. The geometry consists of two
thick blocks, which are in contact along a common flat surface. The mesh nodes on either side of the
contact surface are not aligned in general.

In this problem we observe sub-optimal convergence rates in the L>° norm when using Tet elements.
This is a known issue with unknown cause.

The contact search tolerances are fixed for all meshes, with a zero tangential and normal tolerances.

4.1.1. Features Tested

Basic heat conduction, tied and resistance thermal contact between non-matching meshes (Hex-Hex,

Tet-Tet, Hex-Tet).

4.1.2. Boundary Conditions

The interface between the two blocks is a thermal contact boundary condition. Both tied contact and
resistance contact (with finite contact resistance) are tested. The left and right boundary conditions are
prescribed using constant values. The remaining boundary conditions are adiabatic. A constant source
term is applied in each block (with different signs).

4.1.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both

blocks.
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4.1.4. \Verification of Solution

A manufactured solution is chosen based on the contact interface at x = O:

B s(1+2)(y+z), z<0,
T(m,y,Z)—{ 1_}_%(1_1-)(_14-1')7 x>0

where 7y = (2 — R)/(2 + R) is a constant depending on the thermal contact resistance R. Here R is
the inverse of the contact conductance that is provided as a code input. In the case of tied contact,

R = 0 and therefore 7 = 1. We note that when R > 0, this exact solution exhibits a jump in
temperature across the contact interface.

For each mesh, the errors in the temperature solution are computed in the L?, 1> and H' norms. The
test passes, only if the observed rates of convergence in these norms are 2, 2, and 1, respectively (within a
tolerance).

These rates are observed for the Hex-Hex case; however, both of the cases involving Tet meshes exhibit a
reduced order of convergence in the L°° norms (convergence rate about 1.7).

For input decks see Appendix 12.3.1.

4.1.5. Results: Hex8 Tied
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Figure 4.1-1.. 1D Flat Contact: Hex8 Tied

4.1.6. Results: Hex8 Resistance
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Table 4.1-1.. 1D Flat Contact: Convergence Rates for Hex8 Tied

Num Dofs | L? L~ H!
1241 2.45 2.44 138
7657 2.17 212 LIO

57890 201 211 107
432100 2.04 2.03 1LO2
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Figure 4.1-2.. 1D Flat Contact: Hex8 Resistance

Table 4.1-2.. 1D Flat Contact: Convergence Rates for Hex8 Resistance
Num Dofs | L? L H!
1241 2.5§ 2.70 1.2§
7657 2.12  2.04 LO7
57890 213 217 LOG6
432100 2.03 2.01 1.02
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4.1.7. Results: Tet4 Tied
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Figure 4.1-3.. 1D Flat Contact: Tet4 Tied

Table 4.1-3.. 1D Flat Contact:

Convergence Rates for Tet4 Tied

Num Dofs | L? L~ H!
1348 233 2.06 118
9102 219 1.88 1.06

66620 2.09 L78 103
509200 2.04 L73 LOI

4.1.8. Results: Tet4 Resistance
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Figure 4.1-4.. 1D Flat Contact: Tet4 Resistance

Table 4.1-4.. 1D Flat Contact: Convergence Rates for Tet4 Resistance

Num Dofs | L? L>* H!
1348 2.22  2.09 LI2
9102 2.08 1.95 105

66620 2.04 L62 102
509200 2.01 142 1.0I
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4.1.9. Results: Hex8-Tet4 Tied

Coarse Mesh

Solution Errors

10°

101}

(=
o
~

=
o
&

10%

10

—a L’
a L™

102

i i
104 10°
Num Nodes

Error Norms

Figure 4.1-5.. 1D Flat Contact: Hex8-Tet4 Tied

Table 4.1-5.. 1D Flat Contact: Convergence Rates for Hex8-Tet4 Tied

Num Dofs | L? L* H!
1231 232 2J10 124
8284 216 182 109

60570 2.09 178 1.04
462800 2.04 L82 1.02

4.1.10. Results: Hex8-Tet4 Resistance

4.2. 3D CURVED CONTACT

This problem tests thermal contact along a curved surface in 3D. The geometry consists of two thick
spherical shells, which are in contact along a shared surface. The mesh nodes on either side of the

contact surface are not aligned in general.

In this problem we observe sub-optimal convergence rates in the L> norm when using tet elements.

This is a known issue with unknown cause.

The contact search tolerances are fixed for all meshes, with a zero tangential tolerance and a normal
tolerance large enough to insure a proper contact search on the coarsest mesh.
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Solution Errors
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Figure 4.1-6.. 1D Flat Contact: Hex8-Tet4 Resistance

Table 4.1-6.. 1D Flat Contact: Convergence Rates for Hex8-Tet4 Resistance

Num Dofs | L? L>* H!
1231 2.28 210 LIS
8284 212 195 LO7
60570 2.0§ 1L62 1.03
462800 2.02 1.43 IL.OI

4.2.1. Features Tested

Basic heat conduction, tied thermal contact between non-matching meshes (hex-hex, tet-tet, hex-tet).

4.2.2. Boundary Conditions

The interface between the two blocks is a tied thermal contact boundary condition. The outer and
inner boundary conditions are prescribed at the nodes using the analytic solution.

4.2.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both

blocks.
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4.2.4. \Verification of Solution

A manufactured solution is chosen as

T(z,y,2) = —32%z — 3y°2 + 22°
This solution is harmonic, implying that no source term is needed for the steady state heat equation
with constant conductivity.

For each mesh, the errors in the temperature solution are computed in the L?, L and H" norms. The
test passes, only if the observed rates of convergence in these norms are 2, 2, and 1, respectively (within a
tolerance).

These rates are observed for the hex-hex case; however, both of the cases involving tet meshes exhibit a
reduced order of convergence in the L> norms (convergence rate about 1.7).

For input decks see Appendix 12.3.2.

4.2.5. Results: Hex8-Hex8 Contact
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Figure 4.2-1.. 3D Curved Contact: Hex8-Hex8 Case
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Table 4.2-1.. 3D Curved Contact: Convergence Rates for Hex8-Hex8

Num Dofs | L? L>® H!
540 3.6 2.60 0.96
3752 232 193 1.5
21220 2.62 2.66 1.07

150700 2.35  2.05 1.06

78



4.2.6. Results: Tet4-Tet4 Contact
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Figure 4.2-2.. 3D Curved Contact: Tet4-Tet4 Case

Table 4.2-2.. 3D Curved Contact: Convergence Rates for Tet4-Tet4

Num Dofs | L? L[>~ H!
674 2.47 234 100
3881 2.33 2.41 LI

25010 2.09 196 1.04
159100 2.02 173 104
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4.2.7. Results: Hex8-Tet4 Contact
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Figure 4.2-3.. 3D Curved Contact: Hex8-Tet4 Case

Table 4.2-3.. 3D Curved Contact: Convergence Rates for Hex8-Tet4
Num Dofs | L? L* H!
630 234 187 LI
3830 2.40 2.09 LI2
23420 .98 197 106

153700 2.06 170 104

4.3. STEADY HEX8 CONTACT

10°

This problem tests basic steady state heat conduction in a 3D domain. The geometry consists of a unit

cube.

4.3.1. Features Tested

Basic heat conduction on Hex8 meshes; dirichlet, heat flux, and convective flux boundary conditions;

constant source terms; heat flux and source term from Encore user subroutines.
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4.3.2. Boundary Conditions

At surfaces 4 and 6, the temperature is prescribed as a constant value. On surfaces 3 and s, a heat flux
condition is prescribed using a sum of a constant heat flux and a heat flux from an Encore function (user
subroutine). On surfaces 1 and 2, heat flux condition is prescribed using a sum of a convective flux
boundary condition (with constant flux and convective coefficient) and a heat flux from an Encore
function (user subroutine). Within the domain a source term is prescribed using a sum of a constant
source and an Encore function (user subroutine).

4.3.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both

blocks.

4.3.4. Verification of Solution

A manufactured solution is chosen as
T(z,y,2) =1+ (x—2*)(y —v*)*(z — 2"

The source and heat flux user subroutines are chosen so that the solution satisfies the heat equation
with the correct boundary conditions.

For each mesh, the errors in the temperature solution are computed in the L?, L*> and H' norms. The
test passes, only if the observed rates of convergence in these norms are 2, 2, and 1, respectively (within a
tolerance).

Table 4.3-1.. Steady Tied Contact: Convergence Rates for Hex8 Meshes

Num Dofs | L? H' L™
192 0.86 -0.44 o0.60
982 2.22 0.97 2.39
6419 231 Lo7 228

46280 2.06 104 L7I
350600 .95 L.02 2.08

For input decks see Appendix 12.3.3.

4.4. STEADY HEX20 CONTACT

This problem tests basic steady state heat conduction in a 3D domain. The geometry consists of a unit
cube. A variety of different source terms and boundary conditions are simultaneously applied. The
exact solution is a manufactured solution.
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Figure 4.3-1.. Steady Tied Contact: Hex8 Meshes

4.41. Features Tested

Basic heat conduction on Hex2o meshes; dirichlet, heat flux, and convective flux boundary conditions;
constant source terms; heat flux and source term from Encore user subroutines.

44.2. Boundary Conditions

At surfaces 4 and 6, the temperature is prescribed as a constant value. On surfaces 3 and s, a heat flux
condition is prescribed using a sum of a constant heat flux and a heat flux from an Encore function (user
subroutine). On surfaces 1 and 2, heat flux condition is prescribed using a sum of a convective flux
boundary condition (with constant flux and convective coefficient) and a heat flux from an Encore
function (user subroutine). Within the domain a source term is prescribed using a sum of a constant
source and an Encore function (user subroutine).

4.4.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both

blocks.
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4.4.4. \Verification of Solution

A manufactured solution is chosen as
T(z,y,2) =1+ (z — 2*)*(y — v*)*(2 — 2°)%.

The source and heat flux user subroutines are chosen so that the solution satisfies the heat equation
with the correct boundary conditions.

For each mesh, the errors in the temperature solution are computed in the L?, L[> and H' norms. The
test passes, only if the observed rates of convergence in these norms are 2, 2, and 1, respectively (within a
tolerance).
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Figure 4.4-1.. Steady Heat Conduction: Hex20 Meshes

Table 4.4-1.. Steady Heat Conduction: Convergence Rates for Hex20 Meshes
Num Dofs | L? H! L*®
2898 3.50 2.40 3.64
19620 3.25 219 319
62450 3.5 210 3.08
143700 3.10 2.07 3.04

For input decks see Appendix 12.3.4.
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4.5. STEADY HEX27 CONTACT

This problem tests basic steady state heat conduction in a 3D domain. The geometry consists of a unit
cube. A variety of different source terms and boundary conditions are simultaneously applied. The
exact solution is a manufactured solution.

4.5.1. Features Tested

Basic heat conduction on Hex27 meshes; dirichlet, heat flux, and convective flux boundary conditions;
constant source terms; heat flux and source term from Encore user subroutines.

4.5.2. Boundary Conditions

At surfaces 4 and 6, the temperature is prescribed as a constant value. On surfaces 3 and s, a heat flux
condition is prescribed using a sum of a constant heat flux and a heat flux from an Encore function (user
subroutine). On surfaces 1 and 2, heat flux condition is prescribed using a sum of a convective flux
boundary condition (with constant flux and convective coefficient) and a heat flux from an Encore
function (user subroutine). Within the domain a source term is prescribed using a sum of a constant
source and an Encore function (user subroutine).

4.5.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both

blocks.

4.5.4. \Verification of Solution

A manufactured solution is chosen as
T(.’L’7 Y, Z) =1+ (J] - $2)2(y - y2)2(z - 22)2'

The source and heat flux user subroutines are chosen so that the solution satisfies the heat equation
with the correct boundary conditions.

For each mesh, the errors in the temperature solution are computed in the L?, L and H" norms. The
test passes, only if the observed rates of convergence in these norms are 2, 2, and 1, respectively (within a
tolerance).

For input decks see Appendix 12.3.5.
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Figure 4.5-1.. Steady Heat Conduction: Hex27 Meshes

Table 4.5-1.. Steady Heat Conduction: Convergence Rates for Hex27 Meshes
Num Dofs | L2 H! L*®
13750 3.25 218  3.19
28830 3.3 2.I0 2.97
63880 3.4 2.09 3.25
120000 3.1 2.07 3.26

4.6. STEADY TET4 CONTACT

This problem is identical to the one in Section 2.1 except that unstructured Tet4 meshes are used
instead.

4.6.1. Features Tested

Basic heat conduction on Tet4 meshes; dirichlet, heat flux, and convective flux boundary conditions;
constant source terms; heat flux and source term from Encore user subroutines.

4.6.2. Boundary Conditions

Same as in Section 2.1.
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4.6.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both

blocks.

4.6.4. \Verification of Solution

Same as in Section 2.1.
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Figure 4.6-1.. Steady Tied Contact: Tet4 Meshes

Table 4.6-1.. Steady Tied Contact: Convergence Rates for Tet4 Meshes

Num Dofs | L? H!' L*®
229 .6o 0.76 1.48
1402 2.29 109 2.65
8535 1.93 0.98 138
51620 2.0§ LO2 214
291200 1.88 0.94 181

For input decks see Appendix 12.3.6.

4.7. STEADY TET4TET10 CONTACT

This problem is identical to the one in Section 2.1 except that unstructured Tet4 meshes are used

instead.
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4.71. Features Tested

Basic heat conduction on Tet4 meshes; dirichlet, heat flux, and convective flux boundary conditions;
constant source terms; heat flux and source term from Encore user subroutines.

4.7.2. Boundary Conditions

Same as in Section 2.1.

4.7.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both

blocks.

4.7.4. \Verification of Solution

Same as in Section 2.1.
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Figure 4.7-1.. Steady Tied Contact: Tet4 Meshes

For input decks see Appendix 12.3.7.
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Table 4.7-1.. Steady Tied Contact: Convergence Rates for Tet4 Meshes
Num Dofs | L? H' L™
1364 .40 0.72 LI3
9663 2.14 LO2 2.46

62720 .90 0.94 127
392000 .98 1.00 216
2250000 .89 0.93 1.84

4.8. STEADY TET10 CONTACT

This problem is identical to the one in Section 2.1 except that unstructured Tetro meshes are used
instead.

4.8.1. Features Tested

Basic heat conduction on Tetro meshes; dirichlet, heat flux, and convective flux boundary conditions;
constant source terms; heat flux and source term from Encore user subroutines.

4.8.2. Boundary Conditions

Same as in Section 2.1.

4.8.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both

blocks.

4.8.4. \Verification of Solution

Same as in Section 2.1.

Table 4.8-1.. Steady Tied Contact: Convergence Rates for Tet10 Meshes
Num Dofs | L? H!' L*®
1364 271 L§I  2.78
9663 334 214 2.99
62720 2.86 1.92 239

392000 3.06 2.05 2.68

For input decks see Appendix 12.3.8.
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Figure 4.8-1.. Steady Tied Contact: Tet10 Meshes

4.9. STEADY TET10 DASH CONTACT

This problem is identical to the one in Section 2.1 except that unstructured Tetro meshes are used

instead.

4.9.1. Features Tested

Basic heat conduction on Tetro meshes; dirichlet, heat flux, and convective flux boundary conditions;
constant source terms; heat flux and source term from Encore user subroutines.

4.9.2. Boundary Conditions

Same as in Section 2.1.

4.9.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both

blocks.
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Figure 4.9-1.. Steady Tied Dash Contact: Tet10 Meshes

Table 4.9-1.. Steady Tied DASH Contact: Convergence Rates for Tet10 Meshes
Num Dofs | L? H' L=
1364 2.80 L§7 255
9663 334 214 3.4
62720 2,59 191  2.38
392000 270 2.06 2.61

4.9.4. \Verification of Solution

Same as in Section 2.1.

For input decks see Appendix 12.3.9.

4.10. TRANSIENT TET4TET10 CONTACT

This problem tests basic transient heat conduction with contact in a 3D domain. The geometry consists
of two halves of a unit cube meshed with Tetio elements. The problem is solved using Tet4
interpolation and applying thermal contact at the common interface between the two domains.

4.10.1. Features Tested

Basic heat conduction on Tetro meshes; dirichlet, heat flux, and convective flux boundary conditions;
constant source terms; heat flux and source term from Encore user subroutines.

90



4.10.2. Boundary Conditions

Using a manufactured solution, Dirichlet boundary conditions are applied on all the non-contact

exposed faces.

4.10.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both

blocks.

4.10.4. Verification of Solution

A manufactured solution is chosen as
T(z,y,2,t) = (x —2%)* (y — v*)* (z — 2°)’m(t) + 1,
m(t) = 10* [1. — exp(—t) + t * exp(—(t — 1.0) * (¢ — 1.0))] ;

The source and heat flux user subroutines are chosen so that the solution satisfies the heat equation
with the correct boundary conditions.
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Figure 4.10-1.. Transient Tied Contact: Tet10 Meshes

For input decks see Appendix 12.3.10.
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Table 4.10-1.. Transient Tied Contact: Convergence Rates for Tet10 Meshes
Num Dofs ‘ LX(T) IL*T) H' L™

1364 .41 2.85  0.72 LI4
9663 2.13 1.81 .02 2.46
62720 1.90 .94 0.94 127

4.11. TRANSIENT TET10 CONTACT

This problem tests basic transient heat conduction with contact in a 3D domain. The geometry consists
of two halves of a unit cube meshed with Tetro elements. The problem is solved by applying thermal
contact at the common interface between the two domains.

4.11.1. Features Tested

Basic heat conduction on Tetro meshes; dirichlet, heat flux, and convective flux boundary conditions;
constant source terms; heat flux and source term from Encore user subroutines.

4.11.2. Boundary Conditions

Using a manufactured solution, Dirichlet boundary conditions are applied on all the non-contact
exposed faces.

4.11.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both

blocks.

4.11.4. Verification of Solution

A manufactured solution is chosen as

T(l’,y, Z7t) = ('r - xQ)Q (y - y2>2 (Z - 22)2m(t) + 17
m(t) = 10* [1. — exp(—t) + t * exp(—(t — 1.0) * (¢ — 1.0))];

The source and heat flux user subroutines are chosen so that the solution satisfies the heat equation
with the correct boundary conditions.

For input decks see Appendix 12.3.11.
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Figure 4.11-1.. Transient Tied Contact: Tet10 Meshes

Table 4.11-1.. Transient Tied Contact: Convergence Rates for Tet10 Meshes
NumDofs | L*(T) L*(T) H' L~

1364 275 5.40 LsI  2.81
9663 3.33 2.23 214 3.00
62720 2.85 230 192 239

4.12. TRANSIENT HEXS8 TIED CONTACT

This problem tests transient heat conduction on a 3D domains with a nonconformal mesh between two
blocks. Tied temperature (generalized contact) is used for matching the energy equation between
nonconformal blocks. The geometry consists of a unit cube.

4.12.1. Features Tested

Transient heat conduction on Hex8 meshes; dirichlet, heat flux, and convective flux boundary
conditions, Tied Contact, Nonconformal; constant source terms; heat flux and source term from
Encore user subroutines.

4.12.2. Boundary Conditions

At surfaces 4 and 6, the temperature is prescribed as a constant value. On surfaces 3 and s, a heat flux
condition is prescribed using a sum of a constant heat flux and a heat flux from an Encore function (user
subroutine). On surfaces 1 and 2, heat flux condition is prescribed using a sum of a convective flux
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boundary condition (with constant flux and convective coefficient) and a heat flux from an Encore
function (user subroutine). Within the domain a source term is prescribed using a sum of a constant
source and an Encore function (user subroutine). On the two interior surfaces connecting the
nonconformal blocks (surfaces 7 and 8), a contact definition is defined as tied temperature.

4.12.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both

blocks.

4.12.4. Verification of Solution

A manufactured solution is chosen as
T(‘T? Y, z, t) = (.’E - .’1?2)2 (y - y2)2 (Z - ZZ)Qm(t) + ]-7
m(t) = 10* (1 — exp(—t) +t exp(—(t — 1)?))

The source and heat flux user subroutines are chosen so that the solution satisfies the heat equation
with the correct boundary conditions.

For each mesh, the errors in the temperature solution at final time are computed in the L? norm of T
and T, L> and H"' norms. The test passes, only if the observed rates of convergence in these norms are
2,2, 2 and 1, respectively (within a tolerance).
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Figure 4.12-1.. Tied Contact Transient Heat Conduction: Hex8 Meshes
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Table 4.12-1.. Tied Contact Transient Heat Conduction: Conver-
gence Rates for Hex8 Meshes

NumDofs | LX(T) L*(T) H' L

192 0.88 3.46  -0.44 0.6I
982 2.23, 1.84 0.97 2.39
6419 2.31 2.30 .07  2.29

4.13. TRANSIENT TET4 TIED CONTACT

This problem tests transient heat conduction and tied thermal contact in a 3D domain as in Section 2.7.
The geometry consists of a unit cube that is split along the plane at 7 = 0.5.

4.13.1. Features Tested

Basic transient heat conduction on Tet4 meshes; non-conformal tied thermal contact; dirichlet, heat
flux, and convective flux boundary conditions; constant source terms; heat flux and source term from
Encore user subroutines.

4.13.2. Boundary Conditions

Identical to Section 2.7.

4.13.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both

blocks.

4.13.4. Verification of Solution

A manufactured solution is chosen as in Section 2.7.

For each mesh, the errors in the temperature solution at final time are computed in the L? norm of T
and 7', L*>° and H! norms. We see convergence rates for 1" that are slightly greater than two.
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Figure 4.13-1.. Transient Heat Conduction with Tied Contact: Tet4 Meshes

Table 4.13-1.. Transient Heat Conduction with Tied Contact:
Convergence Rates for Tet4 Meshes

Num Dofs | L3(T) L*(T) H' L*®
229 1.61 322 076 1.49
1402 2.29 1.94 Lo 2.64
8535 1.93 1.91 0.98 139
51620 2.05 2.12 .02 2.14
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5. ELEMENT DEATH

5.1. CDFEM ELEMENT DEATH (HEAT FLUX)

This problem tests transient conduction and CDFEM element death using 2D and 3D domains. The
geometry consists of a thick 1/4 cylindrical or 1/8 spherical shell.

5.1.1. Features Tested

Transient heat conduction, adaptive second order time integration (BDF2), CDFEM element death,
temperature and heat flux boundary conditions, Tri3 and Tet4 meshes.

5.1.2. Boundary Conditions

On one surface, the exact solution is used to specify a time-varying temperature. At the other surface, an
analytic heat flux is applied using the exact solution. The erosion of the volume from CDFEM element
death causes the surface with the heat flux BC to gradually recede as the material is removed.

5.1.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both

blocks.

5.1.4. \Verification of Solution

A manufactured solution 7" and exact source term S are chosen in 2D to be:

In(r) In(r)

)= fe— CIPEDECED

S(r,t) =

and in 3D to be:
T(r,t)=1+4+t)/r, S(rt)=1/r.

For each mesh, the errors in the temperature solution are computed in the L?, L™ and H" norms over
the volume, and in the L? and L> norms over the outer surface. The test passes, only if the observed
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rates of convergence in these norms are one (within a tolerance). First order convergence is expected in
this case, due to the nature of the coupling of the CDFEM mesh decomposition and the heat

conduction solve.

5.1.5. Results: Tri3

10°

1071}

Solution Errors

p

102}

L2
Hl
L=
L*(surf)

iilll

L>(surf) ||

1073
10!

Coarse Mesh

i i
102 103

Num Nodes

Error Norms

Figure 5.1-1.. CDFEM Element Death (Heat Flux): Tri3

Table 5.1-1.. CDFEM Element Death (Heat Flux): Convergence Rates for Tri3

Num Dofs ’ I H' I L*sarf) L®(sutf)
103 416 1.69 4.30 4.03 3.73
332 124 0.64 0.44 0.60 0.98
1163 0.78 0.93 LOI 0.93 0.73

5.1.6. Results: Tet4

Table 5.1-2.. CDFEM Element Death (Heat Flux): Convergence Rates for Tet4

Num Dofs ‘ L? H' L[ [*surf) L*(surf)
1024 0.63 0.39 0.76 0.60 0.83
5470 .66 1.40 171 L.y7 1.68
32588 .27  LI9 L34 1.27 1.34

For input decks see Appendix 12.4.1.
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Figure 5.1-2.. CDFEM Element Death (Heat Flux): Tet4

5.2. 3D SPHERICAL SHELL ENCLOSURE

5.2.1. Problem Description

This problem tests transient conduction, enclosure radiation, and CDFEM element death. The initial
geometry of this problem is a hollow sphere (block 2) inside and in contact with a second hollow sphere
(block 1). The geometry is such that the solution maintains radial symmetry. The inner sphere
decomposes at a specific failure temperature, resulting in a changing enclosure geometry.

5.2.2. Features Tested

Transient heat conduction, enclosure radiation, CDFEM element death, Tet4 meshes.

5.2.3. Boundary and Initial Conditions

The initial condition is a piecewise steady state temperature distribution defined below in (s.1). The
boundary conditions specify the temperature T} at the outer surface (4) of the outer sphere and 7' at
the inner surface (1) of the inner sphere. The inner temperature 77 will be gradually increased, while T
remains constant in time.

An enclosure is defined initially using the outer surface of the inner volume (surface 2 of block 2) and the
inner surface of the outer volume (surface 3 of block 1). The erosion of the inner volume (block 2) from
CDFEM element death causes surface 2 to gradually recede as the material within block 2 is removed.
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Dimensions are defined in Table 5.2-1.

Table 5.2-1.. Dimensions of problem
radius of surface 1 | 1 | o.01

radius of surface_2 | 73 | 0.02

radius of surface 3 | 73 | 0.03

radius of surface_4 | 4 | 0.04

5.2.4. Material Parameters

Material properties are shown in Table 5.2-2.

Table 5.2-2.. Material properties

Thermal conductivity Kk | Lo

Density p | 7682.0

Specific heat C, | 10.0

emissivity (inner) € | 0.6

emissivity (outer) €3 | 0.7
Stefan-Boltzmann constant | 0 | 5.6704€-8

failure temperature (block 2) | 17 | 867.011674920813

5.2.5. \Verification of Solution

The solution after failure occurs is specified using inner and outer temperature solutions of the form:

1/r—1/m
. — Yy L <r< .
ﬂ(T) T1 =4 (Tc 7”11)1/7“2 . 1/7"17 mn>rxry, (5 I)
1/T—1/T’3
— A e i <r< :
T,(r) Co+ (Ta = Co)7 T 1jry TPSTST (5:2)

Here all parameters are known except r3 and C,,, which will vary with time. The initial value of 75 is
given in Table s5.2-1; the initial value of C;, is chosen to satisfy the enclosure radiation equilibrium
equations below.

To complete the solution, we now derive a system of two nonlinear equations to solve for ry and C,,.
These are the energy balances on the outer and inner enclosure surfaces, given by

R2 = (2 — 0'€2T24 + 62<F22J2 + F23J3) (53)
Rg = —(Qq3— O’EgT; -+ 63(F32J2 + F33J3) (5.4)
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where the three terms in each equation represent fluxes from conduction, radiative emission, and
radiative reflection. The conductive fluxes are defined by Fourier’s law as

&L de— 27y

42 = —KQEL«:W = @r%(l/rg —1/m) (s5)
T, Ta=0Cy

B T e T ) 5

The surface temperatures are
T2 = E'r:m = Tc: TS = To|r:r3 = Co

The radiosities are obtained by solving the linear system for enclosure radiation

|: 1— (1 — 62)F22 —(1 — 62)F23 :| l J2 :| _ [ 0'62T24 :|
—(1 — 63)F32 1— (1 — 63)F33 J3 0'6371;l

to obtain

JQ . 1 1-— (1 - 63)F33 (1 - 62)F23 O'EQT24
Jg - a (1 - 63)F32 1— (1 - 62)F22 O'E:J,Tg1

where a is the determinant
a = (1 — (1 = EQ)FQQ)(l — (1 — 63)F33) — (1 — 62)F23(1 — 63)F32
The viewfactor coeflicients F;; are given by

Fpp =0, Fyu=1 Fyp= (7’2/7’3)2, Fy3=1— I3

The specific function we choose for T} (1) is
Ty(t) =Ty + 400(1 — cos(7t)) /2

The time histories of 7y and C, are shown in Figure 5.2-1.

In order to derive the source term, the time derivatives of 73 and C, are computed once the pair of
nonlinear equations is solved using Newton’s method. Since the spatial part of the piecewise solution is
harmonic, the source terms become just pc,0;T', where

. 1/r—1/r To(1/r — 1/71)

T, = 1+ (T.-T)———+(T.- T , m<r<r, (s

O 1+ ( 1)1/r2—1/1"1+( 1)7"5(1/7“2—1/7"1)2 1 <r<ry (57)
C 1/7"—1/7"3

oT, = C,(1 — ———"=), = -8

t ( 1/7"4—1/7°3 rs>r>m (S )

5.2.6. Results

Results are presented running the problem on three meshes up to time ¢ = 0.9.
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Figure 5.2-1.. Evolution of parameters r, and C.,.

Table 5.2-3.. Convergence Rates at ¢ = 0.9
Num Dofs | L(T) L*(T) L* H!
4307 2.11 2.09 0.83 1.03
25590 2.25 1.52 215 10§
178700 2.03 1.49 1.87 0.99

For input decks see Appendix 12.4.2.

5.3. STANDARD ELEMENT DEATH (HEAT FLUX)

This problem tests transient conduction with standard element death on a 2D square domain than is
essentially a 1D problem.

5.3.1. Features Tested

Transient heat conduction, adaptive second order time integration (BDF2), standard element death,
temperature and heat flux boundary conditions, Tri3, Hex8 and Quad4 meshes.

5.3.2. Boundary Conditions

On one surface, the exact solution is used to specify a time-varying temperature. At the other surface, an
analytic heat flux is applied using the exact solution. The erosion of the volume from element death
causes the surface with the heat flux BC to recede element by element as the material is removed.
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5.3.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both

blocks.

5.3.4. \Verification of Solution

A manufactured solution 7" and exact source term S are chosen to be:

T(r,t) = exp(t — x).

For each mesh, the errors in the temperature solution are computed in the L?, L> and H' norms over
the area. The test passes, only if the observed rates of convergence in these norms are one (within a
tolerance). First order convergence is expected in this case.

5.3.5. Results: 1D Hex8

Table 5.3-1.. Element Death (Heat Flux): Convergence Rates for Hex8

Num Dofs | Vart  Varz Varz
40 nan nan nan
72 .69 L§9 L.62
144 0.93 0.96 0.93
272 L2  LI4 LI
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Figure 5.3-1.. Element Death (Heat Flux): Hex8

5.3.6. Results: 1D Quad4

Table 5.3-2.. Element Death (Heat Flux): Convergence Rates for Quad4

Num Dofs | Vart  Varz  Var3
22 .38 138 134
36 .85 Ls2 L1.66
68 LI6 L2 LI
134 .09 LO9 LO9

5.3.7. Results: 1D Tri3

Table 5.3-3.. Element Death (Heat Flux): Convergence Rates for Tri3

Num Dofs | Vart  Varz  Var3
20 nan nan nan
38 1.43 1.44 1.40
73 1.09 1.04 1.04
138 L19 LI2 LIy

5.3.8. Results: 2D Quad4

This problem tests transient conduction with standard element death on a 2D quarter slice of an
annulus.
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Figure 5.3-2.. Element Death (Heat Flux): Quad4

5.3.9. Features Tested

Transient heat conduction, fixed first order time integration, standard element death, Quad4 mesh.

5.3.10. Boundary Conditions

On one surface, the exact solution is used to specify a time-varying temperature. On the other surfaces,
the exact source solution is provided as the flux boundary condition. The erosion of the volume from
element death is caused by having a minimum nodal value of temperature less than 1.

5.3.11. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both

blocks.

5.3.12. \Verification of Solution

A manufactured solution 7" and exact source term S are chosen to be:

T(r,t) =In(y/22 +y?)(1/1n(2 — t)).
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Figure 5.3-3.. Element Death (Heat Flux): Tri3

For each mesh, the errors in the temperature solution are computed in the L?, L*>° and H' norms over

the area. The test passes, only if the observed rates of convergence in these norms are one (within a

tolerance). First order convergence is expected in this case.

Table 5.3-4.. 2D Element Death (Heat Flux): Convergence Rates for Quad4

Num Dofs | Vart  Varz Var3 Varg Varg
63 4.53 235 328 16.25 nan

246 079 1L1I0 0.91 -5.66 nan
810 .45 125 L32 LI6 116
2898 II2 102 104 LIo 108

5.3.13. Results: 3D Hex8

This problem evaluates transient conduction with standard element death on a 3D quarter of a hollow

sphere geometry.

5.3.14. Features Tested

Transient heat conduction, fixed first order time integration, standard element death, Hex8 mesh.
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Figure 5.3-4.. Element Death (Heat Flux): Quad4

5.3.15. Boundary Conditions

On surface 2, the exact solution is used to specify a time-varying temperature. On all remaining surfaces,
a heat flux boundary condition is imposed with a flux time function specified. The erosion of the
volume from element death is caused by having a maximum nodal value of temperature greater than

I.

5.3.16. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both

blocks.

5.3.17. \Verification of Solution

A manufactured solution 7" and exact source term S are chosen to be:

1+¢

NN

For each mesh, the errors in the temperature solution are computed in the L?, L and H" norms over
the area. The observed rates of convergence in these norms are one (within a tolerance). First order

T(r,t) =

convergence is expected in this case.
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Figure 5.3-5.. Element Death (Heat Flux): Hex8

Table 5.3-5.. Element Death (Heat Flux): Convergence Rates for Hex8

Num Dofs ‘ P gt IR
2382 .64 112 180
16214 136 1LI0 10O

122892 .57 105 108
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6. TIME INTEGRATION

6.1. ADAPTIVE TIME INTEGRATION

This problem tests the various implicit time integrators using both fixed and adaptive time stepping.
The integrators are first order (Backward Euler), second order (Crank-Nicolson) and BDF2. The
geometry is a 2D square.

6.1.1. Features Tested

Transient heat conduction, time integrators, adaptive time stepping, polynomial temperature
dependence of density and thermal conductivity.

6.1.2. Boundary Conditions

The boundary conditions are prescribed at the nodes using the analytic solution. The initial condition
is specified using an Encore function evaluated at the nodes.

6.1.3. Material Parameters

The specific heat is constant. The density and thermal conductivity are linear polynomials in the
temperature.

6.1.4. Verification of Solution

A manufactured solution is chosen as
T(x,y,t) = sin(C1t) 4 2z cos(Cyt) + 3y sin(Cst) + 4ay cos(Cyt) + 5% sin(Cst) + 632 cos(Cet)

which requires a source term. This solution is designed to have a non-trivial time-dependence using
constants:

01:77', 02:271', 03:371', 04:71', C’5:2.57T7 06:0.571’
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For each mesh, the errors in the temperature solution are computed in the L?, L™ and H' norms. The
L? error in the temperature time derivative is also computed. The test passes, only if the observed rates
of convergence in these norms are 1 for H* and 2 for all other norms (within a tolerance).

Because the adaptive meshes use less time steps, we use time step size instead of mesh size for estimation
of the convergence rates. We also include the L? error in the time derivative of the temperature.

For input decks see Appendix 12.5.1.

6.1.5. Results: First Order Fixed
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Figure 6.1-1.. Adaptive Time Integration: Errors for First Order Fixed

Table 6.1-1.. Adaptive Time Integration: Convergence Rates for First Order Fixed

Num Dofs | LA(T) L*(T) H' L™
20 0.18 1.0§ 0.89 0.43
40 0.89 1.01 0.94 0.91
8o 0.95 1.01 1.OI 0.97
160 0.98 1.OO  0.99 0.99
320 0.99 1.00 1.0O  0.99

6.1.6. Results: First Order Adaptive
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Figure 6.1-2.. Adaptive Time Integration: Errors for First Order Adaptive

Table 6.1-2.. Adaptive Time Integration: Convergence Rates for
First Order Adaptive
Num Dofs | L*(T) L*(T) H' L*®

23 0.13 L.13 LO9 0.34
46 0.77 0.68 0.86 0.81
89 1.01 .04 LO9 103
178 0.93 0.95 0.96 0.95

355 0.96 0.81 0.98 0.97
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6.1.7. Results: Second Order Fixed
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Figure 6.1-3.. Adaptive Time Integration: Errors for Second Order Fixed

Table 6.1-3.. Adaptive Time Integration: Convergence Rates for
Second Order Fixed

Num Dofs | L*(T) L*(T) H' L*
20 2.59 2.11 137  2.46
40 1.90 2.06  0.92 190
8o 2.13 2.03 .o 185
160 1.98 .82 0.99 2.22
320 2.03 L.71 Loz L7§

6.1.8. Results: Second Order Adaptive
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Figure 6.1-4.. Adaptive Time Integration: Errors for Second Order Adaptive

Table 6.1-4.. Adaptive Time Integration: Convergence Rates for
Second Order Adaptive

Num Dofs | L*(T) L*(T) H' L™
2 4.81 426 3.24 4.34
19 2.81 2.39 .41 2.71
26 1.61 438 238 L35
41 1.88 2.77 LI 1.92
70 2.17 170 134 2.24
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6.1.9. Results: BDF2 Fixed
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Figure 6.1-5.. Adaptive Time Integration: Errors for BDF2 Fixed

Table 6.1-5.. Adaptive Time Integration: Convergence Rates for BDF2 Fixed

Num Dofs | L*(T) L*(T) H' L*®
20 2.00 L.75 136 180
40 L1 .79  0.92 161
8o 1.90 1.90 LIO 193
160 1.92 .95  0.99 1.93
320 1.98 1.98 .02 1.98

6.1.10. Results: BDF2 Adaptive
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Figure 6.1-6.. Adaptive Time Integration: Errors for BDF2 Adaptive

Table 6.1-6.. Adaptive Time Integration: Convergence Rates for BDF2 Adaptive

Num Dofs | L*(T) L*(T) H' L™
13 4.03 412 2.86 3.80
19 0.27 0.65 158 0.49
28 1.59 1.73 .89 1.78
44 1.09 0.90 142 122
74 2.13 2.37 L§I  2.17
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7. ENCLOSURE RADIATION

7.1. 2D CYLINDRICAL SHELL ENCLOSURE

7.1.1. Problem Description

This problem tests steady state coupled conduction and enclosure radiation. The geometry of this
problem is a hollow cylinder (block 2) inside a second hollow cylinder (block 1), which is a radially

symmetric problem.

7.1.2. Features Tested

Basic heat conduction, enclosure radiation, Quad4/Tri3 meshes.

7.1.3. Boundary Conditions
The boundary conditions specify the temperature of the outer surface of the outer sphere (T'(14) = T4)
and the inner surface of the inner sphere (7'(r1) = T1).

The problem is steady state but is initialized with a constant temperature of 300 in both blocks. The
inner surface temperature 7} is set to 300. The outer surface temperature 7} is set to 1300.

Dimensions are defined in Table 7.1-1.

Table 7.1-1.. Dimensions of problem
radius of surface 1 | 1 | o.01

radius of surface_2 | 3 | 0.02

radius of surface 3 | 3 | 0.03

radius of surface_4 | 4 | 0.04

7.1.4. Material Parameters

Material properties are shown in Table 7.1-2.
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Table 7.1-2.. Material properties

Thermal conductivity (block_1) | k1 | 2.0
Thermal conductivity (block_2) | k2 | 0.35
Density p | 1o
Specific heat Cp | Lo
emissivity (surface_2) € | 050
emissivity (surface_3) €3 | 0.55
Stefan-Boltzmann constant o | 5.6704¢-8

7.1.5. Verification of Solution
In cylindrical coordinates, the temperature is independent of § and z. Integrating this equation twice
with respect to the radius 7, we obtain the general solution in either hollow cylinder to be

T(r) = Cylog(r) + Cy,

for arbitrary constants C'; and Cy. We will use 1,7 = 1, . . ., 4 to denote the location of the four
surfaces of constant 7, numbered from inside to outside. Unless specified otherwise, we will use these
subscripts for other quantities which are evaluated at one of the four surfaces.

Including the boundary conditions into the solution allows us to eliminate two constants and gives
Tinner(r) = T1+ crlog(r/ri)forry <r < ry (7.1)

Touter(r) = Ti+ colog(r/ry)forrs <r <ry (7.2)

To solve for ¢; and cp we compute the temperatures at the enclosure surfaces 73 and 73, defined as
T2 - ,I‘inner (TQ) and T3 — Touter (TB):

7.1.6. Results

The exact temperatures at the enclosure surfaces (to six digits precision) are 15 = 444.7977 and
T3 = 956.5915. From these values we can compute the values of ¢p and ¢y and thus the exact
solution.

For each mesh, the errors in the temperature solution are computed in the L?, L™ and H' norms. The
test passes, only if the observed rates of convergence in these norms are 2, 2, and 1, respectively (within a
tolerance).

These optimal rates are observed in this test.

For input decks see Appendix 12.6.1.
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Figure 7.1-1.. Enclosure Radiation 2D

Table 7.1-3.. Enclosure Radiation 2D: Convergence Rates

Num Dofs | L? L>* H!
640 2.54 1.88 LI
2276 2.50 2.33 LII
8673 2.I0 2.0 LO7

33500 .90 2.00 1.02

7.2. 2D ANNULAR ENCLOSURE

7.2.1. Problem Description

i
104

This problem tests steady state coupled conduction and enclosure radiation. The geometry is an

annulus with a crack.

7.2.2. Features Tested

Basic heat conduction, enclosure radiation, Triz mesh.

7.2.3. Boundary Conditions

10°

The outer and crack boundary conditions are prescribed at the nodes using the analytic solution. The

inner boundary uses an enclosure boundary condition.

18



7.2.4. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant.

7.2.5. \Verification of Solution

The manufactured solution is

50) = ks (Y20) i (2).

10 = 1) (s (22) i (Y27) — v (2)).

o\ 1/4
5(0) = <k1+kgcos (§)> |

g

T(r,0) =rB(0) + (r —re) (ﬁ — ,6’(9)) ,

K

where J is the radiosity, H is the irradiance, ¢ is the flux, and

o =5.6704 x 1078,

k=1,
Tyl = L,

e=10.9,
k1 = 8000,
ko = 400.

For each mesh, the errors in the temperature solution are computed in the L?, L and H" norms. The
test passes, only if the observed rates of convergence in these norms are 2, 2, and 1, respectively (within a
tolerance). Additionally, the errors in the radiosity and irradiance are computed in the L? norms and be
1 (within a tolerance).

These optimal rates are observed in this test.

For input decks see Appendix 12.6.2.
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Figure 7.2-1.. 2D Full Enclosure Radiation

Table 7.2-1.. 2D Full Enclosure Radiation: Convergence Rates

NumDofs | L? L* H' [L[*(Rad) L2(Irr)
65 276 131  2.00 2.36 2.46
232 238 L1325 2.10 2.40
734 2.18 1.04 127 1.32 1.49
2788 226 1.03 2.07 1.32 1.85
10420 2.37 1.03 2.7 1.09 1.18
40530 .81 101 2.08 1.01 1.04

7.3. 3D SPHERICAL SHELL ENCLOSURE

7.3.1. Problem Description

This problem tests steady state coupled conduction and enclosure radiation. The geometry of this
problem is a hollow sphere (block 2) inside a second hollow sphere (block 1), which is a radially

symmetric problem.

7.3.2. Features Tested

Basic heat conduction, enclosure radiation, Hex8 meshes.
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7.3.3. Boundary Conditions

The boundary conditions specify the temperature of the outer surface of the outer sphere (T'(14) = T4)
and the inner surface of the inner sphere (7'(r1) = 17).

The problem is steady state but is initialized with a constant temperature of 300 in both blocks. The
inner surface temperature 77 is set to 300. The outer surface temperature T} is set to 1300.

Dimensions are defined in Table 7.3-1.

Table 7.3-1.. Dimensions of problem
radius of surface 1 | 71 | o.01

radius of surface_2 | 75 | 0.02

radius of surface 3 | 3 | 0.03

radius of surface_4 | 4 | 0.04

7.3.4. Material Parameters

Material properties are shown in Table 7.3-2.

Table 7.3-2.. Material properties

Thermal conductivity (block_1) | k1 | 2.0
Thermal conductivity (block_2) | k2 | 0.35
Density p | Lo
Specific heat Cp | Lo
emissivity (surface_2) € | 0.50
emissivity (surface_3) €3 | 055
Stefan-Boltzmann constant o | 5.6704€-8

7.3.5. Verification of Solution

In spherical coordinates, the temperature is independent of ¢ and ¢. Integrating this equation twice
with respect to the radius ', we obtain the general solution in either hollow sphere to be

T(T’) = 017"_1 + 027

for arbitrary constants C'y and Cs. We will use 7,7 = 1, .. ., 4 to denote the location of the four
surfaces of constant 7, numbered from inside to outside. Unless specified otherwise, we will use these
subscripts for other quantities which are evaluated at one of the four surfaces.

I21



Including the boundary conditions into the solution allows us to eliminate two constants and gives

1 1

Tinner(r) = Ti+ ¢ (— - —> forry <r <o (7.3)
T T4
1 1

Touter(r) = Ty+co (— — —) forrs <r <y (7.4)
T T

To solve for ¢; and co we compute the temperatures at the enclosure surfaces 73 and 3, defined as
T2 = 7ﬂinner (TQ) and TS == Touter (TS):

1 1

T = Ti+e (— — —> (75)
T2 T4
1 1

T3 = Ty+co <— — —> (7.6)
r3 [

The fluxes at the surfaces between the two hollow spheres are

oT R1Cr
G2 =|—K—- ‘n=—5-

O | T8
0 — . oT L f2co
3= |—K 5= : 3

or|._,, TS

Here we have used 1 and k3 to denote the thermal conductivity of the inner and outer blocks,
respectively.

These normal conductive fluxes are included in the total energy balance at the enclosure surfaces using
the radiative transport equations (for grey diffuse surfaces):

qo = O'EQT24 — €9 ZFQJ‘JJ’

J

qs = (7637—};1 — €Y ZF3JJ]

J

where o is the Stefan Boltzmann constant, € is the emissivity, £; is the geometric viewfactor of surface ¢
with respect to surface j and J; is the radiosity for surface j.

The viewfactor coefficient Fj; is the fraction of energy that leaves surface ¢ and arrives at surface j. For
this geometric setup, no point on the inner surface at r can “see” itself (no straight line can be drawn
from a point on its surface onto itself) and so F5y = 0. By viewfactor reciprocity

> Fi=1
J
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we must have F3 = 1. The outer-to-inner view factor F3y can be computed analytically to be

2

r
2
Fpp=-2

and again by viewfactor reciprocity

The system of equations that must be solved for the radiosities at the inner and outer surfaces is given
by
J2 = EQO'T24 | (1 — EQ)[FQQJQ + F23J3]

J3 = 630'7_’51 + (]_ - 63)[F32J2 -+ F33J3]

Solving this system of equations, we can write J5 and .J; in terms of temperature, and plug this back
into the equation for the surface flux. We then get a system of two nonlinear equations to solve for 15
and T3, the temperatures of the adjacent surfaces without Dirichlet boundary conditions. For our given
set of parameters, these equations are solved iteratively in Matlab using the fsolve function.

7.3.6. Results

The exact temperatures at the enclosure surfaces (to six digits precision) are 75 = 564.783 and
T3 = 1047.825. From these values we can compute the values of cp and ¢y and thus the exact
solution.

For each mesh, the errors in the temperature solution are computed in the L?, L and H" norms. The
test passes, only if the observed rates of convergence in these norms are 2, 2, and 1, respectively (within a
tolerance).

These optimal rates are observed in this test.

Table 7.3-3.. Enclosure Radiation: Convergence Rates
NumDofs | L? L~ H*
15590 214 2.I7 106
117600 2.0§ 2.0§ 1.03
912500 2.02 2.02 I1.01

For input decks see Appendix 12.6.3.
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Figure 7.3-1.. Enclosure Radiation

7.4. 3D SPHERICAL SHELL PARTIAL ENCLOSURE

7.4.1. Problem Description
This problem tests coupled conduction and enclosure radiation with a partial enclosure. The geometry

consists of two thick spherical shells separated by a gap. The outer shell has a section removed so that
the enclosure is only partial.

7.4.2. Features Tested

Basic heat conduction, enclosure radiation with partial enclosure, Hex8 meshes.

7.4.3. Boundary Conditions

The outer and inner boundary conditions are prescribed at the nodes using the analytic solution. The
analytic solution is used to set the boundary conditions on the cutaway face near the opening in the
outer shell.

7.4.4. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant within each element block;
however, the values differ between blocks.
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7.4.5. Verification of Solution

The analytic solution is identical to Section 7.3. The area for the partial enclosure is computed
analytically.

For each mesh, the errors in the temperature solution are computed in the L?, L> and H' norms. The
test passes, only if the observed rates of convergence in these norms are 2, 2, and 1, respectively (within a
tolerance).

These optimal rates are observed in this test.
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Figure 7.4-1.. Partial Enclosure Radiation

Table 7.4-1.. Partial Enclosure Radiation: Convergence Rates
Num Dofs ‘ # L= H
4338 226 232 LI3
29690 2.13 2.07 106
223200 2.06 2.06 1.03

For input decks see Appendix 12.6.4.
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8. CHEMISTRY

8.1. FIRST ORDER REACTION (SPATIALLY VARYING
TEMPERATURE)

This problem tests the interface to the CHEMEQ solver under the assumption that the temperature
remains is variable in space but remains constant in time. The geometry consists of a unit cube meshed
with Hex8 elements refined only in one direction ().

8.1.1. Features Tested

CHEMEQ solver; source term from chemistry; nonlinear solver; second order time integrator with
fixed time steps; constant initial temperature; constant temperature boundary condition.

8.1.2. Boundary Conditions

A constant temperature is applied on surface 1. The initial temperature is provided by an Encore user
subroutine and the initial species values are A = 1 and B = 0.

8.1.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both
blocks. The CHEMEQ parameters are chosen to model a single first order reaction A — B with
constant values of pre-exponential factor and activation energy.

8.1.4. Verification of Solution
A manufactured solution is chosen as
T(x) =400 (1+ 0.2 cos(mz)),

A(z,t) = exp {— exp(5) exp(—};;iz))t} :

B(z,t) =1— A(x,t)
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where R = 1.9872 is the ideal gas constant. A source term is used to insure that the temperature does
not vary in time.

For each mesh, the errors in the temperature and species A and B are computed in the L? norm. The
test passes, only if the observed rates of convergence in these norms are 2 (within a tolerance).
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Figure 8.1-1.. First Order Reaction (Spatially Varying Temperature)

Table 8.1-1.. First Order Reaction (Spatially Varying Tempera-
ture): Convergence Rates for Hex8 Meshes

Num Dofs | L*(A, B) L*(T)
36 2.37 2.34
68 2.18 2.18
132 2.09 2.09
260 2.04 2.04
516 2.02 2.02

For input decks see Appendix 12.7.2.

8.2. FIRST ORDER REACTION

This problem tests the interface to the CHEMEQ solver under a temperature field that is variable in
space and time. The geometry consists of a unit cube meshed with Hex8 elements refined only in one
direction.

8.2.1. Features Tested

CHEMEQ solver; source term from chemistry; nonlinear solver; second order time integrator with
fixed time steps; initial temperature from user sub; constant temperature boundary condition.
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8.2.2. Boundary Conditions

The initial temperature and the temperature boundary condition on surface 1 are provided by an Encore
user subroutine and the initial species values are A = 1 and B = 0.

8.2.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both
blocks. The CHEMEQ parameters are chosen to model a single first order reaction A — B with
constant values of pre-exponential factor and activation energy.

8.2.4. \Verification of Solution

A manufactured solution is chosen as

o(z,t) = exp(a — E/(RT))(1 4 0.1sin(x)) exp(t),

O(z,t) =exp(a — E/(RT))(1+ 0.1sin(z))(exp(t) — 1),
T(z,t) = (E/R)/(a = In(p(z,1))),
Az, t) = exp(—P(z, 1)),
B(z,t) =1— A(z,t)

where a is the log pre-exponential factor, R is the ideal gas constant, F is the activation energy, and 7§ is
a reference temperature value. The form of the solution is contrived so that

0iA(z,t) = —0;B(z,t) = —¢(z,t) A(z, t)
E

P(z,t) = exp(a) eXP(—m)

This allows the chemistry ODEs to be satisfied exactly, but a source term is needed in the energy
equation.

For each mesh, the errors in the temperature and species A and B are computed in the L? norm. The
test passes, only if the observed rates of convergence in these norms are 1 (within a tolerance). Currently
it is not clear why the convergence rates are only first order.

For input decks see Appendix 12.7.3.

8.3. DAE AND PRESSURE TEST

This test runs CHEMEQ with a kinetics model that includes both pressure dependence and distributed
activation energy for a single element mesh with uniform temperature and pressure.
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Figure 8.2-1.. First Order Reaction

Table 8.2-1.. First Order Reaction: Convergence Rates for Hex8 Meshes

Num Dofs | L2(A, B) L*T) L>(T) H\(T)
20 1.50 LIS LIy 1.00
40 1.30 1.08 LIO 1.0O
8o 1.IS 1.04 1.0§ 1.00
160 1.07 1.02 1.03 1.0O
320 1.00 1.0I 1.0I 1.00
640 0.88 1.01 1.01 1.00

8.3.1. Features Tested

Basic heat conduction on a Hex8 mesh; CHEMEQ solver with pressure dependence and distributed

activation energy.

8.3.2. Boundary Conditions

No boundary conditions are prescribed, resulting in an adiabatic flux BC.

8.3.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant.
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8.3.4. Verification of Solution

The analytic solution for the concentration of species A as a function of time for the constant values
used in this test case is

1

A(t) = gere( 5 (V(2) — Gerf (1 — 45t/ (2exp(55))

The test compares the temperature errors against a gold file of the error at each time step. The exact
solution for the concentration of A is also output to the exodus file and a comparison plotting that and
the solved for concentration as a function of time has them lying on top of one another.

For input decks see Appendix 12.7.4.

8.4. PMDI PLUGIN TEST

This test verifies that the PMDI plugin calculates the correct pressure and effective conductivity based
on the auxiliary variable values.

8.4.1. Features Tested

Basic heat conduction on a Hex8 mesh; CHEMEQ solver with pressure dependence and a user plugin
to model a seven-species PDMI foam decomposition reaction.

8.4.2. Boundary Conditions

No boundary conditions are prescribed, resulting in an adiabatic flux BC.

8.4.3. Material Parameters

The values of density, emissivity and specific heat are all constant. The thermal conductivity is
computed using a C-style user subroutine contained within the foam model.

8.4.4. \Verification of Solution

The initial conditions are specified as follows: The test includes a Mathematica notebook file
(ExpectedSolution.nb) for calculation of expected pressure which is 1.15125¢7 Pa or 1669.75 psi.

For input decks see Appendix 12.7.5.
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Table 8.4-1.. PMDI Plugin Test: Initial Conditions

Variable Value Units
Bulk Density 3214432249 kg/m?
Initial condensed density 1500
Initial porosity 0.786301
Mass fraction of all ChemEQ species 1/7
Temperature 599.8
Initial gas pressure (N2) 101325
Initial gas temperature 299.9

131



9. MISCELLANEOUS

9.1. THERMAL POSTPROCESSING

9.1.1. Problem Description

This problem tests basic thermal postprocessors in Aria.

9.1.2. Features Tested

Basic heat conduction, thermal postprocessors, Hex8 meshes.

9.1.3. Boundary Conditions

Dirichlet BCs are specified using the exact solution on surface 1. On surface 2, a natural convection BC is
specified, using the exact solution as the reference temperature and a constant heat transfer coefficient.
Similarly, a radiative flux BC is applied on surface 3, with constant values of emissivity and radiation
form factor. A source term is applied within all blocks based on substituting the exact solution into the
heat conduction operator.

9.1.4. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant with the same value for

both blocks.

9.1.5. Verification of Solution

The manufactured solution is
To + exp(Co(z® — 1) + C1(y* — 0.25) + Cy(2? — 0.25) + Cst).

Postprocessors are computed for the integrated power output for convective and radiative BCs
(cf_bc_ipo, rf_bc_ipo), the integrated flux output for convective and radiative BCs (cf_bc_ifo,
rf_bc_ifo), the integrated power output for volume source terms (src_ipo), and several point
evaluations (eval_br, eval_bib2, eval_s2).
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For each mesh, the errors in the temperature solution are computed in the L? norm and for various
postprocessors. The test passes, only if the observed rates of convergence are 2 (except for the integrated
power output for source terms, which convergences with order 4).

These optimal rates are observed in this test clearly in most cases. However, for the point evaluation
cases, a large amount of variability exists in the convergence rates.

10° T T -
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B8 rf_bc_ipo
107+ Bl cf_be_ifo [
Bl rf_bc_ifo
4 B8 src_ipo
e
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103+
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Figure 9.1-1.. Thermal Postprocess

Table 9.1-1.. Thermal Postprocess: Convergence Rates

Num Dofs | L? c¢f_bc_ipo rf_bc_ipo cf _bc_ifo rf_bc_ifo src_ipo eval bl eval_blb2 eval_s2
224 2.52 2.88 2.83 2.88 2.83 4.62 2.21 .94 2.56
1377 2.27 2.52 2.48 252 2.48 4.44 2.83 3.47 5.75
9537 2.14 2.27 2.25 2.27 2.25 4.26 L71 1.98 -0.16

70785 2.07 2.13 2.12 2.13 2.12 4.14 2.15 2.05 2.3
545025 2.04 2.06 2.05 2.06 2.05 4.07 2.20 L§7 2.44

For input decks see Appendix 12.8.1.

9.2. LOCAL COORDINATES: CARTESIAN

This problem tests the use of a local Cartesian coordinate system in a material model. The geometry is a
3D cube that has been rotated.
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9.2.1. Features Tested

Steady heat conduction, time integrators, tensor thermal conductivity, local Cartesian coordinates in a
material model.

9.2.2. Boundary Conditions

The boundary conditions are prescribed at the nodes using the analytic solution. The initial condition
is specified using an Encore function evaluated at the nodes.

9.2.3. Material Parameters

The specific heat is constant. The density and thermal conductivity are constant, with a diagonal
(tensor) thermal conductivity in the local coordinate space of the material.

9.2.4. \Verification of Solution

A manufactured solution is chosen as
T(X,Y,Z) =Ty + Ty cos(xpX) cos(yrY') cos(z,Z)

where (X, Y, Z) are the local material coordinates, which are related to the Cartesian coordinates
(x,y, z) by a rotation matrix consisting of a product of rotations (22.5 deg around the z-axis and
45 deg around the z-axis).

For each mesh, the errors in the temperature solution are computed in the L?, L™ and H' norms. The
test passes, only if the observed rates of convergence in these norms are 1 for / Land 2 for all other
norms (within a tolerance).

Table 9.2-1.. Local Cartesian Coordinate System: Convergence Rates
Num Dofs ‘ I} =
1331 229  2.27
9261 2,15 2.14

For input decks see Appendix 12.8.3.

9.3. LOCAL COORDINATES: CYLINDRICAL

This problem tests the use of a local cylindrical coordinate system in a material model. The geometry is a
3D cube that has been rotated.
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Figure 9.2-1.. Local Cartesian Coordinate System

9.3.1. Features Tested

Steady heat conduction, time integrators, tensor thermal conductivity, local coordinates in a material
model.

9.3.2. Boundary Conditions

The boundary conditions are prescribed at the nodes using the analytic solution. The initial condition

is specified using an Encore function evaluated at the nodes.

9.3.3. Material Parameters

The specific heat and density are constant. The diagonal (tensor) components of the thermal
conductivity are specified using constant values in the local coordinate space of the material.

9.3.4. \Verification of Solution

A manufactured solution is chosen as
T(X,Y,Z) =Ty + T1(2R)? cos(0) cos(2,.2)

where (R, ©, Z) are the local cylindrical material coordinates, which are related to the standard
cylindrical coordinates (x, y, 2) by a rotation matrix consisting of a product of rotations (22.5 deg
around the z-axis and 45 deg around the x-axis).
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For each mesh, the errors in the temperature solution are computed in the L?, L and H' norms. The
test passes, only if the observed rates of convergence in these norms are 1 for L and 2 for all other

norms (within a tolerance).
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Figure 9.3-1.. Local Cylindrical Coordinate System

Table 9.3-1.. Local Cylindrical Coordinate System: Convergence Rates
Num Dofs ‘ L2 I*®
2692 2.19 1.83
22723 212 1L.74

For input decks see Appendix 12.8.4.
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10. LOW-MACH FLUID FLOW

Documentation for the following tests is in progress:

| _rtest/aria/cvfemConvTaylorVortex/cvfemConvTaylorVortex.test |np4
.| _rtest/aria/gfemConvTaylorVortex/gfemConvTaylorVortex.test|np4

| _rtest/aria/hfemConvTaylorVortex/hfemConvTaylorVortex.test |np4
|mConvTaylorVortex/cvfemConvTaylorVortex.test|np8
;/mSteadyTaylorVortex/cvfemSteadyTaylorVortex.test|np8

mSteadyTaylorVortexKeps/cvfemSteadyTaylorVortexKeps.test |np8

|m_couette_flow/cdfem_couette_flow.test|cdfem_couette_flow_tri3

m_couette_flow/cdfem_couette_flow.test|cdfem_couette_flow_tri6

.| ConvTaylorVortex/gfemConvTaylorVortex.test |np8
«|SteadyTaylorVortex/gfemSteadyTaylorVortex.test|np8
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11. HOW TO BUILD THIS DOCUMENT

You need to have Sierra developer access (through WebCars). Then you should clone the Sierra Git
repository containing the tests to a location with adequate memory (currently more than 80GB), using
a command like this:

git clone sierra-git:/git/tests

Then you need to assign the verification tests, running the following command from your local tests
repository:

assign --path aria_rtest/verification

This will produce a text file called assigned. tests containing the list of all tests to run. You should edit the
second line of this file to indicate the remote location (accessible from the HPC machine where you will
run the tests). For example, I might have something like this:

# Created by assign at Fri Sep 19 09:52:09 2014

#@ /gscratchl/bcarnes/TESTS
aria_rtest/verification/1dnonlin_verifyl/ldnonlin_verifyl.test|np8
aria_rtest/verification/cyl_shell_2d/cyl_shell_2d.test|np8
aria_rtest/verification/cyl_shell_3d/cyl_shell_3d.test|np8

Next you need to copy the test files and the assigned.test file to the remote location (here it is
“/gscratchi/bcarnes/ TESTS/”):

rsync -azv aria_rtest/verification redsky:/gscratchl/bcarnes/TESTS/aria_rtest
scp assigned.tests redsky:/gscratchl/bcarnes/TESTS/

Here I am only copying the verification test sub-directory, since I do not want to run any other tests.

On the HPC machine, you will need to load a pre-built version of the code such as the nightly master
build:

module load sierra/master

To see where the executables are located, you can run something like:
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[bcarnes@redsky-login9 ~]$ which aria
/projects/sierra/redsky/install/master/bin/aria

Finally, to run the tests, you use the testrun script, with a few additional arguments. The first locates the
source code needed to compile the various user subroutines (which we just found from running “which
aria”), the second enables tests to run as long as needed, the third uses the queue, and the fourth saves
the results so you can use them in the manual.
testrun --user sourcedir=/projects/sierra/tlcc2/install/master/ \
--allow-multipliers=time \
--queued \

--gsave-all-results

It may take 1-2 hours to run all the tests. Note that if the tests start to fail with an error associated with
the ACCOUNT not being set, you may need to set it using your WCID:

export ACCOUNT=fyXXXXX
To view your available WCIDs, run the following command:
mywcid

To build this manual, you should clone the Sierra Git repository containing the documentation files
using a command like this:

git clone sierra-git:/git/docs
Then go to the directory within your local repository containing the Aria Verification Manual files:
cd aria/doc/verification_manual

Once the tests have all ran successfully, you should sync the results from the remote location back to this
directory:

rsync -azv redsky:/gscratchl/bcarnes/TESTS/results

Then run the a script to execute any local postprocessing needed to create the plots for the tests:
python ariaPostprocess.py

Finally you can create the manual using pdfiatex:

pdflatex Aria_Verification_Manual.tex

which should create a new PDF output file.
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12. INPUT DECKS FOR VERIFICATION
PROBLEMS

12.1. BASIC THERMAL TESTS

12.1.1. Steady Heat Conduction: Hex8 Meshes

BEGIN SIERRA myJob

begin definition for function kxx

type = piecewise linear
begin values

0.0 0.5

1.0 2.0

2.0 8.0

end values
end

begin definition for function kyy
type = piecewise linear
begin values
42
w2
= |

N = O
o © o
N = O

20.0 20.2
end values
end

begin definition for function kzz
type = piecewise linear
begin values
0.0 1.0
1.0 2.0
2.0 3.0
20.0 21.0
end values
scale by 2.0
end

BEGIN ARIA MATERIAL Kryptonite

Density = Constant rho=1

tensor thermal conductivity = user_function X = temperature name_xx = kxx name_yy = kyy name_zz = kzz
Specific Heat = Constant cp=1

heat conduction = Generalized

END ARIA MATERIAL Kryptonite

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN SUPERLU SOLVER
END
END TPETRA EQUATION SOLVER
{else}
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Begin Trilinos Equation Solver Direct_Solver
Solution Method = amesos-superlu
End
{endif}

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER
BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-14
END
END TPETRA EQUATION SOLVER
{else}
Begin Trilinos Equation Solver Iterative_Solver
Solution Method = CG
Preconditioning Method = Jacobi
Maximum Iterations = 1000
Residual Norm Scaling = None
Residual Norm Tolerance = 1.0e-14
End
{endif}

BEGIN FINITE ELEMENT MODEL cube
database name = cube_h{N}_hex8.e
coordinate system is cartesian
decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite
END PARAMETERS FOR BLOCK block_1

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./exact.so Using Function registerExactSoln
End

Begin User Function exact_src
Load From File ./exact.so Using Function registerExactSrc
End

Begin User Function flux_surface_3
Load From File ./exact.so Using Function registerFlux_Surface_3
End

Begin User Function flux_surface_5
Load From File ./exact.so Using Function registerFlux_Surface_5
End

Begin User Function flux_surface_1
Load From File ./exact.so Using Function registerFlux_Surface_1
End

Begin User Function flux_surface_2
Load From File ./exact.so Using Function registerFlux_Surface_2
End

Begin Norm Postprocessor 12
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor hi
Use Function exact_soln
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Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1
End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity

End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors_thermal_steady_hex8_h{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific
End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Sequential The_Time_Block
Advance myRegion
End
Simulation Start Time = 0
Simulation Termination Time = 1
End
End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q1 with DIFF SRC

# surface_4: x=0
# surface_6: x=1
# surface_3: y=0
# surface_b: y=1
# surface_1: z=1
# surface_2: z=0

# const Temp BC (x)
BC const dirichlet at surface_4 Temperature =
BC const dirichlet at surface_6 Temperature =

|
S
o o

# const flux BC (y)
BC FLUX for Energy on surface_3
BC FLUX for Energy on surface_5

|
w

constant flux =
constant flux

]
[¢4]

]

Encore_Function Name=flux_surface_3
Encore_Function Name=flux_surface_5

BC FLUX for Energy on surface_3
BC FLUX for Energy on surface_5

# convective flux BC with const Temp and H (2)
BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1
BC Flux for Energy on surface_2 = Nat_Conv T_Ref=2 H=2
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BC FLUX for Energy on surface_1 = Encore_Function Name=flux_surface_1
BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

# const source term
Source For ENERGY on block_1 = Constant value=1

Source For ENERGY on block_1 = Encore_Function Name=exact_src
Output Number of Nodes

Evaluate Postprocessor 12
Evaluate Postprocessor hil
Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = thermal_steady_hex8_h{N}.e
at step 1, increment = 1
# time interval is 1.0
title Aria cube test
nodal variables = nonlinear_solution->TEMPERATURE as T
END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion
END PROCEDURE myAriaProcedure

END SIERRA myJob

12.1.2. Steady Heat Conduction: Hex20 Meshes

BEGIN SIERRA myJob
load user plugin file ./exact.so

begin definition for function kxx

type = piecewise linear
begin values

0.0 0.5

1.0 2.0

2.0 8.0

end values
end

begin definition for function kyy
type = piecewise linear
begin values
w2
.2
1

N = O
o O O
N = O

20.0 20.2
end values
end

begin definition for function kzz
type = piecewise linear
begin values
0.0 1.0
1.0 2.0
2.0 3.0
20.0 21.0
end values
scale by 2.0
end

BEGIN ARIA MATERIAL Kryptonite
Density = Constant rho=1
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tensor thermal conductivity = user_function X = temperature name_xx

Specific Heat = Constant cp=1
heat conduction = Generalized
END ARIA MATERIAL Kryptonite

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN SUPERLU SOLVER
END
END TPETRA EQUATION SOLVER
{else}
Begin Trilinos Equation Solver Direct_Solver
Solution Method = amesos-superlu
End
{endif}

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER
BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-14
END
END TPETRA EQUATION SOLVER
{else}
Begin Trilinos Equation Solver Iterative_Solver
Solution Method = CG
Preconditioning Method = Jacobi
Maximum Iterations = 1000
Residual Norm Scaling = None
Residual Norm Tolerance = 1.0e-14
End
{endif}

BEGIN FINITE ELEMENT MODEL cube
database name = cube_h{N}_hex20.g
coordinate system is cartesian
decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite
END PARAMETERS FOR BLOCK block_1
END FINITE ELEMENT MODEL cube

Begin User Function exact_soln

Load From File ./exact.so Using Function registerExactSoln

End

Begin User Function exact_src

Load From File ./exact.so Using Function registerExactSrc

End

Begin User Function flux_surface_3

Load From File ./exact.so Using Function registerFlux_Surface_3

End

Begin User Function flux_surface_b5

Load From File ./exact.so Using Function registerFlux_Surface_5

End

Begin User Function flux_surface_1

Load From File ./exact.so Using Function registerFlux_Surface_1

End

Begin User Function flux_surface_2
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Load From File ./exact.so Using Function registerFlux_Surface_2
End

Begin Norm Postprocessor 12
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor hi
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity

End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors_thermal_steady_hex20_h{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific
End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Sequential The_Time_Block
Advance myRegion
End
Simulation Start Time = 0
Simulation Termination Time = 1
End
End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0

use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q2S with DIFF SRC

# surface_4: x=0
# surface_6: x=1
# surface_3: y=0
# surface_b5: y=1
# surface_1: z=1
# surface_2: z=0

# const Temp BC (x)
BC const dirichlet at surface_4 Temperature
BC const dirichlet at surface_6 Temperature

=
o o
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# const flux BC (y)
BC FLUX for Energy on surface_3
BC FLUX for Energy on surface_5 = constant flux

|
w

constant flux =

]
a

Encore_Function Name=flux_surface_3
Encore_Function Name=flux_surface_5

BC FLUX for Energy on surface_3
BC FLUX for Energy on surface_5

# convective flux BC with const Temp and H (2z)
BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1
BC Flux for Energy on surface_2 = Nat_Conv T_Ref=2 H=2

BC FLUX for Energy on surface_l = Encore_Function Name=flux_surface_1
BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

# const source term
Source For ENERGY on block_1 = Constant value=1

Source For ENERGY on block_1 = Encore_Function Name=exact_src
Output Number of Nodes

Evaluate Postprocessor 12
Evaluate Postprocessor hil
Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output

database Name = thermal_steady_hex20_h{N}.e

at step 1, increment = 1

# time interval is 1.0

title Aria cube test

nodal variables = nonlinear_solution->TEMPERATURE as T
END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion
END PROCEDURE myAriaProcedure

END SIERRA myJob

12.1.3. Steady Heat Conduction: Hex27 Meshes

BEGIN SIERRA myJob
load user plugin file ./exact.so

begin definition for function kxx

type = piecewise linear
begin values

0.0 0.5

1.0 2.0

2.0 8.0

end values
end

begin definition for function kyy
type = piecewise linear
begin values
2
.2
.1

N = O
o O o
N = O

20.0 20.2
end values
end

begin definition for function kzz
type = piecewise linear



begin values
0.0 1.0
1.0 2.0
2.0 3.0
20.0 21.0
end values
scale by 2.0
end

BEGIN ARIA MATERIAL Kryptonite

Density = Constant rho=1

tensor thermal conductivity = user_function X = temperature name_xx
Specific Heat = Constant cp=1

heat conduction = Generalized

END ARIA MATERIAL Kryptonite

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN SUPERLU SOLVER
END
END TPETRA EQUATION SOLVER
{else}
Begin Trilinos Equation Solver Direct_Solver
Solution Method = amesos-superlu
End
{endif}

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER
BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-14
END
END TPETRA EQUATION SOLVER
{else}
Begin Trilinos Equation Solver Iterative_Solver
Solution Method = CG
Preconditioning Method = Jacobi
Maximum Iterations = 1000
Residual Norm Scaling = None
Residual Norm Tolerance = 1.0e-14
End
{endif}

BEGIN FINITE ELEMENT MODEL cube
database name = cube_h{N}_hex27.g
coordinate system is cartesian
decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite
END PARAMETERS FOR BLOCK block_1
END FINITE ELEMENT MODEL cube

Begin User Function exact_soln

Load From File ./exact.so Using Function registerExactSoln

End

Begin User Function exact_src

Load From File ./exact.so Using Function registerExactSrc

End

Begin User Function flux_surface_3

Load From File ./exact.so Using Function registerFlux_Surface_3

= kxx name_yy = kyy name_zz = kzz



End

Begin User Function flux_surface_5
Load From File ./exact.so Using Function registerFlux_Surface_5
End

Begin User Function flux_surface_1
Load From File ./exact.so Using Function registerFlux_Surface_1
End

Begin User Function flux_surface_2
Load From File ./exact.so Using Function registerFlux_Surface_2
End

Begin Norm Postprocessor 12
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor hil
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity

End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors_thermal_steady_hex27_h{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific
End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Sequential The_Time_Block
Advance myRegion
End
Simulation Start Time = 0
Simulation Termination Time = 1
End
End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0

use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q2 with DIFF SRC

# surface_4: x=0
# surface_6: x=1



# surface_3: y=0
# surface_b: y=1

# surface_1: z=
# surface_2: z

# const Temp BC (x)
BC const dirichlet at surface_4 Temperature =
BC const dirichlet at surface_6 Temperature

1]
=
o o

# const flux BC (y)
BC FLUX for Energy on surface_3 constant flux = 3
BC FLUX for Energy on surface_5 = constant flux

]
al

Encore_Function Name=flux_surface_3
Encore_Function Name=flux_surface_5

BC FLUX for Energy on surface_3
BC FLUX for Energy on surface_5

# convective flux BC with const Temp and H (2)
BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1
BC Flux for Energy on surface_2 = Nat_Conv T_Ref=2 H=2

BC FLUX for Energy on surface_l = Encore_Function Name=flux_surface_1
BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

# const source term
Source For ENERGY on block_1 = Constant value=1

[}

Source For ENERGY on block_1 Encore_Function Name=exact_src

Output Number of Nodes

Evaluate Postprocessor 12
Evaluate Postprocessor hil
Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output

database Name = thermal_steady_hex27_h{N}.e

at step 1, increment = 1

# time interval is 1.0

title Aria cube test

nodal variables = nonlinear_solution->TEMPERATURE as T
END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion
END PROCEDURE myAriaProcedure

END SIERRA myJob

12.1.4. Steady Heat Conduction: Tet4 Meshes

BEGIN SIERRA myJob
load user plugin file ./exact.so

BEGIN ARIA MATERIAL Kryptonite
Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat Constant cp=1
heat conduction = basic

END ARIA MATERIAL Kryptonite

]

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN SUPERLU SOLVER

149



END
END TPETRA EQUATION SOLVER
{else}
Begin Trilinos Equation Solver Direct_Solver
Solution Method = amesos-superlu
End
{endif}

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER
BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-14
END
END TPETRA EQUATION SOLVER
{else}
Begin Trilinos Equation Solver Iterative_Solver
Solution Method = CG
Preconditioning Method = Jacobi
Maximum Iterations = 1000
Residual Norm Scaling = None
Residual Norm Tolerance = 1.0e-14
End
{endif}

BEGIN FINITE ELEMENT MODEL cube
database name = cube_h{N}_tet4.e
coordinate system is cartesian
decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite
END PARAMETERS FOR BLOCK block_1

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./exact.so Using Function registerExactSoln
End

Begin User Function exact_soln_dot
Load From File ./exact.so Using Function registerExactSolnDot
End

Begin User Function exact_src
Load From File ./exact.so Using Function registerExactSrc
End

Begin User Function flux_surface_3
Load From File ./exact.so Using Function registerFlux_Surface_3
End

Begin User Function flux_surface_b5
Load From File ./exact.so Using Function registerFlux_Surface_5
End

Begin User Function flux_surface_1

Load From File ./exact.so Using Function registerFlux_Surface_1
End
Begin User Function flux_surface_2

Load From File ./exact.so Using Function registerFlux_Surface_2

End

Begin Norm Postprocessor 12
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Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor hil
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity

End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors_h{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific
End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Sequential The_Time_Block
Advance myRegion
End
Simulation Start Time = O
Simulation Termination Time = 1
End
End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q1 with DIFF SRC

# surface_4: x=0
# surface_6: x=1
# surface_3: y=0
# surface_b5: y=1
# surface_1: z=1
# surface_2: z=0

# const Temp BC (x)
BC const dirichlet at surface_4 Temperature
BC const dirichlet at surface_6 Temperature =

]

|
o
o o

# const flux BC (y)
BC FLUX for Energy on surface_3 = constant flux =
BC FLUX for Energy on surface_5 = constant flux

o
o w
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BC FLUX for Energy on surface_3 = Encore_Function Name=flux_surface_3
BC FLUX for Energy on surface_5 = Encore_Function Name=flux_surface_5

# convective flux BC with const Temp and H (z)
BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1
BC Flux for Energy on surface_2 = Nat_Conv T_Ref=2 H=2

BC FLUX for Energy on surface_1 = Encore_Function Name=flux_surface_1
BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

# const source term
Source For ENERGY on block_1 = Constant value=1

Source For ENERGY on block_1 = Encore_Function Name=exact_src
Output Number of Nodes
Evaluate Postprocessor 12
Evaluate Postprocessor hil
Evaluate Postprocessor linf
BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = thermal_steady_tet4_h{N}.e
at step 1, increment = 1
# time interval is 1.0
title Aria cube test
nodal variables = nonlinear_solution->TEMPERATURE as T
END RESULTS OUTPUT LABEL diffusion output
END ARIA REGION myRegion
END PROCEDURE myAriaProcedure

END SIERRA myJob

12.1.5. Steady Heat Conduction: Tet4Tet10 Meshes

BEGIN SIERRA myJob
load user plugin file ./exact.so

BEGIN ARIA MATERIAL Kryptonite

Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END ARIA MATERIAL Kryptonite

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN SUPERLU SOLVER
END
END TPETRA EQUATION SOLVER
{else}
Begin Trilinos Equation Solver Direct_Solver
Solution Method = amesos-superlu
End
{endif}

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER
BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
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CONVERGENCE TOLERANCE = 1.000000e-14
END
END TPETRA EQUATION SOLVER

{else}

Begin Trilinos Equation Solver Iterative_Solver

Solution Method = CG

Preconditioning Method = Jacobi

Maximum Iterations = 1000

Residual Norm Scaling = None

Residual Norm Tolerance = 1.0e-14
End

{endif}

BEGIN FINITE ELEMENT MODEL cube
database name = cube_h{N}_tet10.e
coordinate system is cartesian
decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1

material Kryptonite

END PARAMETERS FOR BLOCK block_1
END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./exact.so Using Function
End

Begin User Function exact_soln_dot
Load From File ./exact.so Using Function
End

Begin User Function exact_src
Load From File ./exact.so Using Function
End

Begin User Function flux_surface_3
Load From File ./exact.so Using Function
End

Begin User Function flux_surface_5
Load From File ./exact.so Using Function
End

Begin User Function flux_surface_1
Load From File ./exact.so Using Function
End

Begin User Function flux_surface_2
Load From File ./exact.so Using Function
End

Begin Norm Postprocessor 12
Use Function exact_soln

registerExactSoln

registerExactSolnDot

registerExactSrc

registerFlux_Surface_3

registerFlux_Surface_5

registerFlux_Surface_1

registerFlux_Surface_2

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms L2
End

Begin Norm Postprocessor hil
Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms H1
End

Begin Norm Postprocessor linf
Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms LInfinity
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End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors_thermal_steady_tet4_h{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific
End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Sequential The_Time_Block
Advance myRegion
End
Simulation Start Time = O
Simulation Termination Time = 1
End
End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Iterative_Solver #Direct_

EQ ENERGY for TEMPERATURE on block_1 using Q1 with

# surface_4: x
# surface_6: x=

# surface_3: y=0
# surface_5: y=1

# surface_1: z=1
# surface_2: z=0

# const Temp BC (x)

BC const dirichlet at surface_4 Temperature =

BC const dirichlet at surface_6 Temperature

# const flux BC (y)

BC FLUX for Energy on surface_3 = constant flux =
BC FLUX for Energy on surface_5 = constant flux =
BC FLUX for Energy on surface_3 = Encore_Function
BC FLUX for Energy on surface_5 = Encore_Function

# convective flux BC with const Temp and H (z)
BC Flux for Energy on surface_1 = Nat_Conv
BC Flux for Energy on surface_2 = Nat_Conv

BC FLUX for Energy on surface_1l = Encore_Function
BC FLUX for Energy on surface_2 = Encore_Function

# const source term
Source For ENERGY on block_1 = Constant value=1

Source For ENERGY on block_1 = Encore_Function Name

Solver

DIFF SRC

|
=
o o

Name=flux_surface_3
Name=flux_surface_b

T_Ref=1 H=1
T_Ref=2 H=2

Name=flux_surface_1
Name=flux_surface_2

=exact_src
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Output Number of Nodes
Evaluate Postprocessor 12
Evaluate Postprocessor hil
Evaluate Postprocessor linf
BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = thermal_steady_tet4_h{N}.e
at step 1, increment = 1
# time interval is 1.0
title Aria cube test
nodal variables = nonlinear_solution->TEMPERATURE as T
END RESULTS OUTPUT LABEL diffusion output
END ARIA REGION myRegion
END PROCEDURE myAriaProcedure

END SIERRA myJob

12.1.6. Steady Heat Conduction: Tet10 Meshes

BEGIN SIERRA myJob
load user plugin file ./exact.so

BEGIN ARIA MATERIAL Kryptonite

Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END ARIA MATERIAL Kryptonite

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN SUPERLU SOLVER
END
END TPETRA EQUATION SOLVER
{else}
Begin Trilinos Equation Solver Direct_Solver
Solution Method = amesos-superlu
End
{endif}

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER
BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-14
END
END TPETRA EQUATION SOLVER
{else}
Begin Trilinos Equation Solver Iterative_Solver
Solution Method = CG
Preconditioning Method = Jacobi
Maximum Iterations = 1000
Residual Norm Scaling = None
Residual Norm Tolerance = 1.0e-14
End
{endif}

BEGIN FINITE ELEMENT MODEL cube
database name = cube_h{N}_tet10.e
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coordinate system is cartesian
decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite
END PARAMETERS FOR BLOCK block_1

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./exact.so Using Function
End

Begin User Function exact_soln_dot
Load From File ./exact.so Using Function
End

Begin User Function exact_src
Load From File ./exact.so Using Function
End

Begin User Function flux_surface_3
Load From File ./exact.so Using Function
End

Begin User Function flux_surface_5
Load From File ./exact.so Using Function
End

Begin User Function flux_surface_1
Load From File ./exact.so Using Function
End

Begin User Function flux_surface_2
Load From File ./exact.so Using Function
End

Begin Norm Postprocessor 12
Use Function exact_soln

registerExactSoln

registerExactSolnDot

registerExactSrc

registerFlux_Surface_3

registerFlux_Surface_5

registerFlux_Surface_1

registerFlux_Surface_2

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms L2
End

Begin Norm Postprocessor hil
Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms H1
End

Begin Norm Postprocessor linf
Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms LInfinity
End

Begin Postprocessor Output Control pp_out
Comment Character Is %

Write To File errors_thermal_steady_tet10_h{N}.dat

Floating Point Precision Is 3
Floating Point Format Is Scientific
End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Sequential The_Time_Block



Advance myRegion
End
Simulation Start Time = 0
Simulation Termination Time = 1
End
End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q2 with DIFF SRC

# surface_4: x=0
# surface_6: x

# surface_3: y=0
# surface_5: y=1

# surface_1: z=
# surface_2: z

# const Temp BC (x)
BC const dirichlet at surface_4 Temperature
BC const dirichlet at surface_6 Temperature

1]
= o
o O

# const flux BC (y)
BC FLUX for Energy on surface_3 constant flux =
BC FLUX for Energy on surface_5 = constant flux

o
o w

]

Encore_Function Name=flux_surface_3
Encore_Function Name=flux_surface_5

BC FLUX for Energy on surface_3
BC FLUX for Energy on surface_5

# convective flux BC with const Temp and H (2)
BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1
BC Flux for Energy on surface_2 = Nat_Conv T_Ref=2 H=2

BC FLUX for Energy on surface_1 = Encore_Function Name=flux_surface_1
BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

# const source term
Source For ENERGY on block_1 = Constant value=1

Source For ENERGY on block_1 = Encore_Function Name=exact_src
Output Number of Nodes

Evaluate Postprocessor 12
Evaluate Postprocessor hil
Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output

database Name = thermal_steady_tet10_h{N}.e

at step 1, increment = 1

# time interval is 1.0

title Aria cube test

nodal variables = nonlinear_solution->TEMPERATURE as T
END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion
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END PROCEDURE myAriaProcedure

END SIERRA myJob

12.1.7. Transient Heat Conduction: Hex8 Meshes

BEGIN SIERRA myJob

load user plugin file ./exact_transient.so

#L={L=101%
# rho = { rho = 1 }
#Cp={Cp=11}
BEGIN ARIA MATERIAL Kryptonite
Density = Constant rho={rho}

Thermal Conductivity = constant k=1
Specific Heat Constant cp={Cp}
heat conduction = basic
latent heat = constant value={L}

END ARIA MATERIAL Kryptonite

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN SUPERLU SOLVER
END
END TPETRA EQUATION SOLVER
{else}
Begin Trilinos Equation Solver Direct_Solver
Solution Method = amesos-superlu
End
{endif}

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER
BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-12
END
END TPETRA EQUATION SOLVER
{else}
Begin Trilinos Equation Solver Iterative_Solver
Solution Method = CG
Preconditioning Method = Jacobi
Maximum Iterations = 1000
Residual Norm Scaling = None
Residual Norm Tolerance = 1.0e-12
End
{endif}

BEGIN FINITE ELEMENT MODEL cube
database name = cube_h{N}_hex8.e
coordinate system is cartesian
decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite
END PARAMETERS FOR BLOCK block_1
END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./exact_transient.so Using Function registerExactSoln
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End

Begin User Function exact_soln_dot
Load From File ./exact_transient.so Using Function registerExactSolnDot
End

Begin User Function exact_src
Load From File ./exact_transient.so Using Function registerExactSrc
End

Begin User Function flux_surface_3
Load From File ./exact_transient.so Using Function registerFlux_Surface_3
End

Begin User Function flux_surface_5
Load From File ./exact_transient.so Using Function registerFlux_Surface_5
End

Begin User Function flux_surface_1
Load From File ./exact_transient.so Using Function registerFlux_Surface_1
End

Begin User Function flux_surface_2
Load From File ./exact_transient.so Using Function registerFlux_Surface_2
End

#Ts ={Ts =0.51%

#TL={TL=1.51}%

# Tm={ Tm = 0.5 % (Ts + T1) }

# sigma = { sigma = 0.429858 * (Tm - Ts) }

Begin Norm Postprocessor 12
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor 12_dot
Use Function exact_soln_dot
Subtract Function time_derivative_at_time->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor hil
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity

End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific
End

BEGIN PROCEDURE myAriaProcedure
Begin Solution Control Description
Use System Main

Begin System Main
Begin Transient The_Time_Block
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Advance myRegion
End
Simulation Start Time = 0
Simulation Termination Time = 3
End
Begin Parameters For Transient The_Time_Block
Begin Parameters For Aria Region myRegion
Initial Time Step Size = {0.5/2%*N}
Time Integration Method = Second_Order
Time Step Variation = fixed
End
End
End

BEGIN ARIA REGION myRegion
Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0

use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q1 with MASS DIFF SRC
IC for temperature on block_1 = encore_function name=exact_soln

# surface_4: x=0
b

# surface_6: x=1
# surface_3: y=0
# surface_b5: y=1
# surface_1: z=1
# surface_2: z=0

# const Temp BC (x)

BC const dirichlet at surface_4 Temperature = 1.0
BC const dirichlet at surface_6 Temperature = 1.0
# const flux BC (y)
BC FLUX for Energy on surface_3 = constant flux = 3
Begin Heat Flux Boundary Condition hfbc2
Add Surface surface_5
Flux = -5
End
BC FLUX for Energy on surface_3 = Encore_Function Name=flux_surface_3
BC FLUX for Energy on surface_5 = Encore_Function Name=flux_surface_5

# convective flux BC with const Temp and H (z)
BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1

Begin Convective Flux Boundary Condition cfbc2
Add Surface surface_2
Convective Coefficient = 2
Reference Temperature = 2

End
BC FLUX for Energy on surface_1 = Encore_Function Name=flux_surface_1
BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

# const source term
Begin Volume Heating vhil
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Add Volume block_1
Value = 1
End

Source for Energy on block_1 = melting Ts={Ts} T1={T1}
Source For ENERGY on block_1 = Encore_Function Name=exact_src
Output Number of Nodes

Evaluate Postprocessor 12
Evaluate Postprocessor 12_dot
Evaluate Postprocessor hil
Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output

database Name = output{N}.e

at step 0, increment = {2%*N}

#at step O, increment = 1

title Aria cube test

nodal variables = solution->TEMPERATURE as T

nodal variables = time_derivative_at_time->TEMPERATURE as TDOT
END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion
END PROCEDURE myAriaProcedure

END SIERRA myJob

12.1.8. Transient Heat Conduction: Tet4 Meshes

BEGIN SIERRA myJob
load user plugin file ./exact_transient.so

BEGIN ARIA MATERIAL Kryptonite
Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat Constant cp=1
heat conduction = basic

END ARIA MATERIAL Kryptonite

BEGIN ARIA MATERIAL Air
Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat Constant cp=1
heat conduction basic

END ARIA MATERIAL

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN SUPERLU SOLVER
END
END TPETRA EQUATION SOLVER
{else}
Begin Trilinos Equation Solver Direct_Solver
Solution Method = amesos-superlu
End
{endif}

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER
BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER
END
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MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-12
END
END TPETRA EQUATION SOLVER
{else}
Begin Trilinos Equation Solver Iterative_Solver
Solution Method = CG
Preconditioning Method = Jacobi
Maximum Iterations = 1000
Residual Norm Scaling = None
Residual Norm Tolerance = 1.0e-12
End
{endif}

BEGIN FINITE ELEMENT MODEL cube
database name = cube_h{N}_tet4.e
coordinate system is cartesian
decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite
END PARAMETERS FOR BLOCK block_1

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./exact_transient.so Using Function registerExactSoln
End

Begin User Function exact_soln_dot
Load From File ./exact_transient.so Using Function registerExactSolnDot
End

Begin User Function exact_src
Load From File ./exact_transient.so Using Function registerExactSrc
End

Begin User Function flux_surface_3
Load From File ./exact_transient.so Using Function registerFlux_Surface_3
End

Begin User Function flux_surface_5
Load From File ./exact_transient.so Using Function registerFlux_Surface_b
End

Begin User Function flux_surface_1
Load From File ./exact_transient.so Using Function registerFlux_Surface_1
End

Begin User Function flux_surface_2
Load From File ./exact_transient.so Using Function registerFlux_Surface_2
End

# T —{To—2}

#h {h }

# rho = { tho = 1 }
#cp={cp=11}

# omega = { omega = PI }

# bn_vol = { bn_vol = 0.5 }

Begin String Function bulk_node_exact_solution
Value is "{TO} * (sin({omega} * t) + 1)"
End
Begin String Function bulk_node_source
use function bulk_node_exact_solution as Tb
Value is "{rho * cp * omega * TO} * cos({omega} * t) - ({h} * (1 - Tb))/{bn_vol}"
End
Begin String Function bulk_node_flux_bc_corr
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use function bulk_node_exact_solution as Tb
Value is "({h} * (Tb - 2))"
End

Begin Norm Postprocessor 12
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2
volumes block_1
End

Begin Norm Postprocessor 12_dot
Use Function exact_soln_dot
Subtract Function time_derivative_at_time->TEMPERATURE
Compute Norms L2
volumes block_1
End

Begin Norm Postprocessor hil
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1
volumes block_1
End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity
volumes block_1
End

Begin Norm Postprocessor linf_bulk_node
Use Function bulk_node_exact_solution
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms Nodal LInfinity
volumes block_for_abulknode
End

Begin Postprocessor Output Control pp_out
Comment Character Is ¥
Write To File errors{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific
End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description

Use System Main
Begin System Main

Begin Transient The_Time_Block
Advance myRegion
End
Simulation Start Time = O
Simulation Termination Time = 3

End
Begin Parameters For Transient The_Time_Block

Begin Parameters For Aria Region myRegion
Initial Time Step Size = {0.5/2%xN}
Time Integration Method = Second_Order
Time Step Variation = fixed
End

End

End

BEGIN ARIA REGION myRegion



Nonlinear Solution Strategy = Newton
Minimum Nonlinear Solves = 1
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
nonlinear residual minimum convergence rate = 0.999 number of steps = 3
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q1 with MASS DIFF SRC

IC const on block_1 temperature = 1.0

# surface_4: x=0
# surface_6: x=1
# surface_3: y=0
# surface_5: y=1
# surface_1: z=1
# surface_2: z=0

# const Temp BC (x)
BC const dirichlet at surface_4 Temperature =
BC const dirichlet at surface_6 Temperature =

[l
=
o o

# const flux BC (y)
BC FLUX for Energy on surface_3 = constant flux = 3
BC FLUX for Energy on surface_5 constant flux

]
(&,

BC FLUX for Energy on surface_3
BC FLUX for Energy on surface_5

Encore_Function Name=flux_surface_3
Encore_Function Name=flux_surface_5

# convective flux BC with const Temp and H (z)
BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1

Begin Bulk Fluid Element aBulkNode
material = Air
bulk element volume = constant v = {bn_vol}
initial temperature = {TO}
bulk eq energy for temperature using pO with mass src
bulk source for energy = encore_function name=bulk_node_source
End
Begin Convective Flux Boundary Condition bulk_flux
add surface surface_2
use bulk element aBulkNode
convective coefficient = {h}
End
BC Flux for Energy on surface_2 = encore_function name=bulk_node_flux_bc_corr

BC FLUX for Energy on surface_1 = Encore_Function Name=flux_surface_1
BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

# const source term
Source For ENERGY on block_1 = Constant value=1

Source For ENERGY on block_1 = Encore_Function Name=exact_src
Output Number of Nodes

Evaluate Postprocessor 12

Evaluate Postprocessor 12_dot
Evaluate Postprocessor hil

Evaluate Postprocessor linf

Evaluate Postprocessor linf_bulk_node



BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = output{N}.e
at step O, increment = {2%*N}
title Aria cube test
nodal variables = solution->TEMPERATURE as T
nodal variables = time_derivative_at_time->TEMPERATURE as TDOT
global variables = abulknode_T
END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion
END PROCEDURE myAriaProcedure

END SIERRA myJob

12.1.9. Transient Heat Conduction: Tet4Tet10 Meshes

BEGIN SIERRA myJob
load user plugin file ./exact_transient.so

BEGIN ARIA MATERIAL Kryptonite
Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat Constant cp=1
heat conduction = basic

END ARIA MATERIAL Kryptonite

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN SUPERLU SOLVER
END
END TPETRA EQUATION SOLVER
{else}
Begin Trilinos Equation Solver Direct_Solver
Solution Method = amesos-superlu
End
{endif}

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER
BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-12
END
END TPETRA EQUATION SOLVER
{else}
Begin Trilinos Equation Solver Iterative_Solver
Solution Method = CG
Preconditioning Method = Jacobi
Maximum Iterations = 1000
Residual Norm Scaling = None
Residual Norm Tolerance = 1.0e-12
End
{endif}

BEGIN FINITE ELEMENT MODEL cube
database name = cube_h{N}_tet10.e
coordinate system is cartesian
decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1



material Kryptonite
END PARAMETERS FOR BLOCK block_1

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./exact_transient.
End

Begin User Function exact_soln_dot
Load From File ./exact_transient.
End

Begin User Function exact_src
Load From File ./exact_transient.
End

Begin User Function flux_surface_3
Load From File ./exact_transient.
End

Begin User Function flux_surface_5
Load From File ./exact_transient.
End

Begin User Function flux_surface_1
Load From File ./exact_transient.
End

Begin User Function flux_surface_2
Load From File ./exact_transient.
End

Begin Norm Postprocessor 12
Use Function exact_soln

SO

SO

SO

SO

SO

SO

SO

Using

Using

Using

Using

Using

Using

Using

Function

Function

Function

Function

Function

Function

Function

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms L2
End

Begin Norm Postprocessor 12_dot
Use Function exact_soln_dot

registerExactSoln

registerExactSolnDot

registerExactSrc

registerFlux_Surface_3

registerFlux_Surface_b5

registerFlux_Surface_1

registerFlux_Surface_2

Subtract Function time_derivative_at_time->TEMPERATURE

Compute Norms L2
End

Begin Norm Postprocessor hil
Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms H1
End

Begin Norm Postprocessor linf
Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms LInfinity
End

Begin Postprocessor Output Control pp_out

Comment Character Is 7%

Write To File errors{N}.dat

Floating Point Precision Is 3

Floating Point Format Is Scientif
End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Descripti
Use System Main

ic

on
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Begin System Main
Begin Transient The_Time_Block
Advance myRegion
End
Simulation Start Time = 0
Simulation Termination Time = 3
End
Begin Parameters For Transient The_Time_Block
Begin Parameters For Aria Region myRegion
Initial Time Step Size = {0.5/2%xN}
Time Integration Method = Second_Order
Time Step Variation = fixed
End
End
End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q1 with MASS DIFF SRC
IC const on block_1 temperature = 1.0

# surface_4: x=0
# surface_6: x=1

# surface_3: y=0
# surface_b5: y=1

# surface_1: z=1
# surface_2: z=0

# const Temp BC (x)
BC const dirichlet at surface_4 Temperature =
BC const dirichlet at surface_6 Temperature

=
o O

# const flux BC (y)
BC FLUX for Energy on surface_3
BC FLUX for Energy on surface_5

|
w

constant flux =
constant flux

]
ol

BC FLUX for Energy on surface_3
BC FLUX for Energy on surface_5

Encore_Function Name=flux_surface_3
Encore_Function Name=flux_surface_5

# convective flux BC with const Temp and H (z)
BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1
BC Flux for Energy on surface_2 = Nat_Conv T_Ref=2 H=2

BC FLUX for Energy on surface_1l = Encore_Function Name=flux_surface_1
BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

# const source term
Source For ENERGY on block_1 = Constant value=1

Source For ENERGY on block_1 = Encore_Function Name=exact_src
Output Number of Nodes

Evaluate Postprocessor 12
Evaluate Postprocessor 12_dot



Evaluate Postprocessor hil
Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = output{N}.e

at step 0, increment = {2**N}

title Aria cube test

nodal variables = solution->TEMPERATURE as T

nodal variables = time_derivative_at_time->TEMPERATURE as TDOT
END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion
END PROCEDURE myAriaProcedure

END SIERRA myJob

12.1.10. Transient Heat Conduction: Tet10 Meshes

BEGIN SIERRA myJob
load user plugin file ./exact_transient.so

BEGIN ARIA MATERIAL Kryptonite

Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END ARIA MATERIAL Kryptonite

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN SUPERLU SOLVER
END
END TPETRA EQUATION SOLVER
{else}
Begin Trilinos Equation Solver Direct_Solver
Solution Method = amesos-superlu
End
{endif}

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER
BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-12
END
END TPETRA EQUATION SOLVER
{else}
Begin Trilinos Equation Solver Iterative_Solver
Solution Method = CG
Preconditioning Method = Jacobi
Maximum Iterations = 1000
Residual Norm Scaling = None
Residual Norm Tolerance = 1.0e-12
End
{endif}

BEGIN FINITE ELEMENT MODEL cube
database name = cube_h{N}_tet10.e
coordinate system is cartesian
decomposition method = rcb
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BEGIN PARAMETERS FOR BLOCK block_1

material Kryptonite
END PARAMETERS FOR BLOCK block_1

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./exact_transient.
End

Begin User Function exact_soln_dot
Load From File ./exact_transient.
End

Begin User Function exact_src
Load From File ./exact_transient.
End

Begin User Function flux_surface_3
Load From File ./exact_transient.
End

Begin User Function flux_surface_5
Load From File ./exact_transient.
End

Begin User Function flux_surface_1
Load From File ./exact_transient.
End

Begin User Function flux_surface_2
Load From File ./exact_transient.
End

Begin Norm Postprocessor 12
Use Function exact_soln

sSo

SO

SO

SO

so

SO

SO

Using

Using

Using

Using

Using

Using

Using

Function

Function

Function

Function

Function

Function

Function

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms L2
End

Begin Norm Postprocessor 12_dot
Use Function exact_soln_dot

registerExactSoln

registerExactSolnDot

registerExactSrc

registerFlux_Surface_3

registerFlux_Surface_5

registerFlux_Surface_1

registerFlux_Surface_2

Subtract Function time_derivative_at_time->TEMPERATURE

Compute Norms L2
End

Begin Norm Postprocessor hil
Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms H1
End

Begin Norm Postprocessor linf
Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms LInfinity
End

Begin Postprocessor Output Control pp_out

Comment Character Is %

Write To File errors{N}.dat

Floating Point Precision Is 3

Floating Point Format Is Scientif
End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Descripti

ic

on



Use System Main
Begin System Main
Begin Transient The_Time_Block
Advance myRegion
End
Simulation Start Time = 0
Simulation Termination Time = 3
End
Begin Parameters For Transient The_Time_Block
Begin Parameters For Aria Region myRegion
Initial Time Step Size = {0.5/2%xN}
Time Integration Method = Second_Order
Time Step Variation = fixed
End
End
End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q2 with MASS DIFF SRC

IC const on block_1 temperature = 1.0

# surface_4: x=0
# surface_6: x=1
# surface_3: y=0
# surface_b: y=1
# surface_1: z=1
# surface_2: z=0

# const Temp BC (x)

BC const dirichlet at surface_4 Temperature = 1.0
BC const dirichlet at surface_6 Temperature = 1.0
# const flux BC (y)
BC FLUX for Energy on surface_3 = constant flux = 3
BC FLUX for Energy on surface_5 = constant flux =5
BC FLUX for Energy on surface_3 = Encore_Function Name=flux_surface_3

BC FLUX for Energy on surface_5 Encore_Function Name=flux_surface_5

# convective flux BC with const Temp and H (2)
BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1
BC Flux for Energy on surface_2 = Nat_Conv T_Ref=2 H=2

BC FLUX for Energy on surface_1l = Encore_Function Name=flux_surface_1
BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

# const source term
Source For ENERGY on block_1 = Constant value=1

Source For ENERGY on block_1 = Encore_Function Name=exact_src
Output Number of Nodes

Evaluate Postprocessor 12
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Evaluate Postprocessor 12_dot
Evaluate Postprocessor hl
Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = output{N}.e
at step 0, increment = {2%*N}
title Aria cube test
nodal variables = solution->TEMPERATURE as T
nodal variables = time_derivative_at_time->TEMPERATURE as TDOT
END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion
END PROCEDURE myAriaProcedure

END SIERRA myJob
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12.2. THERMAL BOUNDARY CONDITIONS

12.2.1. Radiative Heat Flux 3.1

BEGIN SIERRA Aria
Title Radiation Form Factor Flux User_Sub

Begin Global Constants
Stefan Boltzmann constant = 5.6704E-8
End Global Constants

load user plugin file ./FormFactor.so
load user plugin file ./DirichletBC.so

Begin User Function exact_soln
Load From File ./Exact_Solution.so Using Function registerExactSoln
End

Begin Norm Postprocessor 12
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor hil
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity

End

Begin Postprocessor Output Control pp_out
Comment Character Is ¥
Write To File errors{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific
End

Begin Aria Material matl
density = constant rho = 0.1
thermal conductivity = constant k = 1.0
specific heat = constant cp = 1.0
heat conduction = basic
End Aria Material matil

Begin Aria Material mat_si

emissivity = constant e = 0.8

bc rad reference temperature = constant t_ref = 500

radiation form factor = calore_user_sub name = form_factor type = element
End

Begin Finite Element Model myModel
Database Name = mesh{N}.g
Coordinate System = Cartesian
decomposition method = rcb
Database Type = EXODUSII
Use Material matl for block_1
Use Material mat_sl for surface_1

End Finite Element Model myModel
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{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER SOLVE_TEMPERATURE
BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = RO
CONVERGENCE TOLERANCE = 1.000000e-12
END
END TPETRA EQUATION SOLVER
{else}
begin aztec equation solver solve_temperature
solution method = cg
preconditioning method = jacobi
maximum iterations = 1000
residual norm tolerance = 1.0e-12
residual norm scaling = r0
end aztec equation solver solve_temperature
{endif}

begin procedure myProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Sequential MySolveBlock
Advance myRegion
End
End
End

begin Aria region myRegion

Use Finite Element Model myModel
Use Linear Solver solve_temperature

Nonlinear Solution Strategy = Newton

Maximum nonlinear iterations = 10
Nonlinear residual tolerance = 1.0e-10
Nonlinear correction tolerance = 1.0e-10
Nonlinear relaxation factor = 1.0

EQ ENERGY for TEMPERATURE on block_1 using Q1 with DIFF
BC dirichlet for temperature on surface_3 = calore_user_sub name = localCoord_bc type=node

Begin Radiative Flux Boundary Condition fraction
Add surface surface_1
Emissivity = 0.8
Reference Temperature = 500.0
Radiation Form Factor Subroutine = form_factor
End

H H H O H

BC Flux for Energy at surface_l = generalized_rad

BC const DIRICHLET at surface_2 temperature = 600.0
BC const DIRICHLET at surface_4 temperature = 600.0

Output Number of Nodes
Evaluate Postprocessor 12
Evaluate Postprocessor hil
Evaluate Postprocessor linf

Begin Results Output Label diffusion output
database Name = output{N}.e
At Step 1, Increment = 1
Timestep Adjustment Interval = 1
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Title Radiative Flux BC User Sub Test

Nodal Variables = solution->temperature as T
End Results Output Label diffusion output
end Aria region myRegion

end procedure myProcedure

end sierra Aria

12.2.2. Radiative Heat Flux From Fortran User Subroutine

begin sierra FandI_VnVtest

title Verification of Fire and Ice BC subroutine, AKA Directed Heating User Sub \$
Simplified model with sidesets to check that BCs are applied to faces specified \$

Load User Plugin File ./FireAndIceBC.so USING function conv_subs_register

######## Material property definitions #########HHH

begin aria material VnVmat
heat conduction = basic
density = constant rho = 8000.0 # Approximate value for VnV study
emissivity = constant e = 0.30 # Approximate value for VnV study
specific heat = constant cp = 550 # Approximate value for VnV study
thermal conductivity = constant k = 20 # Approximate value for VnV study
end aria material VnVmat

##HHAHE#H UPDATE THE FINITE ELEMENT MODEL ####H###HHHHEHEREHER

begin finite element model fem
database name = VnVmesh2.g
database type = exodusII
use material VnVmat for block_1

# - Block id 10 had name 10
use material VnVmat for block_10

# - Block id 11 had name 11
use material VnVmat for block_11

# - Block id 12 had name 12
use material VnVmat for block_12

# - Block id 13 had name 13
use material VnVmat for block_13

# - Block id 2 had name 2
use material VnVmat for block_2

# - Block id 3 had name 3
use material VnVmat for block_3

# - Block id 4 had name 4
use material VnVmat for block_4

# - Block id 5 had name 5
use material VnVmat for block_5

# - Block id 6 had name 6
use material VnVmat for block_6
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# - Block id 7 had name 7
use material VnVmat for block_7

# - Block id 8 had name 8
use material VnVmat for block_8

# - Block id 9 had name 9
use material VnVmat for block_9
end finite element model fem

begin global constants
stefan boltzmann constant = 5.67e-8
end global constants

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER TRILINOS_SOLVE
BEGIN GMRES SOLVER
BEGIN DD-ILUT PRECONDITIONER
DROP TOLERANCE = 0
FILL FRACTION = 5.000000e+00
END
MAXIMUM ITERATIONS = 1000
RESTART ITERATIONS = 100
RESIDUAL SCALING = RO
CONVERGENCE TOLERANCE = 1.000000e-12
END
MATRIX SCALING = ONE_NORM
END TPETRA EQUATION SOLVER
{else}
Begin TRILINOS Equation Solver trilinos_solve
Solution Method = GMRES
Preconditioning Method = DD-ILUT
Maximum Iterations = 1000
Matrix Scaling = row-sum
Residual Norm Tolerance = 1.0e-12
Residual Norm Scaling = RO
Restart Iterations is 100
preconditioning steps is 1
Param-Real AZ_ilut_fill value 5.0
polynomial order = 300
ilu threshold = 1.0e-6
End TRILINOS Equation Solver trilinos_solve
{endif}

begin procedure aria_procedure
begin solution control description
Use System Main

Begin System Main

Simulation Max Global Iterations = 10000
Simulation Start Time = 0.0
#Simulation Termination Time = 3600.0

Begin Transient Main
Advance myRegion
End
End

Begin Parameters For Transient Main
Start Time = 0.0
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Termination Time = 0.1
Begin Parameters for Aria Region myRegion
Time Integration Method = Second_Order #Second_Order

Time Step Variation = Adaptive
Initial Time Step Size = 0.01

Minimum Time Step Size 0.01

Maximum Time Step Size = 0.01

#Minimum Resolved Time Step Size = 0.001
Predictor-Corrector Tolerance = 1.0e-08

End
End

End #solution control

HiH:

begin aria region myRegion
# solve energy equation for temperature at the nodes (1st order) with diffusion
EQ ENERGY for TEMPERATURE on all_blocks using Q1 with lumped_mass Diff

use finite element model fem

nonlinear solution strategy = newton

use dof averaged nonlinear residual

accept solution after maximum nonlinear iterations = true
use linear solver trilinos_solve

nonlinear relaxation factor = 1.0

nonlinear residual tolerance 1.0e-10 # for transient
maximum nonlinear iterations = 10 # for transient
#nonlinear residual tolerance = 1.0e-15 # for steady state
#maximum nonlinear iterations = 150 # for steady state

#i#t##HHHH###A#AR Initial Conditions ####HHH#H#HFHHHHUHFHAHIH

IC Const on all_blocks temperature = 300.0

##t###HH####E Convective Boundary Conditions ##############

#

begin convective flux boundary condition FireAndIceBC

add surface surface_1 surface_2 surface_3 surface_4
add surface surface_b surface_6 surface_7 surface_8
add surface surface_9 surface_10 surface_11 surface_12
add surface surface_13 surface_14 surface_15 surface_16
add surface surface_17 surface_18 surface_19 surface_20
add surface surface_21 surface_22 surface_23 surface_24
add surface surface_25 # All external surfaces

# User Sub Integer Input Constants:

# cosdistA=idat (1), for x < xA

# cosdistAB=idat(2), for xA <= x <= xB
#  cosdistB=idat(3), for x > xB

# User Sub Real Input Constants:

# xoffset=rdat (1), such that abs(xnosetip-xoffset)=0

#  xA=rdat(2), distance from nosetip to position A (xA>0)

#  xB=rdat(3), distance from nosetip to position B (xB>0)

#  hAl=rdat(4), convective htc for x < xA for azimuthal section 1
# hABl=rdat(5), convective htc for xA <= x <= xB for section 1

# hBl=rdat(6), convective htc for x > xB for azimuthal section 1
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HOH H HH H O HHHHHHHEHHHHHHEHHEHEHHEHHHEH R H

H o HH H HH

TrefAl=rdat(7), Tref for x < xA for azimuthal section 1
TrefABl=rdat(8), Tref for xA <= x <= xB for azimuthal section 1
TrefBl=rdat(9), Tref for x > xB for azimuthal section 1

emisAl=rdat(10), emis for x < xA for azimuthal section 1

emisABl=rdat(11), emis for xA <= x <= xB for azimuthal section 1
emisBl=rdat(12), emis for x > xB for azimuthal section 1
hA2=rdat (13), convective htc for x < xA for azimuthal section 2
hAB2=rdat (14), convective htc for xA <= x <= xB for azimuthal section 2
hB2=rdat (15), convective htc for x > xB for azimuthal section 2
TrefA2=rdat(16), Tref for x < xA for azimuthal section 2
TrefAB2=rdat (17), Tref for xA <= x <= xB for azimuthal section 2
TrefB2=rdat(18), Tref for x > xB for azimuthal section 2

emisA2=rdat(19), emis for x < xA for azimuthal section 2

emisAB2=rdat (20), emis for xA <= x <= xB for azimuthal section 2
emisB2=rdat(21), emis for x > xB for azimuthal section 2

thetaA=rdat(22), azimuthal reference angle (degrees) for section 1 of region A
thetaAB=rdat(23), azimuthal reference angle (degrees) for section 1 of region AB
thetaB=rdat(24), azimuthal reference angle (degrees) for section 1 of region B
dphiA=rdat(25), subtended angle (degrees) for section 1 of region A
dphiAB=rdat(26), subtended angle (degrees) for section 1 of region AB

dphiB=rdat (27), subtended angle (degrees) for section 1 of region B

notes:

if cosdistA (or AB,or B) set to 1 then impose cosine distribution on radiative htc
otherwise, distribution is uniform (convective distribution is always uniform)
x coordinate assumed to lie on centerline of bomb
htc_total = convective htc + effective radiative htc

effective radiative htc = sigma*emis*(Twall+Tref)*(Twall~2+Tref~2)

emissivities should be the same as associated material emissivities, but

can be set to zero to eliminate radiative heat transfer from a region

set convective htc to zero to eliminate convective heat tranfer from a region
set both convective htc and emis to zero for an adiabatic (insulated) surface

a zero-degree angle corresponds to the y axis

angle is positive in clockwise direction when looking in the positive x axis direction
theta is the angle for the center of the azimuthal section and dphi is the delta angle
with section 1 extending from theta-dphi/2 to theta+dphi/2, centered on theta
section 2 is opposite section 1 and can be empty if dphi = 360 degrees.

convective coefficient fortran subroutine is coef_directed_angle
reference temperature fortran subroutine is tref_directed_angle
integer data 0 0 O

# xoffset xA xB

# hAl hAB1 hB1

# TrefAl TrefAB1 TrefBl

# emisAl emisAB1 emisB1

#  hA2 hAB2 hB2

# TrefA2 TrefAB2 TrefB2

# emisA2 emisAB2 emisB2

# thetaA thetaAB thetaB

# dphiA  dphiAB  dphiB
real data -1.5 0.5 1.0 \$

0.0 50.0 0 \$

300.0 1000.0 300.0 \$

0.0 0.8 0.0 \$

0.0 0.0 100.0 \$

300.0 300.0 900.0 \$

0.0 0.0 0.0 \$

0.0 300.0 240. \$

0.0 120.0 240.0

+theta
xA xB  azimuthal section 1 -dphi/2 - -
A | AB | B axial (x axis) regiomns | yl yl \
surfaces O-theta - _>x I _ >z
| | |
xA xB  azimuthal section 2 dphi/2 z out of page x into page

integrated power output gFirelce
integrated flux output fluxFirelce
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end convective flux boundary condition FireAndIceBC

##tH#HHHHR#HHE Results #

Begin user variable HTC

type is face real length =1
initial value = 0.0

add
add
add
add
add
add
add
End

part
part
part
part
part
part
part

surface_1
surface_b
surface_9
surface_13
surface_17
surface_21
surface_25

surface_2
surface_6
surface_10
surface_14
surface_18
surface_22

Begin user variable SurfFlux
type is face real length = 1
initial value = 0.0

add
add
add
add
add
add
add
End

part
part
part
part
part
part
part

surface_1
surface_5
surface_9
surface_13
surface_17
surface_21
surface_25

surface_2
surface_6
surface_10
surface_14
surface_18
surface_22

surface_3
surface_7
surface_11
surface_15
surface_19
surface_23

surface_3
surface_7
surface_11
surface_15
surface_19
surface_23

Begin user variable Tref #for checking only
type is face real length =1
initial value = 0.0

add
add
add
add
add
add
add
End

part
part
part
part
part
part
part

surface_1
surface_5
surface_9
surface_13
surface_17
surface_21
surface_25

surface_2
surface_6
surface_10
surface_14
surface_18
surface_22

Begin Results Output NodalTdata
Title VnVtest Nodal Temperature Data
database name = VnVinputTest.e
Nodal Variables = solution->temperature as T
#nodal variables = temperaturedot as Tdot

#Face Variables

surface_3
surface_7
surface_11
surface_15
surface_19
surface_23

= HTC SurfFlux Tref #costheta

Global Variables = time_step as timestep

surface_4
surface_8
surface_12
surface_16
surface_20
surface_24

surface_4
surface_8
surface_12
surface_16
surface_20
surface_24

surface_4
surface_8
surface_12
surface_16
surface_20
surface_24

# Global Variables = PEinterior_T as PEinterior_T

Timestep Adjustment Interval is 1

At Time 0.0, Increment = 0.01 #

End

end aria region myRegion

end procedure aria_procedure

end sierra FandI_VnVtest



12.2.3. Convective Heat Flux 3.3

Begin SIERRA Aria
load user plugin file ./Exact_Solution.so

Begin User Function exact_soln
Load From File ./Exact_Solution.so Using Function registerExactSoln
End

Begin Norm Postprocessor 12_norm
Use Function exact_soln
Subtract Function nonlinear_solution->temperature
Compute Norms L2

End

Begin Norm Postprocessor hl_norm
Use Function exact_soln
Subtract Function nonlinear_solution->temperature
Compute Norms H1

End

Begin Norm Postprocessor linf_norm
Use Function exact_soln
Subtract Function nonlinear_solution->temperature
Compute Norms LInfinity

End

Begin Postprocessor Output Control pp_out
Comment Character Is 7%
Write To File errors{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific
End

load user plugin file ./FluxBC.so
load user plugin file ./DirichletBC.so

load user plugin file ./Init.so

Begin Aria Material M_Block

density = constant rho = 1.
specific heat = constant cp = 1.
heat conduction = basic
Thermal conductivity = constant k = 1.
End
{if (useTpetra)}

BEGIN TPETRA EQUATION SOLVER SOLVE_TEMPERATURE
BEGIN GMRES SOLVER
BEGIN DD-ILU PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-12
END
END TPETRA EQUATION SOLVER
{else}
Begin AZTEC Equation Solver solve_temperature
Solution Method = gmres
Preconditioning Method = dd-ilu
Maximum Iterations = 1000
Residual Norm Tolerance = le-12
Residual Norm Scaling = NONE
End
{endif}

Begin Finite Element Model myModel
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Database Name = mesh{N}.g

Coordinate System = cartesian

decomposition method = rcb

Use Material M_Block for block_1
End

Begin procedure myProcedure

Begin solution control description

Use System Main

Begin System Main
Simulation Start Time =0.0
Simulation Termination Time =0.1
Simulation Max Global Iterations = 100
Begin Transient Time_Block

advance myRegion

End

End System Main

Begin parameters for transient Time_Block
Start Time = 0.0
Begin parameters for aria Region myRegion
time step variation = fixed # adaptive
initial time step size = {0.008%0.5%*(N)}
time integration method = second_order
predictor-corrector tolerance = 1.0E-5
End
End
End Solution Control Description

begin aria region myRegion

Use Finite Element Model myModel
Use Linear Solver solve_temperature

nonlinear solution strategy = newton
nonlinear residual tolerance = 1.0e-10
maximum nonlinear iterations = 10
Nonlinear Relaxation Factor = 1.0

EQ energy for temperature on block_1 using Q1 with diff mass
BC const dirichlet on surface_2 Temperature = 0.0

Begin Temperature Boundary Condition s4
Add Surface surface_4
Temperature = 0.0

End

BC dirichlet for temperature on surface_3 = calore_user_sub name = localCoord_bc type=node
IC for temperature on block_1 = calore_user_sub name = localCoord_ic type=node

Output Number of Nodes

Evaluate Postprocessor 12_norm
Evaluate Postprocessor hl_norm
Evaluate Postprocessor linf_norm

Begin Convective Flux Boundary Condition internal
Add Surface surface_1 #y=1, 0<x<1, normal=(0,1)
Reference Temperature Subroutine = tref_coeff
Convective Coefficient Subroutine = convec_coeff

End

Begin Results Output output
Database Name = output{N}.e
AT STEP 0, INCREMENT = {2%*(N)}
TITLE Aria Heat Convective Flux BC Condition
Nodal Variables = nonlinear_solution->temperature as T
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End
end aria region myRegion
End procedure myProcedure

End sierra Aria
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12.3. THERMAL CONTACT

12.3.1. 1D Flat Contact 4.1
12.3.1.1. Hex8 Tied

#{R=0.0}
begin sierra Aria

title Adaptive Square
load user plugin file ./Exact_solution.so

BEGIN ARIA MATERIAL M1

Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END

BEGIN ARIA MATERIAL M2

Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END

Begin Finite Element Model bar
Database Name = 2blocks_contact_unaligned_hex8_h{N}.g
Begin parameters for block block_1
material M1
End
Begin parameters for block block_2
material M2
End
End Finite Element Model bar

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN UMFPACK SOLVER
END
END TPETRA EQUATION SOLVER
{else}
begin trilinos equation solver direct_solver
solution method = amesos-umfpack
end trilinos equation solver direct_solver
{endif}

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER
BEGIN GMRES SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 20000
RESIDUAL SCALING = RO
CONVERGENCE TOLERANCE = 1.000000e-12
END
END TPETRA EQUATION SOLVER
{else}
Begin Trilinos Equation Solver Iterative_Solver
Solution Method = GMRES
Preconditioning Method = Jacobi
Maximum Iterations = 20000
Residual Norm Scaling = RO
Residual Norm Tolerance = 1.0e-12
End
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{endif}

Begin Field Function ffunc
Use Nodal Field solution->temperature As Value
End

Begin User Function exact_soln
Load From File ./Exact_solution.so Using Function registerExactSolution
Parameter R = {R}

End

Begin Norm Postprocessor 12
Use Function exact_soln
Subtract Function ffunc
Compute Norms L2
Store in 12_err

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function ffunc
Compute Norms LInfinity
Store in linf_err

End

Begin Norm Postprocessor hil
Use Function exact_soln
Subtract Function ffunc
Compute Norms H1
Store in hl_err

End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors_tied_h{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific
End

begin procedure myProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Sequential The_Time_Block
Advance myRegion
End
Simulation Start Time = O
Simulation Termination Time = 1
End
End

begin Aria region myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0

use dof averaged nonlinear residual

use finite element model bar
use linear solver Iterative_Solver #Direct_Solver #

EQ ENERGY for TEMPERATURE on all_blocks using Q1 with DIFF SRC

Begin TEMPERATURE BOUNDARY CONDITION xmil
add surface surface_1
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TEMPERATURE = 0.
End

Begin TEMPERATURE BOUNDARY CONDITION xpil
add surface surface_2
TEMPERATURE = 1.

End

Begin VOLUME HEATING sm
add volume block_1
VALUE = -1.

End

Begin VOLUME HEATING sp
add volume block_2
VALUE = 1.

End

begin contact definition resi
contact surface surf_1 contains surface_3
contact surface surf_2 contains surface_4

begin interaction inter_1
surfaces = surf_1 surf_2
end interaction inter_1

begin enforcement enf_1
Enforcement for Energy = Tied_Temperature
end enforcement

end contact definition resl

Output Number of Nodes
Evaluate Postprocessor 12
Evaluate Postprocessor linf
Evaluate Postprocessor hil

Begin Results Output Label diffusion output
database Name = 2blocks_tied_h{N}.e
At Step 1, Increment = 1
Title Calore Two Blocks
Nodal Variables = solution->temperature as T
Element Variables = 12_err linf_err hl_err

End
end
end
end
12.3.1.2. Hex8 Resistance
#{R=4.0}

begin sierra Aria
title Adaptive Square

BEGIN ARIA MATERIAL M1

Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END

BEGIN ARIA MATERIAL M2



Density Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
basic

heat conduction
END

Begin Finite Element Model bar
Database Name = 2blocks_contact_unaligned_hex8_h{N}.g
Begin parameters for block block_1
material M1
End
Begin parameters for block block_2
material M2
End
End Finite Element Model bar

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN UMFPACK SOLVER
END
END TPETRA EQUATION SOLVER
{else}
begin trilinos equation solver direct_solver
solution method = amesos-umfpack
end trilinos equation solver direct_solver
{endif}

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER
BEGIN GMRES SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 20000
RESIDUAL SCALING = RO
CONVERGENCE TOLERANCE = 1.000000e-12
END
END TPETRA EQUATION SOLVER
{else}
Begin Trilinos Equation Solver Iterative_Solver
Solution Method = GMRES
Preconditioning Method = Jacobi
Maximum Iteratiomns = 20000
Residual Norm Scaling = RO
Residual Norm Tolerance = 1.0e-12
End
{endif}

Begin Field Function ffunc
Use Nodal Field solution->temperature As Value
End

Begin User Function exact_soln
Load From File ./Exact_solution.so Using Function registerExactSolution
Parameter R = {R}

End

Begin Norm Postprocessor 12
Use Function exact_soln
Subtract Function ffunc
Compute Norms L2
Store in 12_err

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function ffunc
Compute Norms LInfinity
Store in linf_err



End

Begin Norm Postprocessor hi
Use Function exact_soln
Subtract Function ffunc
Compute Norms H1
Store in hl_err

End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors_res_h{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific
End

begin procedure myProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Sequential The_Time_Block
Advance myRegion
End
Simulation Start Time = O
Simulation Termination Time = 1
End
End

begin Aria region myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0

use dof averaged nonlinear residual

use finite element model bar
use linear solver Iterative_Solver #Direct_Solver #

EQ ENERGY for TEMPERATURE on all_blocks using Q1 with DIFF SRC

Begin TEMPERATURE BOUNDARY CONDITION xmil
add surface surface_1
TEMPERATURE = 0.

End

Begin TEMPERATURE BOUNDARY CONDITION xpil
add surface surface_2
TEMPERATURE = 1.

End

Begin VOLUME HEATING sm
add volume block_1
VALUE = -1.

End

Begin VOLUME HEATING sp
add volume block_2
VALUE = 1.

End

begin contact definition resi
contact surface surf_1 contains surface_3

contact surface surf_2 contains surface_4

begin interaction inter_1
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surfaces = surf_1 surf_2
end interaction inter_1

begin enforcement enf_1
conductance coefficient= {1.0/R}
Enforcement for Energy = gap_conductance
end enforcement

end contact definition resl
Output Number of Nodes

Evaluate Postprocessor 12
Evaluate Postprocessor linf
Evaluate Postprocessor hil

Begin Results Output Label diffusion output
database Name = 2blocks_res_h{N}.e
At Step 1, Increment = 1
Title Calore Two Blocks
Nodal Variables = solution->temperature as T
Element Variables = 12_err linf_err hl_err

End
end
end
end
12.3.1.3. Tet4 Tied
#{R=0.0}

begin sierra Aria
title Adaptive Square
load user plugin file ./Exact_solution.so

BEGIN ARIA MATERIAL M1

Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END

BEGIN ARIA MATERIAL M2

Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END

Begin Finite Element Model bar
Database Name = 2blocks_contact_unaligned_tet4_h{N}.g
Begin parameters for block block_1
material M1
End
Begin parameters for block block_2
material M2
End
End Finite Element Model bar

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN UMFPACK SOLVER



END
END TPETRA EQUATION SOLVER
{else}
begin trilinos equation solver direct_solver
solution method = amesos-umfpack
end trilinos equation solver direct_solver
{endif}

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER
BEGIN GMRES SOLVER
BEGIN DD-ILU PRECONDITIONER
END
MAXIMUM ITERATIONS = 200
RESIDUAL SCALING = RO
CONVERGENCE TOLERANCE = 1.000000e-12
END
END TPETRA EQUATION SOLVER
{else}
Begin Trilinos Equation Solver Iterative_Solver
Solution Method = GMRES
Preconditioning Method = dd-ilu
Maximum Iterations = 200
Residual Norm Scaling = RO
Residual Norm Tolerance = 1.0e-12
End
{endif}

Begin Field Function ffunc
Use Nodal Field solution->temperature As Value
End

Begin User Function exact_soln
Load From File ./Exact_solution.so Using Function registerExactSolution
Parameter R = {R}

End

Begin Norm Postprocessor 12
Use Function exact_soln
Subtract Function ffunc
Compute Norms L2
Store in 12_err

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function ffunc
Compute Norms LInfinity
Store in linf_err

End

Begin Norm Postprocessor hi
Use Function exact_soln
Subtract Function ffunc
Compute Norms H1
Store in hl_err

End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors_tied_h{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific
End

begin procedure myProcedure

Begin Solution Control Description
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Use System Main
Begin System Main
Begin Sequential The_Time_Block
Advance myRegion
End
Simulation Start Time = 0
Simulation Termination Time = 1
End
End

begin Aria region myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0

use dof averaged nonlinear residual

use finite element model bar
use linear solver Iterative_Solver #Direct_Solver #

EQ ENERGY for TEMPERATURE on all_blocks using Q1 with DIFF SRC

Begin TEMPERATURE BOUNDARY CONDITION xmil
add surface surface_1
TEMPERATURE = 0.

End

Begin TEMPERATURE BOUNDARY CONDITION xpil
add surface surface_2
TEMPERATURE = 1.

End

Begin VOLUME HEATING sm
add volume block_1
VALUE = -1.

End

Begin VOLUME HEATING sp
add volume block_2
VALUE = 1.

End

begin contact definition resil
contact surface surf_1 contains surface_3
contact surface surf_2 contains surface_4

begin interaction inter_1
surfaces = surf_1 surf_2
end interaction inter_1

begin enforcement enf_1
Enforcement for Energy = Tied_Temperature
end enforcement

end contact definition resi
Output Number of Nodes

Evaluate Postprocessor 12
Evaluate Postprocessor linf
Evaluate Postprocessor hil

Begin Results Output Label diffusion output
database Name = 2blocks_tied_h{N}.e
At Step 1, Increment = 1
Title Calore Two Blocks



Nodal Variables = solution->temperature as T
Element Variables = 12_err linf_err hl_err

End
end
end
end
12.3.1.4. Tet4 Resistance
#{R=4.0}

begin sierra Aria
title Adaptive Square

BEGIN ARIA MATERIAL M1

Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END

BEGIN ARIA MATERIAL M2

Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END

Begin Finite Element Model bar
Database Name = 2blocks_contact_unaligned_tet4_h{N}.g
Begin parameters for block block_1
material M1
End
Begin parameters for block block_2
material M2
End
End Finite Element Model bar

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN UMFPACK SOLVER
END
END TPETRA EQUATION SOLVER
{else}
begin trilinos equation solver direct_solver
solution method = amesos-umfpack
end trilinos equation solver direct_solver
{endif}

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER
BEGIN GMRES SOLVER
BEGIN DD-ILU PRECONDITIONER
END
MAXIMUM ITERATIONS = 200
RESIDUAL SCALING = RO
CONVERGENCE TOLERANCE = 1.000000e-12
END
END TPETRA EQUATION SOLVER
{else}
Begin Trilinos Equation Solver Iterative_Solver
Solution Method = GMRES
Preconditioning Method = dd-ilu
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Maximum Iterations = 200
Residual Norm Scaling = RO
Residual Norm Tolerance = 1.0e-12
End
{endif}

Begin Field Function ffunc
Use Nodal Field solution->temperature As Value
End

Begin User Function exact_soln
Load From File ./Exact_solution.so Using Function registerExactSolution
Parameter R = {R}

End

Begin Norm Postprocessor 12
Use Function exact_soln
Subtract Function ffunc
Compute Norms L2
Store in 12_err

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function ffunc
Compute Norms LInfinity
Store in linf_err

End

Begin Norm Postprocessor hi
Use Function exact_soln
Subtract Function ffunc
Compute Norms H1
Store in hl_err

End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors_res_h{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific
End

begin procedure myProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Sequential The_Time_Block
Advance myRegion
End
Simulation Start Time = 0
Simulation Termination Time = 1
End
End

begin Aria region myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0

use dof averaged nonlinear residual

use finite element model bar
use linear solver Iterative_Solver #Direct_Solver #
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EQ ENERGY for TEMPERATURE on all_blocks using Q1 with DIFF SRC

Begin TEMPERATURE BOUNDARY CONDITION xmil
add surface surface_1
TEMPERATURE = 0.

End

Begin TEMPERATURE BOUNDARY CONDITION xpil
add surface surface_2
TEMPERATURE = 1.

End

Begin VOLUME HEATING sm
add volume block_1
VALUE = -1.

End

Begin VOLUME HEATING sp
add volume block_2
VALUE = 1.

End

begin contact definition resi
contact surface surf_1 contains surface_3
contact surface surf_2 contains surface_4

begin interaction inter_1
surfaces = surf_1 surf_2
end interaction inter_1

begin enforcement enf_1
conductance coefficient= {1.0/R}
Enforcement for Energy = gap_conductance
end enforcement

end contact definition resl
Output Number of Nodes

Evaluate Postprocessor 12
Evaluate Postprocessor linf
Evaluate Postprocessor hil

Begin Results Output Label diffusion output
database Name = 2blocks_res_h{N}.e
At Step 1, Increment = 1
Title Calore Two Blocks
Nodal Variables = solution->temperature as T
Element Variables = 12_err linf_err hl_err

End
end
end
end
12.3.1.5. Hex8-Tet4 Tied
#{R=0.0}

begin sierra Aria
title Adaptive Square

load user plugin file ./Exact_solution.so
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BEGIN ARIA MATERIAL M1

Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END

BEGIN ARIA MATERIAL M2

Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END

Begin Finite Element Model bar
Database Name = 2blocks_contact_unaligned_hex8_tet4_h{N}.g
Begin parameters for block block_1
material M1
End
Begin parameters for block block_2
material M2
End
End Finite Element Model bar

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN UMFPACK SOLVER
END
END TPETRA EQUATION SOLVER
{else}
begin trilinos equation solver direct_solver
solution method = amesos-umfpack
end trilinos equation solver direct_solver
{endif}

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER
BEGIN GMRES SOLVER
BEGIN DD-ILU PRECONDITIONER
END
MAXIMUM ITERATIONS = 200
RESIDUAL SCALING = RO
CONVERGENCE TOLERANCE = 1.000000e-12
END
END TPETRA EQUATION SOLVER
{else}
Begin Trilinos Equation Solver Iterative_Solver
Solution Method = GMRES
Preconditioning Method = dd-ilu
Maximum Iterations = 200
Residual Norm Scaling = RO
Residual Norm Tolerance = 1.0e-12
End
{endif}

Begin Field Function ffunc
Use Nodal Field solution->temperature As Value
End

Begin User Function exact_soln
Load From File ./Exact_solution.so Using Function registerExactSolution
Parameter R = {R}

End

Begin Norm Postprocessor 12
Use Function exact_soln
Subtract Function ffunc
Compute Norms L2
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Store in 12_err
End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function ffunc
Compute Norms LInfinity
Store in linf_err

End

Begin Norm Postprocessor hil
Use Function exact_soln
Subtract Function ffunc
Compute Norms H1
Store in hl_err

End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors_tied_h{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific
End

begin procedure myProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Sequential The_Time_Block
Advance myRegion
End
Simulation Start Time = 0
Simulation Termination Time = 1
End
End

begin Aria region myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0

use dof averaged nonlinear residual

use finite element model bar
use linear solver Iterative_Solver #Direct_Solver #

EQ ENERGY for TEMPERATURE on all_blocks using Q1 with DIFF SRC

Begin TEMPERATURE BOUNDARY CONDITION xmil
add surface surface_1
TEMPERATURE = 0.

End

Begin TEMPERATURE BOUNDARY CONDITION xpil
add surface surface_2
TEMPERATURE = 1.

End

Begin VOLUME HEATING sm
add volume block_1
VALUE = -1.

End

Begin VOLUME HEATING sp
add volume block_2
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VALUE = 1.
End

begin contact definition resi
contact surface surf_1 contains surface_3
contact surface surf_2 contains surface_4

begin interaction inter_1
surfaces = surf_1 surf_2
end interaction inter_1

begin enforcement enf_1
Enforcement for Energy = Tied_Temperature
end enforcement

end contact definition resl
Output Number of Nodes

Evaluate Postprocessor 12
Evaluate Postprocessor linf
Evaluate Postprocessor hl

Begin Results Output Label diffusion output
database Name = 2blocks_tied_h{N}.e
At Step 1, Increment = 1
Title Calore Two Blocks
Nodal Variables = solution->temperature as T
Element Variables = 12_err linf_err hl_err

End
end
end
end
12.3.1.6. Hex8-Tet4 Resistance
#{R=4.0}

begin sierra Aria
title Adaptive Square

BEGIN ARIA MATERIAL M1

Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END

BEGIN ARIA MATERIAL M2

Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END

Begin Finite Element Model bar
Database Name = 2blocks_contact_unaligned_hex8_tet4_h{N}.g
Begin parameters for block block_1
material M1
End
Begin parameters for block block_2
material M2
End
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End Finite Element Model bar

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN UMFPACK SOLVER
END
END TPETRA EQUATION SOLVER
{else}
begin trilinos equation solver direct_solver
solution method = amesos-umfpack
end trilinos equation solver direct_solver
{endif}

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER
BEGIN GMRES SOLVER
BEGIN DD-ILU PRECONDITIONER
END
MAXIMUM ITERATIONS = 200
RESIDUAL SCALING = RO
CONVERGENCE TOLERANCE = 1.000000e-12
END
END TPETRA EQUATION SOLVER
{else}
Begin Trilinos Equation Solver Iterative_Solver
Solution Method = GMRES
Preconditioning Method = dd-ilu
Maximum Iterations = 200
Residual Norm Scaling = RO
Residual Norm Tolerance = 1.0e-12
End
{endif}

Begin Field Function ffunc
Use Nodal Field solution->temperature As Value
End

Begin User Function exact_soln
Load From File ./Exact_solution.so Using Function registerExactSolution
Parameter R = {R}

End

Begin Norm Postprocessor 12
Use Function exact_soln
Subtract Function ffunc
Compute Norms L2
Store in 12_err

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function ffunc
Compute Norms LInfinity
Store in linf_err

End

Begin Norm Postprocessor hil
Use Function exact_soln
Subtract Function ffunc
Compute Norms H1
Store in hl_err

End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors_res_h{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific



End
begin procedure myProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Sequential The_Time_Block
Advance myRegion
End
Simulation Start Time = 0
Simulation Termination Time = 1
End
End

begin Aria region myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0

use dof averaged nonlinear residual

use finite element model bar
use linear solver Iterative_Solver #Direct_Solver #

EQ ENERGY for TEMPERATURE on all_blocks using Q1 with DIFF SRC

Begin TEMPERATURE BOUNDARY CONDITION xmil
add surface surface_1
TEMPERATURE = 0.

End

Begin TEMPERATURE BOUNDARY CONDITION xpil
add surface surface_2
TEMPERATURE = 1.

End

Begin VOLUME HEATING sm
add volume block_1
VALUE = -1.

End

Begin VOLUME HEATING sp
add volume block_2
VALUE = 1.

End

begin contact definition resi
contact surface surf_1 contains surface_3
contact surface surf_2 contains surface_4

begin interaction inter_1
surfaces = surf_1 surf_2

end interaction inter_1

begin enforcement enf_1
conductance coefficient= {1.0/R}
Enforcement for Energy = gap_conductance

end enforcement

end contact definition resl

Output Number of Nodes

Evaluate Postprocessor 12
Evaluate Postprocessor linf
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Evaluate Postprocessor hil

Begin Results Output Label diffusion output
database Name = 2blocks_res_h{N}.e
At Step 1, Increment = 1
Title Calore Two Blocks
Nodal Variables = solution->temperature as T
Element Variables = 12_err linf_err hl_err
End

end
end

end

12.3.2. 3D Curved Contact 4.2

12.3.2.1. Hex8-Hex8 Case
12.3.2.2. Tet4-Tet4 Case
12.3.2.3. Hex8-Tet4 Case

12.3.3. Steady Hex8 Contact

#N={N=5}
BEGIN SIERRA myJob

BEGIN ARIA MATERIAL Kryptonite
Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat Constant cp=1
heat conduction = basic

END ARIA MATERIAL Kryptonite

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN SUPERLU SOLVER
END
END TPETRA EQUATION SOLVER
{else}
Begin Trilinos Equation Solver Direct_Solver
Solution Method = amesos-superlu
End
{endif}

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER
BEGIN GMRES SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-15
END
END TPETRA EQUATION SOLVER
{else}
Begin Trilinos Equation Solver Iterative_Solver
Solution Method = GMRES
Preconditioning Method = Jacobi
Maximum Iterations = 1000
Residual Norm Scaling = None



Residual Norm Tolerance = 1.0e-15
End
{endif}

BEGIN FINITE ELEMENT MODEL cube
database name = cube_contact_h{N}_hex8.e
coordinate system is cartesian
decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite
END PARAMETERS FOR BLOCK block_1

BEGIN PARAMETERS FOR BLOCK block_2
material Kryptonite
END PARAMETERS FOR BLOCK block_2

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./exact.so Using Function registerExactSoln
End

Begin User Function exact_soln_dot
Load From File ./exact.so Using Function registerExactSolnDot
End

Begin User Function exact_src
Load From File ./exact.so Using Function registerExactSrc
End

Begin User Function flux_surface_3
Load From File ./exact.so Using Function registerFlux_Surface_3
End

Begin User Function flux_surface_5
Load From File ./exact.so Using Function registerFlux_Surface_5
End

Begin User Function flux_surface_1
Load From File ./exact.so Using Function registerFlux_Surface_1
End

Begin User Function flux_surface_2
Load From File ./exact.so Using Function registerFlux_Surface_2
End

Begin Norm Postprocessor 12
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2
store in 12_error
End

Begin Norm Postprocessor hl
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1
store in hl_error
End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity
store in linf_error
End
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Begin Postprocessor Output Control pp_out
Comment Character Is ¥
Write To File errors_h{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific
End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Sequential The_Time_Block
Advance myRegion
End
Simulation Start Time = 0
Simulation Termination Time = 1
End
End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model cube

Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q1 with DIFF SRC
EQ ENERGY for TEMPERATURE on block_2 using Q1 with DIFF SRC

# surface_4: x=0
# surface_6: x=1
# surface_3: y=0
# surface_b5: y=1
# surface_1: z=1
# surface_2: z=0

# const Temp BC (x)

BC const dirichlet at surface_4 Temperature
BC const dirichlet at surface_6 Temperature

# const flux BC (y)
BC FLUX for Energy on surface_3 = constant flux
BC FLUX for Energy on surface_5 = constant flux

BC FLUX for Energy on surface_3
BC FLUX for Energy on surface_5

# convective flux BC with const Temp and H (2)

Encore_Function
Encore_Function

BC Flux for Energy on surface_1 = Nat_Conv
BC Flux for Energy on surface_2 = Nat_Conv

BC FLUX for Energy on surface_l1 = Encore_Function
BC FLUX for Energy on surface_2 = Encore_Function

# const source term
Source For ENERGY on block_1 = Constant value=1
Source For ENERGY on block_2 = Constant value=1

]

o
o)

Name=flux_surface_3
Name=flux_surface_5

T_Ref=1 H=1

T_Ref=2 H=2

Name=flux_surface_1
Name=flux_surface_2

Source For ENERGY on block_1 = Encore_Function Name=exact_src
Source For ENERGY on block_2 = Encore_Function Name=exact_src
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begin contact definition mpcl
contact surface surf_1 contains surface_7
contact surface surf_2 contains surface_8

output rule = summary

begin interaction inter_1
surfaces = surf_1 surf_2
normal tolerance = 0.01
end
begin enforcement enf_1
Enforcement for Energy = Tied_Temperature
end
end

Output Number of Nodes

Evaluate Postprocessor 12
Evaluate Postprocessor hil
Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = thermal_steady_hex8_tied_contact_h{N}.e
at step 1, increment = 1
# time interval is 1.0
title Aria cube test
nodal variables = nonlinear_solution->TEMPERATURE as T
element variables = 12_error h2_error linf_error
END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion
END PROCEDURE myAriaProcedure

END SIERRA myJob

12.3.4. Steady Hex20 Contact

BEGIN SIERRA myJob
load user plugin file ./exact.so

begin definition for function kxx
type = piecewise linear
begin values
0.0 0.5
1.0 2.0
2.0 8.0
end values
end

begin definition for function kyy
type = piecewise linear
begin values
.2
.2
.1

N = O
o O O
N = O

20.0 20.2
end values
end

begin definition for function kzz
type = piecewise linear
begin values
0.0 1.0
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1.0 2.0
2.0 3.0
20.0 21.0
end values
scale by 2.0
end

BEGIN ARIA MATERIAL Kryptonite

Density = Constant rho=1

tensor thermal conductivity = user_function X = temperature name_xx = kxx name_yy = kyy name_zz = kzz
Specific Heat = Constant cp=1

heat conduction = Generalized

END ARIA MATERIAL Kryptonite

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN SUPERLU SOLVER
END
END TPETRA EQUATION SOLVER
{else}
Begin Trilinos Equation Solver Direct_Solver
Solution Method = amesos-superlu
End
{endif}

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER
BEGIN GMRES SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-14
END
END TPETRA EQUATION SOLVER
{else}
Begin Trilinos Equation Solver Iterative_Solver
Solution Method = GMRES
Preconditioning Method = Jacobi
Maximum Iterations = 1000
Residual Norm Scaling = None
Residual Norm Tolerance = 1.0e-14
End
{endif}

BEGIN FINITE ELEMENT MODEL cube
database name = cube_contact_h{N}_hex20.g
coordinate system is cartesian
decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite
END PARAMETERS FOR BLOCK block_1

BEGIN PARAMETERS FOR BLOCK block_2
material Kryptonite
END PARAMETERS FOR BLOCK block_2

END FINITE ELEMENT MODEL cube
Begin User Function exact_soln
Load From File ./exact.so Using Function registerExactSoln
End
Begin User Function exact_src

Load From File ./exact.so Using Function registerExactSrc
End
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Begin User Function flux_surface_3
Load From File ./exact.so Using Function registerFlux_Surface_3
End

Begin User Function flux_surface_5
Load From File ./exact.so Using Function registerFlux_Surface_5
End

Begin User Function flux_surface_1
Load From File ./exact.so Using Function registerFlux_Surface_1
End

Begin User Function flux_surface_2
Load From File ./exact.so Using Function registerFlux_Surface_2
End

Begin Norm Postprocessor 12
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor hil
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity

End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors_thermal_steady_hex20_h{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific
End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Sequential The_Time_Block
Advance myRegion
End
Simulation Start Time = 0
Simulation Termination Time = 1
End
End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0

use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q28 with DIFF SRC
EQ ENERGY for TEMPERATURE on block_2 using Q2S with DIFF SRC
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# surface_4: x=0
# surface_6: x=1
# surface_3: y=0
# surface_b: y=1
# surface_1: z=1
# surface_2: z=0
# const Temp BC (x)

BC const dirichlet at surface_4 Temperature = 1.0

BC const dirichlet at surface_6 Temperature = 1.0

# const flux BC (y)

BC FLUX for Energy on surface_3 = constant flux = 3

BC FLUX for Energy on surface_5 = constant flux = 5

BC FLUX for Energy on surface_3 = Encore_Function Name=flux_surface_3
BC FLUX for Energy on surface_5 = Encore_Function Name=flux_surface_5
# convective flux BC with const Temp and H (z)

BC Flux for
BC Flux for

BC FLUX for
BC FLUX for

# const sou
Source For E

Source For El
Source For E
Source For E

begin contac

Energy on surface_1

Nat_Conv T_Ref=1 H=1
H=2

Encore_Function Name=flux_surface_1
Encore_Function Name=flux_surface_2

ore_Function Name=exact_src

Energy on surface_2 = Nat_Conv T_Ref=2
Energy on surface_1 =

Energy on surface_2 =

rce term

NERGY on block_1 = Constant value=1
NERGY on block_1 = Enc

NERGY on block_2 = Constant value=1
NERGY on block_2 = Enc

t definition mpcl

ore_Function Name=exact_src

contact surface surf_1 contains surface_7
contact surface surf_2 contains surface_8

begin inte
surfaces

end

begin enfo

raction inter_1
surf_1 surf_2

rcement enf_1

Enforcement for Energy = Tied_Temperature

end
end

Output Numbe
Evaluate Pos

Evaluate Pos
Evaluate Pos

r of Nodes

tprocessor 12
tprocessor hil
tprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output

database
at step 1

Name
, increment

1

# time interval is 1.0

title Ari
nodal var

a cube test
iables

thermal_steady_hex20_tied_contact_h{N}.e

nonlinear_solution->TEMPERATURE as T

END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion

END PROCEDURE myAr

iaProcedure
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END SIERRA myJob

12.3.5. Steady Hex27 Contact

BEGIN SIERRA myJob
load user plugin file ./exact.so

begin definition for function kxx

type = piecewise linear
begin values

0.0 0.5

1.0 2.0

2.0 8.0

end values
end

begin definition for function kyy
type = piecewise linear
begin values
.2
.2
.1

N = O
(oo o]
N = O

20.0 20.2
end values
end

begin definition for function kzz
type = piecewise linear
begin values
0.0 1.0
1.0 2.0
2.0 3.0
20.0 21.0
end values
scale by 2.0
end

BEGIN ARIA MATERIAL Kryptonite

Density = Constant rho=1

tensor thermal conductivity = user_function X = temperature name_xx = kxx name_yy = kyy name_zz = kzz
Specific Heat = Constant cp=1

heat conduction = Generalized

END ARIA MATERIAL Kryptonite

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN SUPERLU SOLVER
END
END TPETRA EQUATION SOLVER
{else}
Begin Trilinos Equation Solver Direct_Solver
Solution Method = amesos-superlu
End
{endif}

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER
BEGIN GMRES SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-14
END
END TPETRA EQUATION SOLVER
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{else}
Begin Trilinos Equation Solver Iterative_Solver
Solution Method = GMRES
Preconditioning Method = Jacobi
Maximum Iterations = 1000
Residual Norm Scaling = None
Residual Norm Tolerance = 1.0e-14
End
{endif}

BEGIN FINITE ELEMENT MODEL cube
database name = cube_contact_h{N}_hex27.g
coordinate system is cartesian
decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite
END PARAMETERS FOR BLOCK block_1

BEGIN PARAMETERS FOR BLOCK block_2
material Kryptonite
END PARAMETERS FOR BLOCK block_2

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./exact.so Using Function registerExactSoln
End

Begin User Function exact_src
Load From File ./exact.so Using Function registerExactSrc
End

Begin User Function flux_surface_3
Load From File ./exact.so Using Function registerFlux_Surface_3
End

Begin User Function flux_surface_5
Load From File ./exact.so Using Function registerFlux_Surface_5
End

Begin User Function flux_surface_1
Load From File ./exact.so Using Function registerFlux_Surface_1
End

Begin User Function flux_surface_2
Load From File ./exact.so Using Function registerFlux_Surface_2
End

Begin Norm Postprocessor 12
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor hil
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity

End

Begin Postprocessor Output Control pp_out
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Comment Character Is %

Write To File errors_thermal_steady_hex27_h{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Sequential The_Time_Block
Advance myRegion
End
Simulation Start Time = 0
Simulation Termination Time = 1
End
End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0

use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q2 with DIFF SRC
EQ ENERGY for TEMPERATURE on block_2 using Q2 with DIFF SRC

# surface_4: x=0
# surface_6: x=1

# surface_3: y=0
# surface_b5: y=1

# surface_1: z=1
# surface_2: z=0

# const Temp BC (x)
BC const dirichlet at surface_4 Temperature =
BC const dirichlet at surface_6 Temperature

=
o o

]

# const flux BC (y)
BC FLUX for Energy on surface_3
BC FLUX for Energy on surface_5

constant flux =
constant flux

mnwon
o1 w

Encore_Function Name=flux_surface_3
Encore_Function Name=flux_surface_5

BC FLUX for Energy on surface_3
BC FLUX for Energy on surface_5

# convective flux BC with const Temp and H (z)
BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1
BC Flux for Energy on surface_2 = Nat_Conv T_Ref=2 H=2

BC FLUX for Energy on surface_1l = Encore_Function Name=flux_surface_1
BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

# const source term
Source For ENERGY on block_1 = Constant value=1

Source For ENERGY on block_1 = Encore_Function Name=exact_src

Source For ENERGY on block_2 = Constant value=1
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Source For ENERGY on block_2 = Encore_Function Name=exact_src

begin contact definition mpcl
contact surface surf_1 contains surface_7
contact surface surf_2 contains surface_8

begin interaction inter_1
surfaces = surf_1 surf_2
end
begin enforcement enf_1
Enforcement for Energy = Tied_Temperature
end
end

Output Number of Nodes

Evaluate Postprocessor 12
Evaluate Postprocessor hi
Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = thermal_steady_hex27_tied_contact_h{N}.e
at step 1, increment = 1
# time interval is 1.0
title Aria cube test
nodal variables = nonlinear_solution->TEMPERATURE as T

END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion
END PROCEDURE myAriaProcedure

END SIERRA myJob

12.3.6. Steady Tet4 Contact

#N={N=5}
BEGIN SIERRA myJob

BEGIN ARIA MATERIAL Kryptonite

Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END ARIA MATERIAL Kryptonite

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN SUPERLU SOLVER
END
END TPETRA EQUATION SOLVER
{else}
Begin Trilinos Equation Solver Direct_Solver
Solution Method = amesos-superlu
End
{endif}

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER
BEGIN GMRES SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-15
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END
END TPETRA EQUATION SOLVER
{else}

Begin Trilinos Equation Solver Iterative_Solver
Solution Method = GMRES
Preconditioning Method = Jacobi
Maximum Iterations = 1000
Residual Norm Scaling = None
Residual Norm Tolerance = 1.0e-15

End

{endif}

BEGIN FINITE ELEMENT MODEL cube
database name = cube_contact_h{N}_tetd.e
coordinate system is cartesian
decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite
END PARAMETERS FOR BLOCK block_1

BEGIN PARAMETERS FOR BLOCK block_2
material Kryptonite
END PARAMETERS FOR BLOCK block_2

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./exact.so Using Function registerExactSoln
End

Begin User Function exact_soln_dot
Load From File ./exact.so Using Function registerExactSolnDot
End

Begin User Function exact_src
Load From File ./exact.so Using Function registerExactSrc
End

Begin User Function flux_surface_3
Load From File ./exact.so Using Function registerFlux_Surface_3
End

Begin User Function flux_surface_b5
Load From File ./exact.so Using Function registerFlux_Surface_5
End

Begin User Function flux_surface_1
Load From File ./exact.so Using Function registerFlux_Surface_1
End

Begin User Function flux_surface_2
Load From File ./exact.so Using Function registerFlux_Surface_2
End

Begin Norm Postprocessor 12
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2
Store In 12_error
End

Begin Norm Postprocessor hi
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1
Store In hl_error
End
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Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity
Store In linf_error
End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors_h{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific
End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Sequential The_Time_Block
Advance myRegion
End
Simulation Start Time = 0
Simulation Termination Time = 1
End
End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q1 with DIFF SRC
EQ ENERGY for TEMPERATURE on block_2 using Q1 with DIFF SRC

# surface_4: x=0
X

# surface_6: x=1
# surface_3: y=0
# surface_5: y=1
# surface_1: z=1
# surface_2: z=0

# const Temp BC (x)
BC const dirichlet at surface_4 Temperature =
BC const dirichlet at surface_6 Temperature

|
=
o o

# const flux BC (y)
BC FLUX for Energy on surface_3 = constant flux = 3
BC FLUX for Energy on surface_5 constant flux

]
(¢

Encore_Function Name=flux_surface_3
Encore_Function Name=flux_surface_5

BC FLUX for Energy on surface_3
BC FLUX for Energy on surface_5

]

# convective flux BC with const Temp and H (z)
BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1
BC Flux for Energy on surface_2 = Nat_Conv T_Ref=2 H=2

BC FLUX for Energy on surface_1 = Encore_Function Name=flux_surface_1
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BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

# const source term
Source For ENERGY on block_1 Constant value=1
Source For ENERGY on block_2 = Constant value=1

Source For ENERGY on block_1 = Encore_Function Name=exact_src
Source For ENERGY on block_2 = Encore_Function Name=exact_src

begin contact definition mpcil
contact surface surf_1 contains surface_7
contact surface surf_2 contains surface_8

begin interaction inter_1
surfaces = surf_1 surf_2
end
begin enforcement enf_1
Enforcement for Energy = Tied_Temperature
end
end

Output Number of Nodes

Evaluate Postprocessor 12
Evaluate Postprocessor hil
Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = thermal_steady_tet4_tied_contact_h{N}.e
at step 1, increment = 1
# time interval is 1.0
title Aria cube test
nodal variables = nonlinear_solution->TEMPERATURE as T
element variables = 12_error hl_error linf_error
END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion
END PROCEDURE myAriaProcedure

END SIERRA myJob

12.3.7. Steady Tet4Tet10 Contact

#N={N=5}
BEGIN SIERRA myJob

BEGIN ARIA MATERIAL Kryptonite

Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END ARIA MATERIAL Kryptonite

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN SUPERLU SOLVER
END
END TPETRA EQUATION SOLVER
{else}
Begin Trilinos Equation Solver Direct_Solver
Solution Method = amesos-superlu
End
{endif}

{if (useTpetra)}
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BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER
BEGIN GMRES SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-15
END
END TPETRA EQUATION SOLVER
{else}
Begin Trilinos Equation Solver Iterative_Solver
Solution Method = GMRES
Preconditioning Method = Jacobi
Maximum Iterations = 1000
Residual Norm Scaling = None
Residual Norm Tolerance = 1.0e-15
End
{endif}

BEGIN FINITE ELEMENT MODEL cube
database name = cube_contact_h{N}_tet10.e
coordinate system is cartesian
decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite
END PARAMETERS FOR BLOCK block_1

BEGIN PARAMETERS FOR BLOCK block_2
material Kryptonite
END PARAMETERS FOR BLOCK block_2

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./exact.so Using Function registerExactSoln
End

Begin User Function exact_soln_dot
Load From File ./exact.so Using Function registerExactSolnDot
End

Begin User Function exact_src
Load From File ./exact.so Using Function registerExactSrc
End

Begin User Function flux_surface_3
Load From File ./exact.so Using Function registerFlux_Surface_3
End

Begin User Function flux_surface_5
Load From File ./exact.so Using Function registerFlux_Surface_5
End

Begin User Function flux_surface_1
Load From File ./exact.so Using Function registerFlux_Surface_1
End

Begin User Function flux_surface_2
Load From File ./exact.so Using Function registerFlux_Surface_2
End

Begin Norm Postprocessor 12
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2
Store In 12_error
End
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Begin Norm Postprocessor hl
Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms H1
Store In hl_error
End

Begin Norm Postprocessor linf
Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms LInfinity
Store In linf_error
End

Begin Postprocessor Output Control pp_out

Comment Character Is %
Write To File errors_h{N}.dat
Floating Point Precision Is 3

Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main

Begin System Main

Begin Sequential The_Time_Block

Advance myRegion
End

Simulation Start Time = 0
Simulation Termination Time =

End

End

BEGIN ARIA REGION myRegion

1

Nonlinear Solution Strategy = Newton

Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12

Nonlinear Relaxation Factor

=1.0

use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q1 with DIFF SRC
EQ ENERGY for TEMPERATURE on block_2 using Q1 with DIFF SRC

#
#

#

surface_4: x=0
surface_6: x=1
surface_3: y=0
surface_5: y=1
surface_1: z=1
surface_2: z=0

const Temp BC (x)

BC const dirichlet at surface_4 Temperature =
BC const dirichlet at surface_6 Temperature

const flux BC (y)

BC FLUX for Energy on surface_3
BC FLUX for Energy on surface_5

BC FLUX for Energy on surface_3

constant flux =
constant flux

Encore_Function

]

|
=
o o

Name=flux_surface_3
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BC FLUX for Energy on surface_5 = Encore_Function

# convective flux BC with const Temp and H (2)
BC Flux for Energy on surface_1 = Nat_Conv
BC Flux for Energy on surface_2 = Nat_Conv

BC FLUX for Energy on surface_l = Encore_Function
BC FLUX for Energy on surface_2 = Encore_Function

# const source term
Source For ENERGY on block_1 Constant value=1
Source For ENERGY on block_2 = Constant value=1

Source For ENERGY on block_1

Name=flux_surface_5

T_Ref=1 H=1

T_Ref=2 H=2

Name=flux_surface_1
Name=flux_surface_2

Encore_Function Name=exact_src

Source For ENERGY on block_2 = Encore_Function Name=exact_src

begin contact definition mpcl

contact surface surf_1 contains surface_7
contact surface surf_2 contains surface_8

begin interaction inter_1
surfaces = surf_1 surf_2

end

begin enforcement enf_1

Enforcement for Energy = Tied_Temperature

end
end

Output Number of Nodes
Evaluate Postprocessor 12
Evaluate Postprocessor hl

Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output

database Name = thermal_steady_tet4_tied_contact_h{N}.e

at step 1, increment = 1
# time interval is 1.0
title Aria cube test

nodal variables = nonlinear_solution->TEMPERATURE as T
element variables = 12_error hl_error linf_error

END RESULTS OUTPUT LABEL diffusion output
END ARIA REGION myRegion
END PROCEDURE myAriaProcedure

END SIERRA myJob

12.3.8. Steady Tet10 Contact

#N={N=5}
BEGIN SIERRA myJob

BEGIN ARIA MATERIAL Kryptonite

Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END ARIA MATERIAL Kryptonite

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN SUPERLU SOLVER
END
END TPETRA EQUATION SOLVER

214



{else}
Begin Trilinos Equation Solver Direct_Solver
Solution Method = amesos-superlu
End
{endif}

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER
BEGIN GMRES SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-15
END
END TPETRA EQUATION SOLVER
{else}
Begin Trilinos Equation Solver Iterative_Solver
Solution Method = GMRES
Preconditioning Method = Jacobi
Maximum Iterations = 1000
Residual Norm Scaling = None
Residual Norm Tolerance = 1.0e-15
End
{endif}

BEGIN FINITE ELEMENT MODEL cube
database name = cube_contact_h{N}_tet10.e
coordinate system is cartesian
decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite
END PARAMETERS FOR BLOCK block_1

BEGIN PARAMETERS FOR BLOCK block_2
material Kryptonite
END PARAMETERS FOR BLOCK block_2

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./exact.so Using Function registerExactSoln
End

Begin User Function exact_soln_dot
Load From File ./exact.so Using Function registerExactSolnDot
End

Begin User Function exact_src
Load From File ./exact.so Using Function registerExactSrc
End

Begin User Function flux_surface_3
Load From File ./exact.so Using Function registerFlux_Surface_3
End

Begin User Function flux_surface_b5
Load From File ./exact.so Using Function registerFlux_Surface_5
End

Begin User Function flux_surface_1
Load From File ./exact.so Using Function registerFlux_Surface_1
End

Begin User Function flux_surface_2

Load From File ./exact.so Using Function registerFlux_Surface_2
End

215



Begin Norm Postprocessor 12
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2
Store In 12_error
End

Begin Norm Postprocessor hil
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1
Store In hl_error
End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity
Store In linf_error
End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors_h{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific
End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Sequential The_Time_Block
Advance myRegion
End
Simulation Start Time = 0
Simulation Termination Time = 1
End
End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q2 with DIFF SRC
EQ ENERGY for TEMPERATURE on block_2 using Q2 with DIFF SRC

# surface_4: x=0
# surface_6: x=1
# surface_3: y=0
# surface_5: y=1
# surface_1: z=1
# surface_2: z=0

# const Temp BC (x)
BC const dirichlet at surface_4 Temperature = 1.0
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BC const dirichlet at surface_6 Temperature

# const flux BC (y)
BC FLUX for Energy on surface_3
BC FLUX for Energy on surface_5

constant flux
constant flux

Encore_Function
Encore_Function

BC FLUX for Energy on surface_3
BC FLUX for Energy on surface_5

# convective flux BC with const Temp and H (2)
BC Flux for Energy on surface_1 = Nat_Conv
BC Flux for Energy on surface_2 = Nat_Conv

BC FLUX for Energy on surface_l = Encore_Function
BC FLUX for Energy on surface_2 = Encore_Function

# const source term
Source For ENERGY on block_1 Constant value=1
Source For ENERGY on block_2 = Constant value=1

Source For ENERGY on block_1 = Encore_Function Name
Source For ENERGY on block_2 = Encore_Function Name

begin contact definition mpcl

= 1.0

Name=flux_surface_3
Name=flux_surface_5

T_Ref=1 H=1

T_Ref=2 H=2

Name=flux_surface_1
Name=flux_surface_2

=exact_src
=exact_src

contact surface surf_1 contains surface_7
contact surface surf_2 contains surface_8

begin interaction inter_1
surfaces = surf_1 surf_2

end

begin enforcement enf_1

Enforcement for Energy = Tied_Temperature

end
end

Output Number of Nodes
Evaluate Postprocessor 12
Evaluate Postprocessor hil

Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output

database Name = thermal_steady_tet1O_tied_contact_h{N}.e

at step 1, increment = 1
# time interval is 1.0
title Aria cube test

nodal variables = nonlinear_solution->TEMPERATURE as T
element variables = 12_error hl_error linf_error

END RESULTS OUTPUT LABEL diffusion output
END ARIA REGION myRegion
END PROCEDURE myAriaProcedure

END SIERRA myJob

12.3.9. Steady Tet10 Dash Cont

#N={N=43}
BEGIN SIERRA myJob

BEGIN ARIA MATERIAL Kryptonite

Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1

basic

heat conduction

act
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END ARIA MATERIAL Kryptonite

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN SUPERLU SOLVER
END
END TPETRA EQUATION SOLVER
{else}
Begin Trilinos Equation Solver Direct_Solver
Solution Method = amesos-superlu
End
{endif}

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER
BEGIN GMRES SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-15
END
END TPETRA EQUATION SOLVER
{else}
Begin Trilinos Equation Solver Iterative_Solver
Solution Method = GMRES
Preconditioning Method = Jacobi
Maximum Iterations = 1000
Residual Norm Scaling = None
Residual Norm Tolerance = 1.0e-15
End
{endif}

BEGIN FINITE ELEMENT MODEL cube
database name = cube_contact_h{N}_tet10.e
coordinate system is cartesian
decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite
END PARAMETERS FOR BLOCK block_1

BEGIN PARAMETERS FOR BLOCK block_2
material Kryptonite
END PARAMETERS FOR BLOCK block_2

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./exact.so Using Function registerExactSoln
End

Begin User Function exact_soln_dot
Load From File ./exact.so Using Function registerExactSolnDot
End

Begin User Function exact_src
Load From File ./exact.so Using Function registerExactSrc
End

Begin User Function flux_surface_3
Load From File ./exact.so Using Function registerFlux_Surface_3
End

Begin User Function flux_surface_5

Load From File ./exact.so Using Function registerFlux_Surface_5
End
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Begin User Function flux_surface_1
Load From File ./exact.so Using Function registerFlux_Surface_1
End

Begin User Function flux_surface_2
Load From File ./exact.so Using Function registerFlux_Surface_2
End

Begin Norm Postprocessor 12
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2
Store In 12_error
End

Begin Norm Postprocessor hl
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1
Store In hl_error
End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity
Store In linf_error
End

Begin Postprocessor Output Control pp_out
Comment Character Is 7%
Write To File errors_h{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific
End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Sequential The_Time_Block
Advance myRegion
End
Simulation Start Time = 0
Simulation Termination Time = 1
End
End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q2 with DIFF SRC
EQ ENERGY for TEMPERATURE on block_2 using Q2 with DIFF SRC

# surface_4: x=0
# surface_6: x=1

# surface_3: y=0
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# surface_b: y=1

# surface_1: z=1
# surface_2: z=0

# const Temp BC (x)
BC const dirichlet at surface_4 Temperature
BC const dirichlet at surface_6 Temperature =

i
o O

# const flux BC (y)
BC FLUX for Energy on surface_3
BC FLUX for Energy on surface_5

|
w

constant flux =
constant flux

]
a

Encore_Function Name=flux_surface_3
Encore_Function Name=flux_surface_5

BC FLUX for Energy on surface_3
BC FLUX for Energy on surface_5

# convective flux BC with const Temp and H (2)
BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1
BC Flux for Energy on surface_2 = Nat_Conv T_Ref=2 H=2

BC FLUX for Energy on surface_1 = Encore_Function Name=flux_surface_1
BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

# const source term
Source For ENERGY on block_1 Constant value=1
Source For ENERGY on block_2 = Constant value=1

Source For ENERGY on block_1 Encore_Function Name=exact_src
Source For ENERGY on block_2 = Encore_Function Name=exact_src

begin contact definition mpcl
skin all blocks = on
search = dash

begin interaction defaults
general contact = on
end interaction defaults

begin dash options
interaction definition scheme = explicit
search length scaling = 0.75

end dash options

begin enforcement enf_1
Enforcement for Energy = Dash_Tied
end
end

Output Number of Nodes

Evaluate Postprocessor 12
Evaluate Postprocessor hil
Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = thermal_steady_tet10_tied_dash_contact_h{N}.e
at step 1, increment = 1
# time interval is 1.0
title Aria cube test
nodal variables = nonlinear_solution->TEMPERATURE as T
element variables = 12_error hl_error linf_error
END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion

END PROCEDURE myAriaProcedure
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END SIERRA myJob

12.3.10. Transient Tet4Tet10 Contact

#N={N=5}
BEGIN SIERRA myJob

BEGIN ARIA MATERIAL Kryptonite
Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat Constant cp=1
heat conduction = basic

END ARIA MATERIAL Kryptonite

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN SUPERLU SOLVER
END
END TPETRA EQUATION SOLVER
{else}
Begin Trilinos Equation Solver Direct_Solver
Solution Method = amesos-superlu
End
{endif}

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER
BEGIN GMRES SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-15
END
END TPETRA EQUATION SOLVER
{else}
Begin Trilinos Equation Solver Iterative_Solver
Solution Method = GMRES
Preconditioning Method = Jacobi
Maximum Iterations = 1000
Residual Norm Scaling = None
Residual Norm Tolerance = 1.0e-15
End
{endif}

BEGIN FINITE ELEMENT MODEL cube
database name = cube_contact_h{N}_tet10.e
coordinate system is cartesian
decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite
END PARAMETERS FOR BLOCK block_1
BEGIN PARAMETERS FOR BLOCK block_2
material Kryptonite
END PARAMETERS FOR BLOCK block_2
END FINITE ELEMENT MODEL cube
Begin User Function exact_soln
Load From File ./exact_transient.so Using Function registerExactSoln

End

Begin User Function exact_soln_dot
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Load From File ./exact_transient.so Using Function registerExactSolnDot

End

Begin User Function exact_src

Load From File ./exact_transient.so Using Function registerExactSrc

End

Begin User Function flux_surface_3

Load From File ./exact_transient.so Using Function registerFlux_Surface_3

End

Begin User Function flux_surface_5

Load From File ./exact_transient.so Using Function registerFlux_Surface_5

End

Begin User Function flux_surface_1

Load From File ./exact_transient.so Using Function registerFlux_Surface_1

End

Begin User Function flux_surface_2

Load From File ./exact_transient.so Using Function registerFlux_Surface_2

End

Begin Norm Postprocessor 12
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor 12_dot
Use Function exact_soln_dot
Subtract Function time_derivative_at_time->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor hil
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity

End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors_h{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific
End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Transient The_Time_Block
Advance myRegion
End
Simulation Start Time = 0
Simulation Termination Time = 3
End
Begin Parameters For Transient The_Time_Block
Begin Parameters For Aria Region myRegion
Initial Time Step Size = {0.5/2**N}
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Time Integration Method = Second_Order
Time Step Variation = fixed
End
End
End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q1 with MASS DIFF SRC
EQ ENERGY for TEMPERATURE on block_2 using Q1 with MASS DIFF SRC

]

IC const on block_1 temperature

1.
IC const on block_2 temperature = 1.

0
0

# surface_4: x
# surface_6: x=

# surface_3: y=0
# surface_5: y=1

# surface_1: z=
# surface_2: z

# const Temp BC (x)
BC const dirichlet at surface_4 Temperature
BC const dirichlet at surface_6 Temperature

[}
o
[ele)

# const flux BC (y)
BC FLUX for Energy on surface_3
BC FLUX for Energy on surface_5

]

I
w

constant flux =
constant flux

]
(¢4

BC FLUX for Energy on surface_3
BC FLUX for Energy on surface_5

Encore_Function Name=flux_surface_3
Encore_Function Name=flux_surface_b

# convective flux BC with const Temp and H (z)
BC Flux for Energy on surface_1 = Nat_Conv
BC Flux for Energy on surface_2 = Nat_Conv

T_Ref=1 H=1
T_Ref=2 H=2
BC FLUX for Energy on surface_1 = Encore_Function Name=flux_surface_1
BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

# const source term
Source For ENERGY on block_1 = Constant value=1
Source For ENERGY on block_2 = Constant value=1

Source For ENERGY on block_1 = Encore_Function Name=exact_src
Source For ENERGY on block_2 = Encore_Function Name=exact_src

begin contact definition mpcl
contact surface surf_1 contains surface_7
contact surface surf_2 contains surface_8

begin interaction inter_1
surfaces = surf_1 surf_2
end
begin enforcement enf_1
Enforcement for Energy = Tied_Temperature
end
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end
Output Number of Nodes

Evaluate Postprocessor 12
Evaluate Postprocessor 12_dot
Evaluate Postprocessor hil
Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output

database Name = thermal_transient_tet10_tied_contact_h{N}.e

at step 0, increment = {2%*N}

title Aria cube test

nodal variables = solution->TEMPERATURE as T

nodal variables = time_derivative_at_time->TEMPERATURE as TDOT
END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion
END PROCEDURE myAriaProcedure

END SIERRA myJob

12.3.11. Transient Tet10 Contact

#N={N=5}
BEGIN SIERRA myJob

BEGIN ARIA MATERIAL Kryptonite

Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END ARIA MATERIAL Kryptonite

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN SUPERLU SOLVER
END
END TPETRA EQUATION SOLVER
{else}
Begin Trilinos Equation Solver Direct_Solver
Solution Method = amesos-superlu
End
{endif}

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER
BEGIN GMRES SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-15
END
END TPETRA EQUATION SOLVER
{else}
Begin Trilinos Equation Solver Iterative_Solver
Solution Method = GMRES
Preconditioning Method = Jacobi
Maximum Iterations = 1000
Residual Norm Scaling = None
Residual Norm Tolerance = 1.0e-15
End
{endif}
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BEGIN FINITE ELEMENT MODEL cube

database name = cube_contact_h{N}_tetl10.e

coordinate system is cartesian
decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite
END PARAMETERS FOR BLOCK block_1

BEGIN PARAMETERS FOR BLOCK block_2
material Kryptonite
END PARAMETERS FOR BLOCK block_2

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./exact_transient.so
End

Begin User Function exact_soln_dot
Load From File ./exact_transient.so
End

Begin User Function exact_src
Load From File ./exact_transient.so
End

Begin User Function flux_surface_3
Load From File ./exact_transient.so
End

Begin User Function flux_surface_5
Load From File ./exact_transient.so
End

Begin User Function flux_surface_1
Load From File ./exact_transient.so
End

Begin User Function flux_surface_2
Load From File ./exact_transient.so
End

Begin Norm Postprocessor 12
Use Function exact_soln

Using

Using

Using

Using

Using

Using

Using

Function

Function

Function

Function

Function

Function

Function

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms L2
End

Begin Norm Postprocessor 12_dot
Use Function exact_soln_dot

registerExactSoln

registerExactSolnDot

registerExactSrc

registerFlux_Surface_3

registerFlux_Surface_5

registerFlux_Surface_1

registerFlux_Surface_2

Subtract Function time_derivative_at_time->TEMPERATURE

Compute Norms L2
End

Begin Norm Postprocessor hil
Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms H1
End

Begin Norm Postprocessor linf
Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms LInfinity
End

Begin Postprocessor Output Control pp_

out
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Comment Character Is %

Write To File errors_h{N}.dat

Floating Point Precision Is 3

Floating Point Format Is Scientific
End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Transient The_Time_Block
Advance myRegion
End
Simulation Start Time = 0
Simulation Termination Time = 3
End
Begin Parameters For Transient The_Time_Block
Begin Parameters For Aria Region myRegion
Initial Time Step Size = {0.5/2%*N}
Time Integration Method = Second_Order
Time Step Variation = fixed
End
End
End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q2 with MASS DIFF SRC
EQ ENERGY for TEMPERATURE on block_2 using Q2 with MASS DIFF SRC

IC const on block_1 temperature = 1.0
IC const on block_2 temperature = 1.0

# surface_4: x=0

# surface_6: x=1

# surface_3: y=0

# surface_b: y=1

# surface_1: z=1

# surface_2: z=0

# const Temp BC (x)
BC const dirichlet at surface_4 Temperature =
BC const dirichlet at surface_6 Temperature =

|
S
o o

# const flux BC (y)
BC FLUX for Energy on surface_3
BC FLUX for Energy on surface_5

|
w

constant flux =
constant flux

]
[¢4]

]

Encore_Function Name=flux_surface_3
Encore_Function Name=flux_surface_5

BC FLUX for Energy on surface_3
BC FLUX for Energy on surface_5

# convective flux BC with const Temp and H (2)
BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1
BC Flux for Energy on surface_2 = Nat_Conv T_Ref=2 H=2
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BC FLUX for Energy on surface_1 = Encore_Function Name=flux_surface_1
BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

# const source term
Source For ENERGY on block_1 = Constant value=1
Source For ENERGY on block_2 = Constant value=1

Source For ENERGY on block_1 Encore_Function Name=exact_src
Source For ENERGY on block_2 = Encore_Function Name=exact_src

begin contact definition mpcl
contact surface surf_1 contains surface_7
contact surface surf_2 contains surface_8

begin interaction inter_1
surfaces = surf_1 surf_2
end
begin enforcement enf_1
Enforcement for Energy = Tied_Temperature
end
end

Output Number of Nodes

Evaluate Postprocessor 12
Evaluate Postprocessor 12_dot
Evaluate Postprocessor hil
Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output

database Name = thermal_transient_tet10_tied_contact_h{N}.e

at step O, increment = {2x*N}

title Aria cube test

nodal variables = solution->TEMPERATURE as T

nodal variables = time_derivative_at_time->TEMPERATURE as TDOT
END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion
END PROCEDURE myAriaProcedure

END SIERRA myJob
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12.4. ELEMENT DEATH

12.4.1. CDFEM Element Death (Heat Flux)
12.4.1.1. Tri3

BEGIN SIERRA Aria

Title \$
1-d standard conduction problem, Carslaw and Jaeger P. 292\$

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER SOLVE_TEMPERATURE
BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 10000
RESIDUAL SCALING = RO
CONVERGENCE TOLERANCE = 1.000000e-14
END
END TPETRA EQUATION SOLVER
{else}
BEGIN Aztec EQUATION SOLVER solve_temperature
Solution Method = cg
Preconditioning Method = JACOBI
Maximum Iterations = 10000
Residual Norm Tolerance = le-14
Residual norm scaling = RO
END
{endif}

Begin Global Constants
Stefan Boltzmann Constant = 5.67e-8 # W/m~2-K~4
Ideal Gas Constant = 8.314 # J/mol-K
End

BEGIN ARIA MATERIAL solid
DENSITY = constant rho = 1.
Thermal Conductivity = constant k = 1.
Specific Heat = Constant cp = 1.0
Heat Conduction = basic
END ARIA MATERIAL solid

BEGIN FINITE ELEMENT MODEL VERIFY_DEATH
DATABASE NAME = input{N}_tri3.e
decomposition method = rcb
COORDINATE SYSTEM = CARTESIAN
DATABASE TYPE = EXODUSII
USE MATERIAL solid FOR block_1
USE MATERIAL solid FOR block_1_dead

END FINITE ELEMENT MODEL VERIFY_DEATH

Begin String Function exact_soln

Value Is "ln(sqrt(x*xx+y*y))*(1/1n(2-t))"

Gradient Is "(x/(x*x+y*xy))*(1/1n(2-t))" "(y/(x*x+y*y))*(1/1n(2-t))"
End

Begin String Function exact_src
Value Is "ln(sqrt(x*xx+y*y))*(-1/(1n(2-t)*1n(2-t)))*(1/(2-t))*(-1)"
End

# exact flux computed at interface (r=2-t)
Begin String Function exact_flux

Value Is "-1/((2-t)*1n(2-t))"
End
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# exact interface position (radial)

Begin String Function exact_interface
Value Is "2-t"

End

# radius function - evaluate r(x,y)
Begin String Function radius

Value Is "sqrt(xxx+y*y)"
End

Begin Norm Postprocessor 12
Volumes block_1
Use Function exact_soln
Subtract Function solution->TEMPERATURE
Compute Norms L2
Store In 12_err
End

Begin Norm Postprocessor hi
Volumes block_1
Use Function exact_soln
Subtract Function solution->TEMPERATURE
Compute Norms H1
Store In hl_err
End

Begin Norm Postprocessor linf
Volumes block_1
Use Function exact_soln
Subtract Function solution->TEMPERATURE
Compute Norms LInfinity
Store In linf_err
End

Begin Norm Postprocessor 12_interface
Surfaces surface_1 surface_block_1_death_by_temp
Use Function exact_interface
Subtract Function radius
Compute Norms L2
End

Begin Norm Postprocessor linf_interface
Surfaces surface_1 surface_block_1_death_by_temp
Use Function exact_interface
Subtract Function radius
Compute Norms Nodal LInfinity
Store In linf_interface_err
End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors{N}.dat
Floating Point Precision Is 6
Floating Point Format Is Fixed
End

Begin Procedure myProcedure

Begin Solution Control Description

Use System Main

Begin System Main
Simulation Start Time =
Simulation Termination Time =
Begin transient MySolveBlock

Advance myRegion

End

End

begin parameters for transient MySolveBlock

o o
© O
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start time = 0.0

begin parameters for aria region myRegion
initial time step size = {0.1%(0.5%*(N-1))}
Predictor-Corrector Tolerance = {0.05%(0.5*%x(N-1))}
Maximum Time Step Size = {0.2%(0.5%*(N-1))}
Time Integration Method = bdf2
time step variation = adaptive

end

end
End

Begin Aria Region myRegion

Use Finite Element Model VERIFY_DEATH
Begin CDFEM Death death_by_temp

add volume block_1

Criterion is solution->Temperature > 1.0
End
Use Linear Solver solve_temperature
nonlinear solution strategy = newton
maximum nonlinear iterations = 2
nonlinear correction tolerance =
nonlinear residual tolerance = 1.0e-12
nonlinear relaxation factor =1
use dof averaged nonlinear residual
eq energy for temperature on all_blocks using ql with lumped_mass diff src
IC Encore function on block_1 Temperature = exact_soln
BC Dirichlet for Temperature on surface_2 = encore_function name=exact_soln

SOURCE for Energy on block_1 = encore_function name=exact_src

BC Flux for Energy on surface_l = encore_function name=exact_flux
BC Flux for Energy on surface_block_1_death_by_temp = encore_function name=exact_flux

Output Number of Nodes

Evaluate Postprocessor 12
Evaluate Postprocessor hil
Evaluate Postprocessor linf

Evaluate Postprocessor 12_interface
Evaluate Postprocessor linf_interface

Begin Results Output Label diffusion output
database name = output{N}.e
at Step 0, Interval = {2*xN}
Nodal Variables = solution->temperature as TEMP
Nodal Variables = linf_interface_err
Element Variables = 12_err hl_err linf_err
End Results Output Label diffusion output

End Aria Region myRegion
End Procedure myProcedure

END SIERRA ARIA
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12.4.1.2. Tet4

BEGIN SIERRA Aria

Title \$
1-d standard conduction problem, Carslaw and Jaeger P. 292\$

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER SOLVE_TEMPERATURE
BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 10000
RESIDUAL SCALING = RO
CONVERGENCE TOLERANCE = 1.000000e-14
END
END TPETRA EQUATION SOLVER
{else}
BEGIN Aztec EQUATION SOLVER solve_temperature
Solution Method = cg
Preconditioning Method = JACOBI
Maximum Iterations = 10000
Residual Norm Tolerance = le-14
Residual norm scaling = RO
END
{endif}

Begin Global Constants
Stefan Boltzmann Constant = 5.67e-8 # W/m~2-K~4
Ideal Gas Constant = 8.314 # J/mol-K
End

BEGIN ARIA MATERIAL solid
DENSITY = constant rho = 1.
Thermal Conductivity = constant k = 1.
Specific Heat = Constant cp = 1.0
Heat Conduction = basic
END ARIA MATERIAL solid

BEGIN FINITE ELEMENT MODEL VERIFY_DEATH
DATABASE NAME = input{N}_tet4.e
decomposition method = rcb
COORDINATE SYSTEM = CARTESIAN
DATABASE TYPE = EXODUSII
USE MATERIAL solid FOR block_1
USE MATERIAL solid FOR block_1_dead

END FINITE ELEMENT MODEL VERIFY_DEATH

Begin String Function exact_soln

Value Is "(1+t)/sqrt(xxx+y*y+z*z)"

Gradient Is "(1+t)*(-1/(x*x+y*y+z*z))*(x/sqrt(xxx+y*y+zxz))" "(1+t)*(-1/ (x*xx+y*y+z*z))*(y/sqrt (x*xx+y*xy+z*z))" " (1+t)*(-1/ (x*x-
End

Begin String Function exact_src
Value Is "1/sqrt(x*x+yxy+z*z)"
End

# exact flux computed at interface (r=2-t)
Begin String Function exact_flux

Value Is "-1/(1+t)"

###Value Is "-(1+t)" ### for verification of case with no element death
End

# exact interface position (radial)

Begin String Function exact_interface
Value Is "1+t"

End
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# radius function - evaluate r(x,y)
Begin String Function radius

Value Is "sqrt(x*x+y*y+zxz)"
End

Begin Norm Postprocessor 12
Volumes block_1
Use Function exact_soln
Subtract Function solution->TEMPERATURE
Compute Norms L2
Store In 12_err
End

Begin Norm Postprocessor hil
Volumes block_1
Use Function exact_soln
Subtract Function solution->TEMPERATURE
Compute Norms H1
Store In hl_err
End

Begin Norm Postprocessor linf
Volumes block_1
Use Function exact_soln
Subtract Function solution->TEMPERATURE
Compute Norms LInfinity
Store In linf_err
End

Begin Norm Postprocessor 12_interface
Surfaces surface_1 surface_block_1_death_by_temp
Use Function exact_interface
Subtract Function radius
Compute Norms L2
End

Begin Norm Postprocessor linf_interface
Surfaces surface_1 surface_block_1_death_by_temp
Use Function exact_interface
Subtract Function radius
Compute Norms Nodal LInfinity
Store In linf_interface_err
End

Begin Postprocessor Output Control pp_out
Comment Character Is 7%
Write To File errors{N}.dat
Floating Point Precision Is 6
Floating Point Format Is Fixed
End

Begin Procedure myProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Simulation Start Time =
Simulation Termination Time
Begin transient MySolveBlock
Advance myRegion
End
End
begin parameters for transient MySolveBlock
start time = 0.0
begin parameters for aria region myRegion
initial time step size = {0.1%(0.5%*(N-1))}
Predictor-Corrector Tolerance = {0.05%(0.5%x(N-1))}

o o
~N O
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Maximum Time Step Size = {0.2%(0.5%*(N-1))}
Time Integration Method = bdf2
time step variation = adaptive
end
end
End

Begin Aria Region myRegion
Use Finite Element Model VERIFY_DEATH
Begin CDFEM Death death_by_temp
add volume block_1
Criterion is solution->Temperature > 1.0
End

Use Linear Solver solve_temperature

nonlinear solution strategy = newton
maximum nonlinear iterations = 2

nonlinear correction tolerance = 1.0e-12
nonlinear residual tolerance = 1.0e-12
nonlinear relaxation factor = 1.0

use dof averaged nonlinear residual

eq energy for temperature on all_blocks using ql with lumped_mass diff src
IC Encore function on block_1 Temperature = exact_soln

BC Dirichlet for Temperature on surface_2 = encore_function name=exact_soln
SOURCE for Energy on block_1 = encore_function name=exact_src

BC Flux for Energy on surface_1 = encore_function name=exact_flux
BC Flux for Energy on surface_block_1_death_by_temp = encore_function name=exact_flux

Output Number of Nodes
Evaluate Postprocessor 12
Evaluate Postprocessor hil

Evaluate Postprocessor linf

Evaluate Postprocessor 12_interface
Evaluate Postprocessor linf_interface

Begin Results Output Label diffusion output
database name = output{N}.e
at Step O, Interval = {2x*N}
Nodal Variables = solution->temperature as TEMP
Nodal Variables = linf_interface_err
Element Variables = 12_err hl_err linf_err

End Results Output Label diffusion output

End Aria Region myRegion

End Procedure myProcedure

END SIERRA ARIA

12.4.2. 3D Spherical Shell Enclosure
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12.5. TIME INTEGRATION

12.5.1. Adaptive Time Integration
12.5.1.1. First Order Fixed

BEGIN SIERRA myJob

BEGIN ARIA MATERIAL Kryptonite

Density = Polynomial Variable=Temperature Order=1 CO=1 C1=0.1
Thermal Conductivity = Polynomial Variable=Temperature Order=1 CO=1 C1=0.1

Specific Heat Constant cp=1
heat conduction = basic
END ARIA MATERIAL Kryptonite

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN SUPERLU SOLVER
END
END TPETRA EQUATION SOLVER
{else}
Begin Trilinos Equation Solver Direct_Solver
Solution Method = amesos-superlu
End
{endif}

BEGIN FINITE ELEMENT MODEL cube
database name = square_h{N}_tri3.e
coordinate system is cartesian

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite
END PARAMETERS FOR BLOCK block_1

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./somefunc.so Using Function registerExactSoln
End

Begin User Function exact_soln_dot
Load From File ./somefunc.so Using Function registerExactSolnDot
End

Begin User Function exact_src
Load From File ./somefunc.so Using Function registerExactSrc
End

Begin Norm Postprocessor 12
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor 12_dot
Use Function exact_soln_dot
Subtract Function time_derivative_at_time->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor hi
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1

End
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Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity

End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors_1st_ord_fixed_h{N}.dat
Floating Point Precision Is 4
Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Transient The_Time_Block
Advance myRegion
End
Simulation Start Time = 0
Simulation Termination Time = 1
End
Begin Parameters For Transient The_Time_Block
Begin Parameters For Aria Region myRegion
Initial Time Step Size = {0.1/2%*N}
Time Integration Method = First_Order
Time Step Variation = fixed
End
End
End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Direct_Solver

IC Encore Function on block_1 temperature = exact_soln

BC dirichlet for Temperature at surface_l1 = Encore_Function
BC dirichlet for Temperature at surface_2 = Encore_Function
Encore_Function
BC dirichlet for Temperature at surface_4 = Encore_Function

BC dirichlet for Temperature at surface_3

EQ ENERGY for TEMPERATURE on block_1 using Q1 with MASS DIFF SRC

Source For ENERGY on block_1 = Encore_Scalar_Function Name=exact_src

Output Number of TimeSteps

Evaluate Postprocessor 12
Evaluate Postprocessor 12_dot
Evaluate Postprocessor hil
Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = aria_1lst_ord_fixed_h{N}.e
at step 0, increment = 1
# time interval is 1.0
title Aria cube test
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nodal variables = nonlinear_solution->TEMPERATURE as T
nodal variables = time_derivative_at_time->TEMPERATURE as TDOT
END RESULTS OUTPUT LABEL diffusion output
END ARIA REGION myRegion
END PROCEDURE myAriaProcedure

END SIERRA myJob

12.5.1.2. First Order Adaptive

BEGIN SIERRA myJob

BEGIN ARIA MATERIAL Kryptonite

Density = Polynomial Variable=Temperature Order=1 CO=1 C1=0.1
Thermal Conductivity = Polynomial Variable=Temperature Order=1 CO=1 C1=0.1
Specific Heat = Constant cp=1

heat conduction = basic

END ARIA MATERIAL Kryptonite

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN SUPERLU SOLVER
END
END TPETRA EQUATION SOLVER
{else}
Begin Trilinos Equation Solver Direct_Solver
Solution Method = amesos-superlu
End
{endif}

BEGIN FINITE ELEMENT MODEL cube
database name = square_h{N}_tri3.e
coordinate system is cartesian

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite
END PARAMETERS FOR BLOCK block_1

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./somefunc.so Using Function registerExactSoln
End

Begin User Function exact_soln_dot
Load From File ./somefunc.so Using Function registerExactSolnDot
End

Begin User Function exact_src
Load From File ./somefunc.so Using Function registerExactSrc
End

Begin Norm Postprocessor 12
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor 12_dot
Use Function exact_soln_dot
Subtract Function time_derivative_at_time->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor hil
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Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity

End

Begin Postprocessor Output Control pp_out
Comment Character Is 7%
Write To File errors_1st_ord_adapt_h{N}.dat
Floating Point Precision Is 4
Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Transient The_Time_Block
Advance myRegion
End
Simulation Start Time = O
Simulation Termination Time = 1
End
Begin Parameters For Transient The_Time_Block
Begin Parameters For Aria Region myRegion
Initial Time Step Size = {0.1/2%*N}
Predictor-Corrector Tolerance = {le-1/4x**N}
Maximum Time Step Size = {0.5/2%xN}
Time Integration Method = First_Order
Time Step Variation = adaptive
End
End
End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Direct_Solver

IC Encore Function on block_1 temperature = exact_soln
BC dirichlet for Temperature at surface_1 = Encore_Function Name=exact_soln
BC dirichlet for Temperature at surface_2 = Encore_Function Name=exact_soln
BC dirichlet for Temperature at surface_3 = Encore_Function Name=exact_soln
BC dirichlet for Temperature at surface_4 = Encore_Function Name=exact_soln

EQ ENERGY for TEMPERATURE on block_1 using Q1 with MASS DIFF SRC

Source For ENERGY on block_1 = Encore_Scalar_Function Name=exact_src

Output Number of TimeSteps
Evaluate Postprocessor 12

Evaluate Postprocessor 12_dot
Evaluate Postprocessor hil
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Evaluate Postprocessor linf
BEGIN RESULTS OUTPUT LABEL diffusion output

database Name = aria_1st_ord_adapt_h{N}.e

at step O, increment = 1

# time interval is 1.0

title Aria cube test

nodal variables = nonlinear_solution->TEMPERATURE as T

nodal variables = time_derivative_at_time->TEMPERATURE as TDOT
END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion
END PROCEDURE myAriaProcedure

END SIERRA myJob

12.5.1.3. Second Order Fixed

BEGIN SIERRA myJob

BEGIN ARIA MATERIAL Kryptonite

Density = Polynomial Variable=Temperature Order=1 CO=1 C1=0.1
Thermal Conductivity = Polynomial Variable=Temperature Order=1 CO=1 C1=0.1
Specific Heat = Constant cp=1

heat conduction = basic

END ARIA MATERIAL Kryptonite
load user plugin file ./somefunc.so

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN SUPERLU SOLVER
END
END TPETRA EQUATION SOLVER
{else}
Begin Trilinos Equation Solver Direct_Solver
Solution Method = amesos-superlu
End
{endif}

BEGIN FINITE ELEMENT MODEL cube
database name = square_h{N}_tri3.e
coordinate system is cartesian

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite
END PARAMETERS FOR BLOCK block_1

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./somefunc.so Using Function registerExactSoln
End

Begin User Function exact_soln_dot
Load From File ./somefunc.so Using Function registerExactSolnDot
End

Begin User Function exact_src
Load From File ./somefunc.so Using Function registerExactSrc
End

Begin Norm Postprocessor 12
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2
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End

Begin Norm Postprocessor 12_dot
Use Function exact_soln_dot

Subtract Function time_derivative_at_time->TEMPERATURE

Compute Norms L2
End

Begin Norm Postprocessor hil
Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms H1
End

Begin Norm Postprocessor linf
Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms LInfinity
End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors_2nd_ord_fixed_h{N}.dat
Floating Point Precision Is 4
Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Transient The_Time_Block
Advance myRegion
End
Simulation Start Time = 0
Simulation Termination Time = 1
End
Begin Parameters For Transient The_Time_Block
Begin Parameters For Aria Region myRegion
Initial Time Step Size = {0.1/2%*N}
Time Integration Method = Second_Order
Time Step Variation = fixed
End
End
End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Direct_Solver

IC Encore Function on block_1 temperature

BC dirichlet for Temperature at surface_1
BC dirichlet for Temperature at surface_2
BC dirichlet for Temperature at surface_3
BC dirichlet for Temperature at surface_4

exact_soln

Encore_Function Name=exact_soln
Encore_Function Name=exact_soln
Encore_Function Name=exact_soln
Encore_Function Name=exact_soln

EQ ENERGY for TEMPERATURE on block_1 using Q1 with MASS DIFF SRC
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Source For ENERGY on block_1 = Encore_Scalar_Function Name=exact_src

Output Number of TimeSteps

Evaluate Postprocessor
Evaluate Postprocessor
Evaluate Postprocessor
Evaluate Postprocessor

12
12_dot
hi
linf

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = aria_2nd_ord_fixed_h{N}.e

at step O, increment

= 1

# time interval is 1.0

title Aria cube test

nodal variables = nonlinear_solution->TEMPERATURE as T
nodal variables = time_derivative_at_time->TEMPERATURE as TDOT
END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion

END PROCEDURE myAriaProcedure

END SIERRA myJob

12.5.1.4. Second Order Adaptive

BEGIN SIERRA myJob

BEGIN ARIA MATERIAL Kryptonite

Density

= Polynomial Variable=Temperature Order=1 CO=1 C1=0.1

Thermal Conductivity = Polynomial Variable=Temperature Order=1 CO=1 C1=0.1

Specific Heat
heat conduction

= Constant cp=1
= basic

END ARIA MATERIAL Kryptonite

{if (useTpetra)}

BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN SUPERLU SOLVER

END

END TPETRA EQUATION SOLVER

{else}

Begin Trilinos Equation Solver Direct_Solver

Solution Method =

End
{endif}

amesos-superlu

BEGIN FINITE ELEMENT MODEL cube
database name = square_h{N}_tri3.e
coordinate system is cartesian

BEGIN PARAMETERS FOR BLOCK block_1

material Kryptonite

END PARAMETERS FOR BLOCK block_1

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./somefunc.so Using Function registerExactSoln

End

Begin User Function exact_soln_dot
Load From File ./somefunc.so Using Function registerExactSolnDot

End

Begin User Function exact_src
Load From File ./somefunc.so Using Function registerExactSrc

End
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Begin Norm Postprocessor 12
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor 12_dot
Use Function exact_soln_dot
Subtract Function time_derivative_at_time->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor hil
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity

End

Begin Postprocessor Output Control pp_out
Comment Character Is 7%
Write To File errors_2nd_ord_adapt_h{N}.dat
Floating Point Precision Is 4
Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Transient The_Time_Block
Advance myRegion
End
Simulation Start Time = 0
Simulation Termination Time = 1
End
Begin Parameters For Transient The_Time_Block
Begin Parameters For Aria Region myRegion
Initial Time Step Size = {0.1/2%*N}
Predictor-Corrector Tolerance = {le-1/4x**N}
Maximum Time Step Size = {0.5/2%*N}
Time Integration Method = Second_Order
Time Step Variation = adaptive
End
End
End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Direct_Solver

IC Encore Function on block_1 temperature = exact_soln
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BC dirichlet for Temperature at surface_1 = Encore_Function Name=exact_soln
BC dirichlet for Temperature at surface_2 = Encore_Function Name=exact_soln
BC dirichlet for Temperature at surface_3 = Encore_Function Name=exact_soln
BC dirichlet for Temperature at surface_4 = Encore_Function Name=exact_soln

EQ ENERGY for TEMPERATURE on block_1 using Q1 with MASS DIFF SRC

Source For ENERGY on block_1 = Encore_Scalar_Function Name=exact_src

Output Number of TimeSteps

Evaluate Postprocessor 12

Evaluate Postprocessor 12_dot

Evaluate Postprocessor hil

Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = aria_2nd_ord_adapt_h{N}.e

at step 0, increment

# time interval is 1.0

title Aria cube test

1

nodal variables = nonlinear_solution->TEMPERATURE as T
nodal variables = time_derivative_at_time->TEMPERATURE as TDOT

END RESULTS OUTPUT LABEL

diffusion output

END ARIA REGION myRegion

END PROCEDURE myAriaProcedure

END SIERRA myJob

12.5.1.5. BDF2 Fixed

BEGIN SIERRA myJob

BEGIN ARIA MATERIAL Kryptonite

Density

Thermal Conductivity
Specific Heat

heat conduction

= Polynomial Variable=Temperature Order=1 CO=1 C1=0.1
= Polynomial Variable=Temperature Order=1 CO=1 C1=0.1
= Constant cp=1

= basic

END ARIA MATERIAL Kryptonite

{if (useTpetra)}
BEGIN TPETRA EQUATION

SOLVER DIRECT_SOLVER

BEGIN SUPERLU SOLVER

END

END TPETRA EQUATION SOLVER

{else}

Begin Trilinos Equation Solver Direct_Solver
Solution Method = amesos-superlu

End
{endif}

BEGIN FINITE ELEMENT MODEL cube
database name = square_h{N}_tri3.e
coordinate system is cartesian

BEGIN PARAMETERS FOR BLOCK block_1

material Kryptonite

END PARAMETERS FOR BLOCK block_1

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./somefunc.so Using Function registerExactSoln

End
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Begin User Function exact_soln_dot
Load From File ./somefunc.so Using Function registerExactSolnDot
End

Begin User Function exact_src
Load From File ./somefunc.so Using Function registerExactSrc
End

Begin Norm Postprocessor 12
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor 12_dot
Use Function exact_soln_dot
Subtract Function time_derivative_at_time->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor hil
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity

End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors_bdf2_fixed_h{N}.dat
Floating Point Precision Is 4
Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Transient The_Time_Block
Advance myRegion
End
Simulation Start Time = 0
Simulation Termination Time = 1
End
Begin Parameters For Transient The_Time_Block
Begin Parameters For Aria Region myRegion
Initial Time Step Size = {0.1/2%*N}
Time Integration Method = BDF2
Time Step Variation = fixed
End
End
End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual
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use finite element model cube
Use Linear Solver Direct_Solver

IC Encore Function

on block_1 temperature = exact_soln

BC dirichlet for Temperature at surface_l = Encore_Function Name=exact_soln
BC dirichlet for Temperature at surface_2 = Encore_Function Name=exact_soln
BC dirichlet for Temperature at surface_3 = Encore_Function Name=exact_soln
BC dirichlet for Temperature at surface_4 = Encore_Function Name=exact_soln

EQ ENERGY for TEMPERATURE on block_1 using Q1 with MASS DIFF SRC

Source For ENERGY on block_

1 = Encore_Scalar_Function Name=exact_src

Output Number of TimeSteps

Evaluate Postprocessor 12

Evaluate Postprocessor 12_dot

Evaluate Postprocessor hil

Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL

diffusion output

database Name = aria_bdf2_fixed_h{N}.e

at step O, increment =
# time interval is 1.0
title Aria cube test

nodal variables = nonlinear_solution->TEMPERATURE as T
nodal variables = time_derivative_at_time->TEMPERATURE as TDOT
END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion

END PROCEDURE myAriaProcedure

END SIERRA myJob

12.5.1.6. BDF2 Adaptive

BEGIN SIERRA myJob

BEGIN ARIA MATERIAL Kryptonite

Density =
Thermal Conductivity =
Specific Heat
heat conduction =

I

Polynomial Variable=Temperature Order=1 CO=1 C1=0.1
Polynomial Variable=Temperature Order=1 CO=1 C1=0.1
Constant cp=1

basic

END ARIA MATERIAL Kryptonite

{if (useTpetra)}

BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN SUPERLU SOLVER
END

END TPETRA EQUATION SOLVER

{else}
Begin Trilinos Equation

Solver Direct_Solver

Solution Method = amesos-superlu

End
{endif}

BEGIN FINITE ELEMENT MODEL cube
database name = square_h{N}_tri3.e
coordinate system is cartesian

BEGIN PARAMETERS FOR BLOCK block_1

material Kryptonite

END PARAMETERS FOR BLOCK block_1

END FINITE ELEMENT MODEL

cube
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Begin User Function exact_soln
Load From File ./somefunc.so Using Function registerExactSoln
End

Begin User Function exact_soln_dot
Load From File ./somefunc.so Using Function registerExactSolnDot
End

Begin User Function exact_src
Load From File ./somefunc.so Using Function registerExactSrc
End

Begin Norm Postprocessor 12
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor 12_dot
Use Function exact_soln_dot
Subtract Function time_derivative_at_time->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor hil
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity

End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors_bdf2_adapt_h{N}.dat
Floating Point Precision Is 4
Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Transient The_Time_Block
Advance myRegion
End
Simulation Start Time = 0
Simulation Termination Time = 1
End
Begin Parameters For Transient The_Time_Block
Begin Parameters For Aria Region myRegion
Initial Time Step Size = {0.1/2%*N}
Predictor-Corrector Tolerance = {le-1/4x*N}
Maximum Time Step Size = {0.5/2%xN}
Time Integration Method = BDF2
Time Step Variation = adaptive
End
End
End

BEGIN ARIA REGION myRegion
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Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Direct_Solver

IC Encore Function on block_1 temperature

BC dirichlet for Temperature at surface_1
BC dirichlet for Temperature at surface_2
BC dirichlet for Temperature at surface_3
BC dirichlet for Temperature at surface_4

exact_soln

Encore_Function
Encore_Function
Encore_Function
Encore_Function

EQ ENERGY for TEMPERATURE on block_1 using Q1 with MASS DIFF SRC

Source For ENERGY on block_1 = Encore_Scalar_Function Name=exact_src

Output Number of TimeSteps

Evaluate Postprocessor 12
Evaluate Postprocessor 12_dot
Evaluate Postprocessor hil
Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = aria_bdf2_adapt_h{N}.e
at step O, increment = 1
# time interval is 1.0
title Aria cube test

nodal variables = nonlinear_solution->TEMPERATURE as T
nodal variables = time_derivative_at_time->TEMPERATURE as TDOT

END RESULTS OUTPUT LABEL diffusion output
END ARIA REGION myRegion
END PROCEDURE myAriaProcedure

END SIERRA myJob
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12.6. ENCLOSURE RADIATION

12.6.1. 2D Cylindrical Shell Enclosure

BEGIN SIERRA Aria
Title Verification for two concentric spheres with radiation gap between them

Begin Global Constants
Stefan Boltzmann constant = 5.6704E-8
End Global Constants

Begin Aria Material inner
Heat conduction = Basic
Density = constant rho = 1.0
Specific heat = constant cp = 1.0
Thermal conductivity = constant k = 2.0
End Aria Material inner

Begin Aria Material outer
Heat conduction = Basic
Density = constant rho = 1.0
Specific heat = constant cp = 1.0
Thermal conductivity = constant k = 0.35
End Aria Material outer

Begin User Function exact_soln
Load From File ./exact.so Using Function registerExactSoln
End

Begin Norm Postprocessor 12
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor hl
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity

End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific
End

Begin Finite Element Model VERIFY_RAD_GAP
Database name = input{N}.g
Coordinate System = Cartesian
Database Type = EXODUSII
Begin Parameters for Block block_1
Material inner
End
Begin Parameters for Block block_2
Material outer
End
End Finite Element Model VERIFY_RAD_GAP
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{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER SOLVE_TEMPERATURE
BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = RHS
CONVERGENCE TOLERANCE = 1.000000e-14
END
END TPETRA EQUATION SOLVER
{else}
BEGIN Aztec Equation Solver solve_temperature
Solution Method = cg
Preconditioning Method = jacobi
Maximum Iterations = 1000
Residual Norm Tolerance = 1.0e-14
Residual Norm Scaling = RHS
END
{endif}

Begin Procedure myProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Sequential Steady
Advance myRegion
End
End
End

Begin Aria Region myRegion

Use Finite Element Model VERIFY_RAD_GAP
Use Linear Solver solve_temperature

Nonlinear Solution Strategy = Newton
maximum nonlinear iterations = 1000
nonlinear residual tolerance = 1.0e-10
nonlinear relaxation factor = 1.0

EQ energy for Temperature for all_volumes using Q1 with Diff
IC const for all_volumes Temperature = 300.0

BC const Dirichlet at surface_1 Temperature = 300.0

BC const Dirichlet at surface_4 Temperature = 1300.0

Output Number of Nodes
Evaluate Postprocessor 12
Evaluate Postprocessor linf
Evaluate Postprocessor hil

begin enclosure definition sph_shell
add surface surface_2
add surface surface_3
blocking surfaces
use viewfactor calculation vf_calc
use viewfactor smoothing vf_smooth
use radiosity solver rad_solver

# enclosure id =1

emissivity = 0.50 on surface_2
emissivity = 0.80 on surface_3

end enclosure definition sph_shell

begin viewfactor calculation vf_calc
bsp tree max depth = O and min list length = 25
compute rule = hemicube
geometric tolerance = 1.0E-6
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hemicube max subdivides =5

hemicube min separation = 5.0
hemicube resolution = 500

# check rowsum with tolerance = .001
output rule = verbose

end viewfactor calculation vf_calc

begin viewfactor smoothing vf_smooth
convergence tolerance = 1.0E-10

method = least-squares
weight power =2

maximum iterations = 150
reciprocity rule = average
output rule = verbose

end viewfactor smoothing vf_smooth

begin radiosity solver rad_solver

coupling = mason

solver = chaparral gmres
convergence tolerance = 1.0E-8

maximum iterations = 800

output rule = verbose
end radiosity solver rad_solver

Begin Results Output Label diffusion output
database name = output{N}.e
at Step O, increment = 1
Nodal Variables = solution->temperature as TEMP
End Results Output Label diffusion output

End Aria Region myRegion
End Procedure myProcedure

END SIERRA Aria

12.6.2. 2D Annular Enclosure

BEGIN SIERRA Aria
Title Verification for two concentric spheres with radiation gap between them

Begin Global Constants
Stefan Boltzmann constant = 5.6704E-8
End Global Constants

Begin Aria Material inner

Heat conduction = Basic

Thermal conductivity = constant k = 1.0
End Aria Material inner

Begin User Function exact_soln
Load From File ./exact.so Using Function registerExactSoln
End

Begin User Function exact_src
Load From File ./exact.so Using Function registerExactSrc
End

Begin User Function flux_surface_1
Load From File ./exact.so Using Function registerExactFlux
End

Begin User Function exact_radiosity

Load From File ./exact.so Using Function registerExactRadiosity
End
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Begin User Function exact_irradiance
Load From File ./exact.so Using Function registerExactIrradiance
End

Begin Field Function radiosity
Use Edge Field radiosity As Value
End

Begin Field Function irradiance
Use Edge Field irradiance As Value
End

Begin Field Function rad_flux
Use Edge Field rad_flux As Value
End

Begin Norm Postprocessor 12
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2
Store In 12_err
End

Begin Norm Postprocessor hl
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1
Store In hl_err
End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity
Store In linf_err
End

Begin Norm Postprocessor 12_radiosity
Surfaces surface_1
Use Function exact_radiosity
Subtract Function radiosity
Compute Norms L2
Store In 12_radiosity_err

End

Begin Norm Postprocessor 12_irradiance
Surfaces surface_1
Use Function exact_irradiance
Subtract Function irradiance
Compute Norms L2
Store In 12_irradiance_err

End

Begin Norm Postprocessor 12_heatflux
Surfaces surface_1
Use Function flux_surface_1
Subtract Function rad_flux
Compute Norms L2
Store In 12_heatflux_err

End

Begin Postprocessor Output Control pp_out
Comment Character Is 7%
Write To File errors{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific
End
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Begin Finite Element Model VERIFY_RAD_GAP
Database name = annulus_crack_h{N}_tri3.e
Coordinate System = Cartesian
decomposition method = rcb
Database Type = EXODUSII
Begin Parameters for Block block_1

Material inner
End
End Finite Element Model VERIFY_RAD_GAP

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER SOLVE_TEMPERATURE
BEGIN BICGSTAB SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = RHS
CONVERGENCE TOLERANCE = 1.000000e-14
END
END TPETRA EQUATION SOLVER
{else}
BEGIN Aztec Equation Solver solve_temperature
Solution Method = bicgstab
Preconditioning Method = jacobi
Maximum Iterations = 1000
Residual Norm Tolerance = 1.0e-14
Residual Norm Scaling = RHS
END
{endif}

Begin Procedure myProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Sequential Steady
Advance myRegion
End
End
End

Begin Aria Region myRegion

Use Finite Element Model VERIFY_RAD_GAP
Use Linear Solver solve_temperature

Nonlinear Solution Strategy = Newton
maximum nonlinear iterations = 1000
nonlinear residual tolerance = 1.0e-10
nonlinear correction tolerance = 1.0e-10
nonlinear relaxation factor = 1.0

EQ energy for Temperature for all_volumes using Q1 with Diff Src
IC const for all_volumes Temperature = 600.0

Source For ENERGY on block_1 = Encore_Function Name=exact_src
BC dirichlet for Temperature at surface_2 = Encore_Function Name=exact_soln

BC dirichlet for Temperature at surface_3 = Encore_Function Name=exact_soln
BC dirichlet for Temperature at surface_4 = Encore_Function Name=exact_soln

Output Number of Nodes
Evaluate Postprocessor 12

Evaluate Postprocessor hil
Evaluate Postprocessor linf
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Evaluate Postprocessor 12_radiosity
Evaluate Postprocessor 12_irradiance
#Evaluate Postprocessor 12_heatflux

Interpolate Function Value of exact_soln Into Nodal Field Tex
Interpolate Function Value of exact_src Into Nodal Field Src

Begin Results Output Label diffusion output
database name = output{N}.e
at Step 1, increment = 1
Nodal Variables = solution->temperature as TEMP
Nodal Variables = Tex linf_err Src
Element Variables = 12_err hl_err TGrad linf_err
edge variables = radiosity as J
edge variables = rad_flux as q
edge variables = irradiance as I
edge variables = 12_radiosity_err
edge variables = 12_irradiance_err
edge variables = 12_heatflux_err
End Results Output Label diffusion output

# TODO: remove this boundary condition
# # DEBUG
# BC dirichlet for Temperature at surface_l1 = Encore_Function Name=exact_soln

# TODO: remove this boundary condition
# # DEBUG
# BC FLUX for Energy on surface_l = Encore_Function Name=flux_surface_1

# TODO: un-comment the enclosure BC

begin enclosure definition sph_shell
add surface surface_1
nonblocking surfaces
use viewfactor calculation vf_calc_pairwise #vf_calc_hemicube #
use viewfactor smoothing vf_smooth
use radiosity solver rad_solver
emissivity = 0.9 on surface_1
Database Name is enc{N}.vf in pnetcdf format
disable parallel redistribution

end

begin viewfactor calculation vf_calc_hemicube
compute rule = hemicube
geometric tolerance {0.5%0.5%xN}

hemicube max subdivides = {2%(2%*N)}
hemicube min separation = 5.0

hemicube resolution = {100*(2**N) }
output rule = verbose

end

begin viewfactor calculation vf_calc_pairwise
compute rule = pairwise
geometric tolerance {0.5%0.5x*N}
output rule = verbose
Pairwise Monte Carlo Sample Rule = Halton
Pairwise Monte Carlo Toll = 1le-5
Pairwise Monte Carlo Tol2 = le-5
Pairwise Number Of Visibility Samples = 1
Pairwise Visibility Sample Rule = Uniform
end

begin viewfactor smoothing vf_smooth
convergence tolerance = 1.0E-10

method = least-squares
weight power =2

maximum iterations = {150% (2*xN) }
reciprocity rule = average
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output rule = verbose
end viewfactor smoothing vf_smooth

begin radiosity solver rad_solver
coupling = mason
solver = chaparral gmres
convergence tolerance = 1.0E-11
maximum iterations {150 (2%*N) }
output rule = none

end radiosity solver rad_solver

End Aria Region myRegion
End Procedure myProcedure

END SIERRA Aria

12.6.3. 3D Spherical Shell Enclosure

12.6.4. 3D Spherical Shell Partial Enclosure

BEGIN SIERRA Aria
Title Verification for two concentric spheres with radiation gap between them
load user plugin file ./exact.so

Begin Global Constants
Stefan Boltzmann constant = 5.6704E-8
End Global Constants

Begin Aria Material inner
Heat conduction = Basic
Density = constant rho = 1.0
Specific heat = constant cp = 1.0
Thermal conductivity = constant k = 2.0
emissivity = constant e = 0.50

End Aria Material inner

Begin Aria Material outer
Heat conduction = Basic
Density = constant rho = 1.0
Specific heat = constant cp = 1.0
Thermal conductivity = constant k = 0.35
emissivity = constant e = 0.80

End Aria Material outer

Begin User Function exact_soln
Load From File ./exact.so Using Function registerExactSoln
End

Begin Norm Postprocessor 12
Use Function exact_soln
Volumes block_1 block_2
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2
Store In 12_err
End

Begin Norm Postprocessor hil
Use Function exact_soln
Volumes block_1 block_2
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1
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Store In hl_err
End

Begin Norm Postprocessor linf
Use Function exact_soln
Volumes block_1 block_2
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity
Store In linf_err
End

Begin Postprocessor Output Control pp_out
Comment Character Is 7%
Write To File errors{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific
End

BEGIN Field Function numerical_solution
USE NODAL FIELD solution->TEMPERATURE
END Field Function numerical_solution

BEGIN Difference Function temp_error
Difference is exact_soln - numerical_solution
END Difference Function temp_error

Begin Finite Element Model VERIFY_RAD_GAP
Database name = sphere_cutout_h{N}.g
Coordinate System = Cartesian
Database Type = EXODUSII
Begin Parameters for Block block_1

Material inner
End
Begin Parameters for Block block_2
Material outer
End
End Finite Element Model VERIFY_RAD_GAP

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER SOLVE_TEMPERATURE
BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = RHS
CONVERGENCE TOLERANCE = 1.000000e-10
END
END TPETRA EQUATION SOLVER
{else}
BEGIN Aztec Equation Solver solve_temperature
Solution Method = cg
Preconditioning Method = jacobi
Maximum Iterations = 1000
Residual Norm Tolerance = 1.0e-10
Residual Norm Scaling = RHS
END
{endif}

Begin Procedure myProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Sequential Steady
Advance myRegion
End
End
End
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Begin Aria Region myRegion

Use Finite Element Model VERIFY_RAD_GAP
Use Linear Solver solve_temperature

Nonlinear Solution Strategy = Newton
maximum nonlinear iterations = 1000
nonlinear residual tolerance = 1.0e-8
nonlinear correction tolerance = 1.0e-8
nonlinear relaxation factor = 1.0

EQ energy for Temperature for all_volumes using Q1 with Diff

IC const for all_volumes Temperature = 300.0

BC const Dirichlet at surface_1 Temperature = 300.0

BC const Dirichlet at surface_4 Temperature = 1300.0

BC Dirichlet for Temperature on surface_b5 = encore_function name=exact_soln

Output Number of Nodes

Evaluate Postprocessor 12
Evaluate Postprocessor linf
Evaluate Postprocessor hil

interpolate function value of exact_soln into nodal field analytic_temp on volumes block_1 block_2
Interpolate Function Value of temp_error into nodal field temp_error on volumes block_1 block_2

begin enclosure definition sph_shell
add surface surface_2
add surface surface_3
blocking surfaces
use viewfactor calculation vf_calc
use viewfactor smoothing vf_smooth
use radiosity solver rad_solver
emissivity = 0.50 on surface_2
emissivity = 0.80 on surface_3
Partial Enclosure Emissivity = 0.8
Partial Enclosure Area = {2.0%PIx0.03%(0.03-0.025)}
Partial Enclosure Temperature = 1035.02
end enclosure definition sph_shell

begin viewfactor calculation vf_calc
bsp tree max depth = 0 and min list length = 25
compute rule = hemicube

geometric tolerance = 1.0E-10
hemicube max subdivides =5
hemicube min separation = 5.0
hemicube resolution = 500
check rowsum with tolerance = .001
output rule = verbose

end viewfactor calculation vf_calc
begin viewfactor smoothing vf_smooth
method = none

end viewfactor smoothing vf_smooth

begin radiosity solver rad_solver

coupling = mason

solver = chaparral gmres
convergence tolerance = 1.0E-9

maximum iterations = 80

output rule = summary

end radiosity solver rad_solver

Begin Results Output Label diffusion output
database name = output{N}.e
at Step 0, increment =1
Nodal Variables = solution->temperature as T
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nodal variables = analytic_temp

nodal variables = temp_error

element variables = hl_err 12_err linf_err
End Results Output Label diffusion output

End Aria Region myRegion
End Procedure myProcedure

END SIERRA Aria

12.6.5. Fully 2D Enclosure Radiation

BEGIN SIERRA Aria
Title Verification for two concentric spheres with radiation gap between them

Begin Global Constants
Stefan Boltzmann constant = 5.6704E-8
End Global Constants

Begin Aria Material inner

Heat conduction = Basic

Thermal conductivity = constant k = 1.0
End Aria Material inner

Begin User Function exact_soln
Load From File ./exact.so Using Function registerExactSoln
End

Begin User Function exact_src
Load From File ./exact.so Using Function registerExactSrc
End

Begin User Function flux_surface_1
Load From File ./exact.so Using Function registerExactFlux
End

Begin User Function exact_radiosity
Load From File ./exact.so Using Function registerExactRadiosity
End

Begin User Function exact_irradiance
Load From File ./exact.so Using Function registerExactIrradiance
End

Begin Field Function radiosity
Use Edge Field radiosity As Value
End

Begin Field Function irradiance
Use Edge Field irradiance As Value
End

Begin Field Function rad_flux
Use Edge Field rad_flux As Value
End

Begin Norm Postprocessor 12
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2
Store In 12_err
End

Begin Norm Postprocessor hi
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Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1
Store In hl_err
End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity
Store In linf_err
End

Begin Norm Postprocessor 12_radiosity
Surfaces surface_1
Use Function exact_radiosity
Subtract Function radiosity
Compute Norms L2
Store In 12_radiosity_err

End

Begin Norm Postprocessor 12_irradiance
Surfaces surface_1
Use Function exact_irradiance
Subtract Function irradiance
Compute Norms L2
Store In 12_irradiance_err

End

Begin Norm Postprocessor 12_heatflux
Surfaces surface_1
Use Function flux_surface_1
Subtract Function rad_flux
Compute Norms L2
Store In 12_heatflux_err

End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific
End

Begin Finite Element Model VERIFY_RAD_GAP
Database name = annulus_crack_h{N}_tri3.e
Coordinate System = Cartesian
decomposition method = rcb
Database Type = EXODUSII
Begin Parameters for Block block_1

Material inner
End
End Finite Element Model VERIFY_RAD_GAP

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER SOLVE_TEMPERATURE
BEGIN BICGSTAB SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = RHS
CONVERGENCE TOLERANCE = 1.000000e-14
END
END TPETRA EQUATION SOLVER
{else}
BEGIN Aztec Equation Solver solve_temperature
Solution Method = bicgstab
Preconditioning Method = jacobi
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Maximum Iterations = 1000
Residual Norm Tolerance = 1.0e-14
Residual Norm Scaling = RHS
END
{endif}

Begin Procedure myProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Sequential Steady
Advance myRegion
End
End
End

Begin Aria Region myRegion

Use Finite Element Model VERIFY_RAD_GAP
Use Linear Solver solve_temperature

Nonlinear Solution Strategy = Newton
maximum nonlinear iterations = 1000
nonlinear residual tolerance = 1.0e-10
nonlinear correction tolerance = 1.0e-10
nonlinear relaxation factor = 1.0

EQ energy for Temperature for all_volumes using Q1 with Diff Src
IC const for all_volumes Temperature = 600.0

Source For ENERGY on block_1 = Encore_Function Name=exact_src

BC dirichlet for Temperature at surface_2 = Encore_Function Name=exact_soln
BC dirichlet for Temperature at surface_3 = Encore_Function Name=exact_soln
BC dirichlet for Temperature at surface_4 = Encore_Function Name=exact_soln

Output Number of Nodes

Evaluate Postprocessor 12
Evaluate Postprocessor hil
Evaluate Postprocessor linf

Evaluate Postprocessor 12_radiosity
Evaluate Postprocessor 12_irradiance
#Evaluate Postprocessor 12_heatflux

Interpolate Function Value of exact_soln Into Nodal Field Tex
Interpolate Function Value of exact_src Into Nodal Field Src

Begin Results Output Label diffusion output
database name = output{N}.e
at Step 1, increment = 1
Nodal Variables = solution->temperature as TEMP
Nodal Variables = Tex linf_err Src
Element Variables = 12_err hl_err TGrad linf_err
edge variables = radiosity as J
edge variables = rad_flux as q
edge variables = irradiance as I
edge variables = 12_radiosity_err
edge variables = 12_irradiance_err
edge variables = 12_heatflux_err
End Results Output Label diffusion output

# TODO: remove this boundary condition

# # DEBUG
# BC dirichlet for Temperature at surface_l1 = Encore_Function Name=exact_soln
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# TODO: remove this boundary condition
# # DEBUG
# BC FLUX for Energy on surface_l = Encore_Function Name=flux_surface_1

# TODO: un-comment the enclosure BC

begin enclosure definition sph_shell
add surface surface_1
nonblocking surfaces
use viewfactor calculation vf_calc_pairwise #vf_calc_hemicube #
use viewfactor smoothing vf_smooth
use radiosity solver rad_solver
emissivity = 0.9 on surface_1
Database Name is enc{N}.vf in pnetcdf format
disable parallel redistribution

end

begin viewfactor calculation vf_calc_hemicube

compute rule = hemicube
geometric tolerance = {0.5%0.5*%*N}
hemicube max subdivides = {2x(2%*N) }
hemicube min separation = 5.0

hemicube resolution = {100% (2*%xN) }
output rule = verbose

end

begin viewfactor calculation vf_calc_pairwise
compute rule = pairwise
geometric tolerance {0.5%0.5%xN}
output rule = verbose
Pairwise Monte Carlo Sample Rule = Halton
Pairwise Monte Carlo Toll = 1le-5
Pairwise Monte Carlo Tol2 = le-5
Pairwise Number Of Visibility Samples = 1
Pairwise Visibility Sample Rule = Uniform
end

begin viewfactor smoothing vf_smooth
convergence tolerance = 1.0E-10

method = least-squares
weight power =12

maximum iterations = {150% (2*xN) }
reciprocity rule = average

output rule = verbose
end viewfactor smoothing vf_smooth

begin radiosity solver rad_solver

coupling = mason

solver = chaparral gmres
convergence tolerance = 1.0E-11
maximum iterations = {150%(2*xN)}
output rule = none

end radiosity solver rad_solver
End Aria Region myRegion
End Procedure myProcedure

END SIERRA Aria
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12.7. CHEMISTRY

12.7.1. First Order Reaction (Uniform Temperature)

12.7.2. First Order Reaction (Spatially Varying Temperature)

BEGIN SIERRA Aria
Title Verification Problem for Coupled Chemistry Diffusion
load user plugin file ./Exact_solution.so

Begin Field Function species
Use Quadrature Field species
Integration Order Is 2
Dimension Is 2

End

Begin User Function ufuncAB
Load From File ./Exact_solution.so Using Function registerExactSolnAB
End

Begin User Function ufuncT
Load From File ./Exact_solution.so Using Function registerExactSolnT
End

Begin User Function exact_src
Load From File ./Exact_solution.so Using Function registerExactSrc
End

Begin Postprocessor Output Control pp_out
Comment Character is %
Write To File errors{N}.dat

End

BEGIN Aria MATERIAL hmx
density = constant rho =1
specific heat = constant cp =1
heat conduction = basic
thermal conductivity = constant k =1
begin parameters for chemeq model hmx

number of reactions = 1

species names are A B
species phases are Condensed GAS

Condensed Fraction = 0.0
Steric Coefficients are 0.0
Log Preexponential Factors are 5
Activation Energies are 1000.0
Energy Releases are O # insure temperature stays const
Concentration Exponents for A are 1.0
Concentration Exponents for B are 0.0
Stoichiometric coefficients for A are -1.0
Stoichiometric coefficients for B are 1.0
end parameters for chemeq model hmx

end Aria MATERIAL hmx

BEGIN GLOBAL CONSTANTS
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Ideal Gas Constant = 1.9872 #CGS_cal
END GLOBAL CONSTANTS

BEGIN FINITE ELEMENT MODEL block
Database Name = input{N}.g
decomposition method = rcb
Use material hmx for block_1

END FINITE ELEMENT MODEL block

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER SOLVE_TEMPERATURE
BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-12
END
END TPETRA EQUATION SOLVER
{else}
BEGIN AZTEC EQUATION SOLVER solve_temperature
solution method = cg
preconditioning method = jacobi
maximum iterations = 1000
residual norm scaling = NONE
residual norm tolerance = 1.0E-12
END AZTEC EQUATION SOLVER solve_temperature
{endif}

BEGIN procedure myProcedure

begin solution control description
Use System Main
Begin System Main
Simulation Start Time =
Simulation Termination Time
Begin Transient time_block
advance myregion
End Transient time_block
End System Main

]
(>l o)
o o

BEGIN parameters for transient time_block
start time = 0.0
termination time = 0.04

BEGIN PARAMETERS FOR Aria REGION myRegion
time step variation = fixed
time integration method = second_order
initial time step size = {0.01%0.5x*(N-1)}
END PARAMETERS FOR Aria REGION myRegion
END parameters for transient time_block
end solution control description
begin aria region myRegion
Output Number 0f Nodes
Compute Difference L2 0f ufuncAB species
Compute Difference L2 0f ufuncT solution->temperature
Interpolate Function Value of ufuncAB Into Element Field AEX

EQ energy for temperature on all_blocks using Q1 with diff mass src

Source for Energy on block_1 = chemeq_heating MODEL = hmx
Source For ENERGY on block_1 Encore_Function Name=exact_src

1]
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BC const dirichlet at surface_1 Temperature = 400.0
IC Encore Function on block_1 temperature = ufuncT

maximum nonlinear iterations = 10
nonlinear residual tolerance = 1.0E-10
nonlinear correction tolerance = 1.0E-10
Nonlinear Relaxation Factor = 1.

BEGIN CHEMEQ SOLVER FOR hmx
ODE SOLVER = CVODE ADAMS 12 FUNCTIONAL
Absolute Tolerance = le-14
Relative Tolerance = le-10
Chemistry step multiplier = 100 # default
Epsilon Min = 0.0001 # default
Epsilon Max = 10.0 # default
Minimum Chemistry Timestep = 1.0E-15 # default
Percentage Asymptotics = 0.0 # default
Asymptotic tolerance = 100.0 # default
Minimum Concentration for A = 1.0E-12 # default
Activation Temperature = 100.0
Deactivation Temperature = 500.0 Continue
species A = 1.0
species B = 0.0

END CHEMEQ SOLVER FOR hmx

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = output{N}.e
At Step O, Increment = {2%x(N)}
Timestep Adjustment Interval = 1
Title Aria Chem/Diffusion Verification
Nodal Variables = solution->temperature as T
Element Variables = A B AEX species

END RESULTS OUTPUT LABEL diffusion output

USE FINITE ELEMENT MODEL block
usE LINEAR SOLVER solve_temperature

END Aria REGION myRegion
END procedure myProcedure

END SIERRA Aria

12.7.3. First Order Reaction

BEGIN SIERRA Aria
Title Verification Problem for Coupled Chemistry Diffusion
load user plugin file ./Exact_solution.so

Begin Field Function species
Use Quadrature Field species
Integration Order Is 2
Dimension Is 2

End

Begin User Function ufuncAB
Load From File ./Exact_solution.so Using Function registerExactSolnAB
End

Begin User Function ufuncT

Load From File ./Exact_solution.so Using Function registerExactSolnT
End

262



Begin User Function energySrc
Load From File ./Exact_solution.so Using Function registerEnergySrc
End

Begin Norm Postprocessor L2_AB
Use Function ufuncAB
Subtract Function species
Compute Norms L2

End

Begin Norm Postprocessor L2_T
Use Function ufuncT
Subtract Function solution->temperature
Compute Norms L2

End

Begin Norm Postprocessor LInf_ T
Use Function ufuncT
Subtract Function solution->temperature
Compute Norms LInfinity

End

Begin Norm Postprocessor H1_T
Use Function ufuncT
Subtract Function solution->temperature
Compute Norms H1

End

Begin Postprocessor Output Control pp_out
Comment Character is ¥%
Write To File error{N}.txt

End

BEGIN Aria MATERIAL hmx
density = constant rho =1
specific heat = constant cp =1
heat conduction = basic
thermal conductivity = constant k =1
begin parameters for chemeq model hmx

number of reactions = 1

species names are A B
species phases are Condensed GAS

Condensed Fraction = 0.0

Steric Coefficients are 0.0

Log Preexponential Factors are 5
Activation Energies are 1000.0

Energy Releases are -20.0
Concentration Exponents for A are 1.0

Concentration Exponents for B are 0.0

Stoichiometric coefficients for A are -1.0
Stoichiometric coefficients for B are 1.0
end parameters for chemeq model hmx
end Aria MATERIAL hmx
BEGIN GLOBAL CONSTANTS
Ideal Gas Constant = 1.9872 #CGS_cal
END GLOBAL CONSTANTS

BEGIN FINITE ELEMENT MODEL block
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Database Name = grid{N}x.exo $ exodusii
decomposition method = rib

Use material hmx for block_1
END FINITE ELEMENT MODEL block

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER SOLVE_TEMPERATURE
BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-06
END
END TPETRA EQUATION SOLVER
{else}
BEGIN AZTEC EQUATION SOLVER solve_temperature
solution method = cg
preconditioning method = jacobi
maximum iterations = 1000
residual norm scaling = NONE
residual norm tolerance = 1.0E-6
END AZTEC EQUATION SOLVER solve_temperature
{endif}

BEGIN procedure myProcedure

begin solution control description
Use System Main
Begin System Main
Simulation Start Time =
Simulation Termination Time
Begin Transient time_block
advance myregion
End Transient time_block
End System Main

]
o o
o o

BEGIN parameters for transient time_block
start time = 0.0
termination time = 0.04
BEGIN PARAMETERS FOR Aria REGION myRegion
time step variation = fixed
time integration method = second_order
initial time step size = {0.001%0.5%*(N-1)}
END PARAMETERS FOR Aria REGION myRegion
END parameters for transient time_block
end solution control description
begin aria region myRegion
Output Number Of Elements
Evaluate Postprocessor L2_AB
Evaluate Postprocessor L2_T
Evaluate Postprocessor LInf_T
Evaluate Postprocessor H1_T
EQ energy for temperature on all_blocks using Q1 with diff mass src
Source for Energy on all_blocks = chemeq_heating MODEL = hmx

use data block region_data

maximum nonlinear iterations = 10
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nonlinear residual tolerance = 1.0E-10
nonlinear correction tolerance = 1.0E-10
Nonlinear Relaxation Factor = 1.

BEGIN CHEMEQ SOLVER FOR hmx
Chemistry step multiplier = 10.0
Epsilon Min = 0.0001
Epsilon Max = 10.0
Minimum Chemistry Timestep =
Percentage Asymptotics = 0.0
Asymptotic tolerance = 100.0

ODE SOLVER = CVODE ADAMS 12 FUNCTIONAL
Absolute Tolerance = le-12
Relative Tolerance = le-9
Minimum Concentration for A = 1.0E-08
Activation Temperature = 0.0
species A = 1.0
species B = 0.0
END CHEMEQ SOLVER FOR hmx

1.0E-15

H OH H H OE

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = output{N}.e
At Step 0, Increment = {2%x(N-1)}
Timestep Adjustment Interval = 1
Title Aria Chem/Diffusion Verification
Nodal Variables = solution->temperature as T
Element Variables = A B species

END RESULTS OUTPUT LABEL diffusion output

IC Encore Function on block_1 temperature = ufuncT
BC dirichlet for Temperature at surface_l = Encore_Function Name=ufuncT
Source For ENERGY on block_1 = Encore_Function Name=energySrc

USE FINITE ELEMENT MODEL block
usE LINEAR SOLVER solve_temperature

END Aria REGION myRegion
END procedure myProcedure

END SIERRA Aria

12.7.4. DAE and Pressure Test

BEGIN SIERRA Aria
Title Verification Problem for Coupled Chemistry Diffusion
load user plugin file ./Exact_solution.so

Begin Field Function species
Use Quadrature Field species
Integration Order Is 2
Dimension Is 1

End

Begin User Function ufuncA
Load From File ./Exact_solution.so Using Function registerExactSolnA
End

Begin Norm Postprocessor L2_A
Use Function ufuncA
Subtract Function species
Compute Norms L2
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End

Begin Postprocessor Output Control pp_out
Comment Character is %
Write To File error.txt

End

BEGIN Aria MATERIAL hmx
density = constant rho =1
specific heat = constant cp =1
heat conduction = basic
thermal conductivity = constant k =1
pressure = constant value=3

begin parameters for chemeq model hmx
number of reactions = 1

species names are A
species phases are Condensed

Condensed Fraction = 0.0

Steric Coefficients are 0.0

Log Preexponential Factors are {log(5)}
Activation Energies are 10.0

Energy Releases are 0.0

Concentration Exponents for A are 0.0
Stoichiometric coefficients for A are -1.0

# Pressure dependence

Reference pressure = 2.

Pressure exponents are 2.

Pressure = From_Material_Definition

#Distributed activation energy
Activation energy st devs are 1.
extent of reaction based on A

end parameters for chemeq model hmx
end Aria MATERIAL hmx

BEGIN GLOBAL CONSTANTS
Ideal Gas Constant = 1.
END GLOBAL CONSTANTS

BEGIN FINITE ELEMENT MODEL block
Database Name = 1block.g
decomposition method = rib

Use material hmx for block_1
END FINITE ELEMENT MODEL block

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER SOLVE_TEMPERATURE
BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-12
END
END TPETRA EQUATION SOLVER
{else}
BEGIN AZTEC EQUATION SOLVER solve_temperature
solution method = cg
preconditioning method = jacobi

266



maximum iterations = 1000
residual norm scaling = NONE
residual norm tolerance = 1.0E-12
END AZTEC EQUATION SOLVER solve_temperature
{endif}

BEGIN procedure myProcedure

begin solution control description
Use System Main
Begin System Main
Simulation Start Time =
Simulation Termination Time
Begin Transient time_block
advance myregion
End Transient time_block
End System Main

N O
o o

BEGIN parameters for transient time_block
start time = 0.0
termination time = 2.0

BEGIN PARAMETERS FOR Aria REGION myRegion
time step variation = fixed
time integration method = second_order
initial time step size = {0.01*0.5}

END PARAMETERS FOR Aria REGION myRegion

END parameters for transient time_block
end solution control description

begin aria region myRegion

Evaluate Postprocessor L2_A

EQ energy for temperature on all_blocks using Q1 with diff mass src
Source for Energy on all_blocks = chemeq_heating MODEL = hmx
IC for temperature on all_blocks = constant value=3

maximum nonlinear iterations = 10
nonlinear residual tolerance = 1.0E-10
nonlinear correction tolerance = 1.0E-10
Nonlinear Relaxation Factor = 1.

BEGIN CHEMEQ SOLVER FOR hmx
ODE SOLVER = CVODE ADAMS 12 FUNCTIONAL
Absolute Tolerance = le-12
Relative Tolerance = 1le-10
Activation Temperature = 0.0
species A = 1.0
END CHEMEQ SOLVER FOR hmx

Begin Postprocessor Group exact_soln
Interpolate function value of ufuncA into nodal field exact_A
End

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = output.e
At Step 0, Increment = 1
Timestep Adjustment Interval = 1
Title Aria Chem/Diffusion Verification
Nodal Variables = solution->temperature as T
Nodal Variables = exact_A
Element Variables = A
END RESULTS OUTPUT LABEL diffusion output

USE FINITE ELEMENT MODEL block

267



usE LINEAR SOLVER solve_temperature
END Aria REGION myRegion
END procedure myProcedure

END SIERRA Aria

12.7.5. PMDI Plugin Test

{ECHO(OFF)}
{include("params_nom")}
{ECHO(OFF) }
{include("params")}

BEGIN SIERRA aria
Title PMDI_Plugin_Verification
load user plugin file pmdi_multspecies.so

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER SOLVE_TEMPERATURE
BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 10000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-08
END
END TPETRA EQUATION SOLVER
{else}
BEGIN TRILINOS EQUATION SOLVER solve_temperature
solution method = CG
preconditioning method = jacobi
maximum iterations = 10000
residual norm tolerance = 1e-08
residual norm scaling = NONE
END TRILINOS EQUATION SOLVER solve_temperature
{endif}

BEGIN GLOBAL CONSTANTS
Stefan Boltzmann Constant = 5.67e-8 # W/m~2-K~4
ideal gas constant = 8314. # J/kgmol-K
END GLOBAL CONSTANTS

begin data block pmdi_data
real data_real = (\# Variable definition, units

{to} \# to Initial gas temperature, K- necessary to calculate pressure for first timestep
{vex0Tvex} \# vex/Tvex Excess volume/temp excess volume, m~3/K

{po} \# po Initial pressure, PA

{rbo*uden_pmdi} \# rbo Initial bulk density, kg/m~3

{rco} \# rco Initial condensed density, kg/m"~3

{kb_1} \# kb, effectve cond. for Keff, W/mK (for201lb: 0.0486 0.706) radiation coefficient- 16/3/(a +sig s)
{kb_2} \# kb, W/mK

{t_1} \# t, K

{t_2} \# t, K

{rad_coef} \#

{ukb} \#

{ukrad} \#

{ukeff_pmdi} \#

{upress} )

end data block pmdi_data

BEGIN ARIA MATERIAL pmdifoam
use data block pmdi_data
Emissivity = constant e = {0.8%uemis_pmdi}
density = constant rho = {rbo*uden_pmdi} #
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specific heat = constant cp =1
tensor thermal conductivity =

Heat Conduction = generalized

BEGIN PARAMETERS FOR CHEMEQ MODEL reaction_model

number of reactions is 3

species names are FOAMA FOAMB FOAMC CHAR C02 LMWO HMWO

calore_user_sub name = ktdirpu type =

element_tensor # W/m-K

species phases are Condensed Condensed Condensed Condensed Gas Condensed Condensed

condensed fraction is O.
steric coefficients are 0. 0. O.

log preexponential factors are 0. 0. O.

# Not used

# Not used

# Set these to O to prevent any reactions for the purpose of verification

activation energies are {179441062.*uEl_pmdi} {179441062.*uEl_pmdi} {179441062.*uEl_pmdi} # J/kmol (e/R=21583 KENDATA)

energy release units are per unit mass
energy releases are 0 0 0 # J/Kg

# Rxn-->1 2 # Mechanism
concentration exponents
concentration exponents
concentration exponents
concentration exponents
concentration exponents
concentration exponents
concentration exponents

FOAMA ARE
FOAMB ARE
FOAMC ARE
CHAR ARE
C02 ARE

LMWO ARE
HMWO ARE

for
for
for
for
for
for
for

for
for
for
for
for
for
for

coefficients
coefficients
coefficients
coefficients
coefficients
coefficients
coefficients

stoichiometric
stoichiometric
stoichiometric
stoichiometric
stoichiometric
stoichiometric
stoichiometric

no energy for first cut

FOAMA ARE
FOAMB ARE
FOAMC ARE
CHAR ARE
C02 ARE

LMWO ARE
HMWO ARE

1
0
0.
0.
0
0
0

O O OO0 OoO+rOo

. # A -> CO2
. # B-> HMWO
. # C-> HMWO

0.0
-1.0
0.0
0.0
56 0.0
44 0.0
0 +1.0

aux variable names are sf, phi, keff, frxmn, krad

aux variable subroutine is calcauxvar

END PARAMETERS FOR CHEMEQ MODEL reaction_model

END ARIA MATERIAL pmdifoam

BEGIN FINITE ELEMENT MODEL FoamInCan
database name is 1block.g
Use Material pmdifoam for block_1
END FINITE ELEMENT MODEL FoamInCan

BEGIN PROCEDURE myProcedure

begin solution control description
use system main
begin system main
simulation start time = 0.0
simulation termination time = 1.0
begin transient solution_block_1
advance myRegion
end transient solution_block_1
end system main

begin parameters for transient solution_block_1

start time = 0.0

begin parameters for aria region myRegion

fixed
0.1

time step variation =
initial time step size =

end parameters for aria region myRegion

end
end solution control description

BEGIN ARIA REGION myRegion

0
0
1
0. # 20% CHAR
0
0
0

--> 0.45 PMDIRPU -> 0.252 C02 + 0.198 LMWO
--> 0.15 PMDIRPU -> 0.15 HMWO
--> 0.4 PMDIRPU -> 0.2 HMWO+0.2 char
FORMATION
0.0 # dA/dt =r1
0.0
1.0
0.5
0.0 # dB/dt = 0.252/0.45 ri
0.0 # dC/dt = 0.198/0.45 ri
+0.5 # dD/dt = r2 + r3

#, p, krad, kbulk

use finite element model FoamInCan Model Coordinates are model_coordinates

use linear solver solve_temperature
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nonlinear solution strategy = newton
maximum nonlinear iterations = 10
nonlinear residual tolerance 1.0e-8
nonlinear relaxation factor = 1.0
use dof averaged nonlinear residual

BEGIN CHEMEQ SOLVER FOR reaction_model
ODE SOLVER = CVODE ADAMS 12 FUNCTIONAL
absolute tolerance = le-12
relative tolerance = le-9
aux variable names are sf, phi, rbulk, keff

aux variable sf =1.0 # initial solid fraction value
aux variable phi = {phi} # initial gas volume fraction
aux variable keff = 0. # initial effective thermal conductivity
aux variable frxn = 1.0 # initial bulk demsity

aux variable krad = 0.0 # radcond

species FOAMA = {1./7.}

species FOAMB = {1./7.}

species FOAMC = {1./7.}

species CHAR = {1./7.}

species C02 = {1./7.}

species LMWO = {1./7.}

species HMWO = {1./7.}

minimum concentration for FOAMA = le-12

minimum concentration for FOAMB = le-12

minimum concentration for FOAMC = le-12

chemistry step multiplier = 1Eb
END CHEMEQR SOLVER FOR reaction_model

EQ ENERGY for TEMPERATURE on block_1 using Q1 with mass src
Source for energy on block_1 = chemeq_heating model=reaction_model
IC for temperature on block_1 = constant value={2*to}

Define Global Scalar gmasco2 as real operation sum initial value 0.0
Define Global Scalar gmasn2 as real operation sum initial value 0.0
Define Global Scalar gmaslowmw as real operation sum initial value 0.0
Define Global Scalar gmashighmw as real operation sum initial value 0.0

Define Global Scalar itv as real operation sum initial value 0.0

Define Global Scalar gvtot as real operation sum initial value O

Define Global Scalar p as real operation min initial value 101325.0
Define Global Scalar psig as real operation min initial value 0.0

Define Global Scalar padmix as real operation min initial value 101325.0
Define Global Scalar psigadmix as real operation min initial value 0.0
Define Global Scalar mcvT as real operation sum initial value 0.0

Define Global Scalar mcv as real operation min initial value 0.0

Define Global Scalar gvol as real operation sum initial value 0.0

Define Global Scalar psigl as real operation min initial value 0.0
Define Global Scalar psigadmixl as real operation min initial value 0.0
Define Global Scalar poc as real operation max initial value 0.0

Define Global Scalar count as int operation min initial value O

Define Global Scalar psigxuncert as real operation min initial value 0.0
Define Global Scalar pxuncertsig as real operation min initial value 0.0

Define Global Scalar molesn2 as real operation min initial value 0.0
Define Global Scalar molesco2 as real operation min initial value 0.0

Define Global Scalar moleslowmw as real operation min initial value 0.0
Define Global Scalar moleshighmw as real operation min initial value 0.0
Define Global Scalar molesofv as real operation min initial value 0.0

Define Global Scalar molestotal as real operation min initial value 0.0
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BEGIN RESULTS OUTPUT output_1
Database Name is %B.e
Database Type is EXODUSII
at step O, increment is 1
nodal variables = solution->temperature as temp
nodal variables = solution->temperatureDot as TDOT
element variables = Density as RHO
element variables = FOAMA FOAMB FOAM C CO2 CHAR LMWO HMWO
element variables = sf, phi, keff, frxn, krad
global variables = p
global variables = psig

END RESULTS OUTPUT output_1

END ARIA REGION myRegion

END PROCEDURE myProcedure
END SIERRA aria
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12.8. MISCELLANEOUS

12.8.1. Thermal Postprocessing

BEGIN SIERRA myJob

BEGIN ARIA MATERIAL Kryptonite
Density = CONSTANT rho =1
Thermal Conductivity = Constant k =1
Specific Heat = Constant cp =1
heat conduction = basic

END

BEGIN ARIA MATERIAL Mathite
Density = CONSTANT rho = 1
Thermal Conductivity = Constant
Specific Heat = Constant cp =1
heat conduction = basic

END

w
]
-

Begin Global Constants
Stefan Boltzmann Constant = 5.67e-8
End

Begin Aria Material surf_2_models
BC Reference Temperature = encore_function name = cf_Tref
Heat Transfer Coefficient = constant h=10.0

End

Begin Aria Material surf_3_models
BC Rad Reference Temperature = encore_function name = rf_Tref

Emissivity = Constant E=0.6
Radiation form factor = Constant F=1.0
End
{if (useTpetra)}

BEGIN TPETRA EQUATION SOLVER SOLVE_TEMPERATURE
BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = RO
CONVERGENCE TOLERANCE = 1.000000e-14
END
END TPETRA EQUATION SOLVER
{else}
BEGIN AZTEC EQUATION SOLVER solve_temperature
solution method = cg
preconditioning method = jacobi
maximum iterations = 1000
residual norm scaling = r0
residual norm tolerance = 1.0e-14
END AZTEC EQUATION SOLVER solve_temperature
{endif}

BEGIN FINITE ELEMENT MODEL cube
database name = cube_two_blocks_hex8_h{N}.g
coordinate system is cartesian

# [0,1] x [-0.5,0.5] x [-0.5,0.5]

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite

END

# [-1,0] x [-0.5,0.5] x [-0.5,0.5]
BEGIN PARAMETERS FOR BLOCK block_2
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material Mathite
END

Use Material surf_2_models for surface_2
Use Material surf_3_models for surface_3

END FINITE ELEMENT MODEL cube

# specify text output for Encore PPs

Begin Postprocessor Output Control pp_out
Write to File encoreinfo{N}.txt
Enable Small Output Rounding To Zero
Floating Point Precision Is 10

End

Begin Global Function Parameters gfp
Parameter TO = 400 # [K]

Parameter CO = 2.0
Parameter C1 = 3.0
Parameter C2 = 4.0
Parameter C3 = 0.4
Parameter h = 10.0

Parameter eps = 0.
Parameter sigma =
End

6
5.67e-8

Begin Field Function ffunc
Use Nodal Field nonlinear_solution->TEMPERATURE
End

# exact solution
Begin User Function ufunc

Load From File ./somefunc.so Using Function registerExactSoln
End

Begin Difference Function dfunc
Difference Is ufunc - ffunc
End

Begin User Function src

Integration Order Is 4

Load From File ./somefunc.so Using Function registerSrc
End

Begin User Function cf_Tref

Integration Order Is 4

Load From File ./somefunc.so Using Function registerConvHeatFlux_Tref
End

# exact convective flux
Begin User Function cf_bc_exact

Integration Order Is 4

Load From File ./somefunc.so Using Function registerExactConvHeatFlux
End

Begin User Function rf_Tref
Load From File ./somefunc.so Using Function registerRadFlux_Tref
End

# exact radiative flux
Begin User Function rf_bc_exact

Integration Order Is 4

Load From File ./somefunc.so Using Function registerExactRadFlux
End

Begin Norm Postprocessor 12_error

Use Function ufunc
Subtract Function ffunc
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Compute Norm L2
End

Begin Integrate Function Postprocessor cf_bc_ipo_ex
Use Function cf_bc_exact
Surfaces surface_2
Disable Output

End

Begin Integrate Function Postprocessor rf_bc_ipo_ex
Use Function rf_bc_exact
Surfaces surface_3
Disable Output

End

Begin Average Value Postprocessor cf_bc_ifo_ex
Use Function cf_bc_exact
Surfaces surface_2
Disable Output

End

Begin Average Value Postprocessor rf_bc_ifo_ex
Use Function rf_bc_exact
Surfaces surface_3
Disable Output

End

Begin Integrate Function Postprocessor src_ipo_ex
Use Function src
Volumes block_1 block_2
Disable Output

End

Begin Evaluate Function Postprocessor eval_bl
Use Function ffunc
Evaluate Value
# random interior point in block_2
Location -0.151720462393008 0.146935733548329 -0.393641401879319
parametric search tolerance 1.0e-10
End

Begin Evaluate Function Postprocessor eval_bl_ex
Use Function ufunc
Evaluate Value
# random interior point in block_2
Location -0.151720462393008 0.146935733548329 -0.393641401879319
Disable Output
End

Begin Evaluate Function Postprocessor eval_bib2
Use Function ffunc
Evaluate Value
# random interior point on block interface (x=0)
Location 0 0.162595269728099 -0.377464159584852
parametric search tolerance 1.0e-10

End

Begin Evaluate Function Postprocessor eval_blb2_ex
Use Function ufunc
Evaluate Value
# random interior point on block interface (x=0)
Location 0 0.162595269728099 -0.377464159584852
Disable Output

End

Begin Evaluate Function Postprocessor eval_s2

Use Function ffunc
Evaluate Value
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# random interior point on sideset 2 (z=0.5)
Location -0.855758209426849 0.159603369582751 0.5
End

Begin Evaluate Function Postprocessor eval_s2_ex
Use Function ufunc
Evaluate Value
# random interior point on sideset 2 (z=0.5)
Location -0.855758209426849 0.159603369582751 0.5
Disable Output

End

Begin Difference Postprocessor cf_bc_ipo_err
Difference is cf_bc_ipo_ex - cf_bc_ipo
End

Begin Difference Postprocessor rf_bc_ipo_err
Difference is rf_bc_ipo_ex - rf_bc_ipo
End

Begin Difference Postprocessor cf_bc_ifo_err
Difference is cf_bc_ifo_ex - cf_bc_ifo
End

Begin Difference Postprocessor rf_bc_ifo_err
Difference is rf_bc_ifo_ex - rf_bc_ifo
End

Begin Difference Postprocessor src_ipo_err
Difference is src_ipo_ex - src_ipo
End

Begin Difference Postprocessor eval_bl_err
Difference is eval_bl_ex - eval_bl
End

Begin Difference Postprocessor eval_blb2_err
Difference is eval_blb2_ex - eval_bilb2
End

Begin Difference Postprocessor eval_s2_err
Difference is eval_s2_ex - eval_s2
End

Begin Tabular Function Output Postprocessor tfo_sset2
Use Functions model_coordinates ffunc ufunc dfunc
Surfaces surface_2
Write To File values_sset2_{N}.dat

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Transient MySolveBlock
Advance myRegion
End
Simulation Max Global Iterations = 1
Simulation Start Time = 0
Simulation Termination Time = 1
End
Begin Parameters for Transient MySolveBlock
End
End

BEGIN ARIA REGION myRegion
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use finite element model cube
use linear solver solve_temperature

nonlinear solution strategy = newton

maximum nonlinear iterations = 10
nonlinear residual tolerance = 1.0e-16
nonlinear correction tolerance = 1.0e-12
nonlinear relaxation factor = 1.0

use dof averaged nonlinear residual
EQ ENERGY for TEMPERATURE on all_blocks using Q1 with DIFF SRC

MESH GROUP Dirichlet_Surface = surface_4 surface_5 surface_6 surface_7
BC Dirichlet for Temperature on Dirichlet_Surface = encore_function name=ufunc

BC Flux for Energy on surface_2 = Generalized_Nat_Conv Power_Output=cf_bc_ipo Flux_Output=cf_bc_ifo

BC Flux for Energy on surface_3 = Generalized_Rad Power_Output=rf_bc_ipo Flux_Output=rf_bc_ifo

SOURCE for ENERGY on all_blocks = encore_function name=src Power_Output=src_ipo

eval_bl
eval_b1lb2
eval_s2

Evaluate
Evaluate
Evaluate

Postprocessor

Postprocessor

Postprocessor

Evaluate Postprocessor tfo_sset2

Begin Postprocessor Group zzz
Output Number of Nodes

Evaluate Postprocessor

Evaluate
Evaluate

Evaluate
Evaluate

Evaluate
Evaluate

Evaluate
Evaluate

Evaluate
Evaluate

Evaluate
Evaluate

Evaluate
Evaluate

Evaluate
Evaluate
End

Postprocessor
Postprocessor

Postprocessor
Postprocessor

Postprocessor
Postprocessor

Postprocessor
Postprocessor

Postprocessor
Postprocessor

Postprocessor
Postprocessor

Postprocessor
Postprocessor

Postprocessor
Postprocessor

END ARIA REGION myRegion

END PROCEDURE myAriaProcedure

END SIERRA myJob

12_error

cf_bc_ipo_ex
cf_bc_ipo_err

rf_bc_ipo_ex
rf_bc_ipo_err

cf_bc_ifo_ex
cf_bc_ifo_err

rf_bc_ifo_ex
rf_bc_ifo_err

src_ipo_ex
src_ipo_err

eval_bl_ex
eval_bl_err

eval_blb2_ex
eval_blb2_err

eval_s2_ex
eval_s2_err

276



12.8.2. Postprocess Min/Max

BEGIN SIERRA myJob

BEGIN ARIA MATERIAL Kryptonite

Density = constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END ARIA MATERIAL Kryptonite

{if (useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN SUPERLU SOLVER
END
END TPETRA EQUATION SOLVER
{else}
Begin Trilinos Equation Solver Direct_Solver
Solution Method = amesos-superlu
End
{endif}

BEGIN FINITE ELEMENT MODEL cube
database name = square_h{N}.e
coordinate system is cartesian
decomposition method = rib

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite
END PARAMETERS FOR BLOCK block_1

END FINITE ELEMENT MODEL cube

Begin String Function exact_soln

Value Is "sin(7#x) * sin(8*y)"

Gradient Is "7 * cos(7xx) * sin(8xy)" "8 x sin(7*x) * cos(8xy)"
End

Begin String Function exact_src
Value Is "(49 + 64) * sin(7*x) * sin(8*y)"
End

Begin Field Function ffunc
Use Nodal Field nonlinear_solution->TEMPERATURE
End

Begin Norm Postprocessor 12
Use Function exact_soln
Subtract Function ffunc
Compute Norms L2

End

Begin Norm Postprocessor hil
Use Function exact_soln
Subtract Function ffunc
Compute Norms H1

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function ffunc
Compute Norms LInfinity

End

Begin Min Max Postprocessor max_node_bl

Use Function ffunc
Compute Max
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Volumes block_1
End

Begin Min Max Postprocessor min_node_bl
Use Function ffunc
Compute Min
Volumes block_1

End

Begin Min Max Postprocessor max_node_s2
Use Function ffunc
Compute Max
Surfaces surface_2 # x=1

End

Begin Min Max Postprocessor min_node_s2
Use Function ffunc
Compute Min
Surfaces surface_2 # x=1

End

# code used to compute exact errors in Min Max PP

Begin String Function sfunc_max_node_bl_ex
Value Is "1.0"

End

Begin String Function sfunc_min_node_bl_ex
Value Is "-1.0"

End

Begin String Function sfunc_max_node_s2_ex
Value Is "sin(7)"

End

Begin String Function sfunc_min_node_s2_ex
Value Is "-sin(7)"

End

Begin Evaluate
Use Function
Location 0 O

End

Begin Evaluate
Use Function
Location 0 O

End

Begin Evaluate
Use Function
Location 0 O

End

Begin Evaluate
Use Function

Function Postprocessor
sfunc_max_node_bl_ex
0

Function Postprocessor
sfunc_min_node_bl_ex
0

Function Postprocessor
sfunc_max_node_s2_ex
0

Function Postprocessor
sfunc_min_node_s2_ex

max_node_bl_ex

min_node_bl_ex

max_node_s2_ex

min_node_s2_ex

Location 0 0 O
End

Begin Difference
Difference is
End

Postprocessor max_node_bl_err
max_node_bl_ex - max_node_bl

Begin Difference
Difference is
End

Postprocessor min_node_bl_err
min_node_bl - min_node_bil_ex

Begin Difference
Difference is

Postprocessor max_node_s2_err
max_node_s2_ex - max_node_s2
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End

Begin Difference Postprocessor min_node_s2_err
Difference is min_node_s2 - min_node_s2_ex

End

# end code used to compute exact errors in Min Max PP

Begin Postprocessor Output Control pp_out

Comment Character Is %

Write To File errors_h{N}.dat

Floating Point Precision Is 8

Floating Point Format Is Scientif
End

BEGIN PROCEDURE myAriaProcedure

ic

Begin Solution Control Description

Use System Main
Begin System Main
Begin Sequential The_Time_Block
Advance myRegion
End
Simulation Start Time = 0
Simulation Termination Time = 1
End

Begin Parameters For Transient The_Time_Block

End
End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations
Nonlinear Residual Tolerance
Nonlinear Correction Toleranc
Nonlinear Relaxation Factor

e

10
1.0e-12

= 1.0e-12
1.0

use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Direct_Solv

BC dirichlet for Temperature
BC dirichlet for Temperature
BC dirichlet for Temperature
BC dirichlet for Temperature

EQ ENERGY for TEMPERATURE on block_1

Source For ENERGY on block_1 = Encore_Scalar_Function Name=exact_src

er

at
at
at
at

surface_1
surface_2
surface_3
surface_4

Encore_Function
Encore_Function
Encore_Function
Encore_Function

using Q1 with DIFF SRC

Evaluate Postprocessor max_node_b1l
Evaluate Postprocessor min_node_bl

Evaluate Postprocessor max_node_s2
Evaluate Postprocessor min_node_s2

Begin Postprocessor Group zzz
Output Number of Nodes

Evaluate Postprocessor 12
Evaluate Postprocessor hil
Evaluate Postprocessor linf

Evaluate Postprocessor max_node_bl_err
Evaluate Postprocessor min_node_bl_err
Evaluate Postprocessor max_node_s2_err
Evaluate Postprocessor min_node_s2_err

End
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Begin Solution Options
post process normalized temperature on surface_2 as t_s2
post process normalized temperature on block_1 as t_bl
End

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = aria_h{N}.e
at step 0, increment = 1
# time interval is 1.0
title Aria cube test
nodal variables = nonlinear_solution->TEMPERATURE as T
global variables = t_s2 t_bl
END RESULTS OUTPUT LABEL diffusion output

Begin History Output blah
database Name = aria_h{N}.hist
at time 1 interval is 1
Variable = global t_s2
Variable = global t_bil
End

END ARIA REGION myRegion
END PROCEDURE myAriaProcedure

END SIERRA myJob

12.8.3. Local Coordinates: Cartesian

# Aria input file heat condution in local
# coodinate system

BEGIN SIERRA MyProblem

Begin User Function ufunc
Load From File ./cartesian.so Using Function registerExactSolution
End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific
End

load user plugin file ./cartesian.so
load user plugin file ./cartesian.so
load user plugin file ./cartesian.so

begin data block region_data
# TO T1 Kxx Kyy Kzz Lx Ly Lz thetal theta2
Real r_data = 400.0 100.0 10.0 1.0 1.0 1.0 1.0 1.0 45.0 22.5
end data block region_data

BEGIN LOCAL COORDINATE SYSTEM CS_Block

TYPE = Cartesian

ORIGIN = 0.000000 0.000000 0.00000

POINT = 0.707106781186548 0.653281482438188 0.270598050073098
VECTOR = O -0.382683432365090 0.923879532511287

END

BEGIN ARIA MATERIAL M_Block
DENSITY = CONSTANT rho = 0.1
TENSOR THERMAL CONDUCTIVITY = CONSTANT XX=10.0 YY=1.0 ZZ=1.0
SPECIFIC HEAT = CONSTANT CP = 0.5
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Heat Conduction
END ARIA MATERIAL M_Block

{if (useTp

etra)}

= Generalized

BEGIN TPETRA EQUATION SOLVER LINEARSOLVER
BEGIN GMRES SOLVER

BEGIN JACOBI PRECONDITIONER

E

ND

MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = RO

CONVERGENCE TOLERANCE =

END

END TPETRA EQUATION SOLVER

{else}

1.000000e-12

BEGIN AZTEC EQUATION SOLVER LinearSolver
SOLUTION METHOD = gmres
PRECONDITIONING METHOD = jacobi
MAXIMUM ITERATIONS = 1000

RESIDUAL NORM TOLERANCE =

RESIDUAL NORM SCALING = rO
END AZTEC EQUATION SOLVER LinearSolver

{endif}

BEGIN FINITE ELEMENT MODEL FE_Block
DATABASE NAME = cartesian{N}.g
coordinate system is cartesian
decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1
MATERIAL M_Block
LOCAL COORDINATE SYSTEM = CS_Block

END PARAMETERS FOR BLOCK block_1

END

BEGIN PROCEDURE MyProcedure

1.0e-12

Begin Solution Control Description
Use System Main

Begin Sys

tem Main

Begin Sequential MyBlock
Advance Region_Block

End
End
End

BEGIN ARIA REGION Region_Block
nonlinear solution strategy
use data block region_data

Output Number of Nodes
Compute Difference L2

NONLINEAR RESIDUAL TOLERANCE
NONLINEAR CORRECTION TOLERANCE
MAXIMUM NONLINEAR ITERATIONS
NONLINEAR RELAXATION FACTOR

IC

BC
BC
BC
BC
BC
BC

# IC

newton

0f ufunc solution->temperature Store In 12_error_norm2
Compute Difference LInfinity 0f ufunc solution->temperature Store In linf_error_norm

1.0e-10
1.0e-10
10

1.0

for temperature on block_1 = calore_user_sub name = localCoord_ic type=node

dirichlet
dirichlet
dirichlet
dirichlet
dirichlet
dirichlet

CONST ON

for
for
for
for
for
for

temperature
temperature
temperature
temperature
temperature
temperature

on
on
on
on
on
on

block_1 Temperature

surface_1 =

surface_2
surface_3
surface_4

surface_b =

surface_6

= 0.0

calore_user_sub
calore_user_sub
calore_user_sub
calore_user_sub
calore_user_sub
calore_user_sub
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# along z

# along y
BC Linear Dirichlet
BC Linear Dirichlet
# along x
BC Linear Dirichlet
BC Linear Dirichlet

H H H HHH K E

on
on

on
on

BC Const Dirichlet on surface_1 Temperature =
BC Const Dirichlet on surface_2 Temperature

surface_3 Temperature
surface_b Temperature

surface_4 Temperature
surface_6 Temperature

EQ ENERGY FOR TEMPERATURE ON block_1 USING Q1
#SOURCE for Temperature on block_1 =

Begin Volume Heating juan

add volume block_1
element subroutine
End

localCoord_vhs

USE FINITE ELEMENT MODEL FE_Block

BEGIN RESULTS OUTPUT TemperatureOutput
DATABASE NAME = output{N}.e
AT STEP 1, INCREMENT = 1
TITLE Aria Temperature in Local Coordinate System Verification Problem
NODAL VARIABLES = solution->TEMPERATURE AS T
12_error_norm2 as l2error
linf_error_norm as linf
END RESULTS OUTPUT TemperatureOutput

Element Variables =
Element Variables =

USE LINEAR SOLVER LinearSolver

END

END
END SIERRA MyProblem

100.0

0.0
Coeff = 50. 0.
Coeff = 50. 0.
Coeff = 50. 0.
Coeff = 50. 0.

WITH DIFF #SRC

12.8.4. Local Coordinates: Cylindrical

# Aria input file heat condution in local

# coodinate system
BEGIN SIERRA MyProblem

Begin Field Function ffun

C

Use Nodal Field solution->temperature

End

Begin User Function ufunc

-38.37 92.39
-38.37 92.39

-38.37 92.39
-38.37 92.39

Load From File ./cylindrical.so Using Function registerExactSolution

End

Begin Definition for Function krr

Type is piecewise linea
Begin Values
0o 1.0
400 1.0
End Values
Scale by 10.0
End

r

Begin Definition for Function ktt
Type is piecewise linear

Begin Values
0 1.0

400 1.0
End Values
Scale by 1.0
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End

Begin Definition for Function kzz
Type is piecewise linear
Begin Values
0o 1.0
400 1.0
End Values
End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors{N}.dat
Floating Point Precision Is 6
Floating Point Format Is Scientific
End

load user plugin file ./cylindrical.so
begin data block region_data
# TO T1 Krr Ktt Kzz Lx Lz thetal thetal
Real r_data = 400.0 100.0 10.0 1.0 1.0 1.0 1.0 45.0 22.5

end data block region_data

BEGIN LOCAL COORDINATE SYSTEM CS_Block

TYPE = Cylindrical

ORIGIN = 0.000000 0.000000 0.00000

POINT = 0.707106781186548 0.653281482438188 0.270598050073098
VECTOR = O -0.382683432365090 0.923879532511287

END

BEGIN ARIA MATERIAL M_Block
DENSITY = CONSTANT rho = 0.1
#tensor thermal conductivity = user_function X=Temperature Name_XX=krr Name_YY=ktt Name_ZZ=kzz
TENSOR THERMAL CONDUCTIVITY = CONSTANT XX=10.0 YY=1.0 ZZ=1.0
SPECIFIC HEAT = CONSTANT CP = 0.5
Heat Conduction = Generalized
END ARIA MATERIAL M_Block

{if (useTpetra)}

BEGIN TPETRA EQUATION SOLVER LINEARSOLVER

BEGIN GMRES SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = RO
CONVERGENCE TOLERANCE = 1.000000e-12

END

END TPETRA EQUATION SOLVER
{else}

BEGIN AZTEC EQUATION SOLVER LinearSolver
SOLUTION METHOD = gmres
PRECONDITIONING METHOD = jacobi
MAXIMUM ITERATIONS = 1000
RESIDUAL NORM TOLERANCE = 1.0e-12
RESIDUAL NORM SCALING = rO

END AZTEC EQUATION SOLVER LinearSolver

{endif}

BEGIN FINITE ELEMENT MODEL FE_Block
DATABASE NAME = cylindrical{N}.g
coordinate system is cartesian
decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1
MATERIAL M_Block
LOCAL COORDINATE SYSTEM = CS_Block
END PARAMETERS FOR BLOCK block_1
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END
BEGIN PROCEDURE MyProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Sequential MyBlock
Advance Region_Block
End
End
End

BEGIN ARIA REGION Region_Block
nonlinear solution strategy = newton

use data block region_data

Output Number of Nodes

Compute Difference L2 0f ufunc ffunc Store In 12_error_norm2

Compute Difference LInfinity O0f ufunc ffunc Store In linf_error_norm

NONLINEAR RESIDUAL TOLERANCE = 1.0e-10
NONLINEAR CORRECTION TOLERANCE = 1.0e-10
MAXIMUM NONLINEAR ITERATIONS = 10
NONLINEAR RELAXATION FACTOR = 1.0

BC dirichlet for temperature on surface_1 = calore_user_sub name
BC dirichlet for temperature on surface_2 = calore_user_sub name
BC dirichlet for temperature on surface_3 = calore_user_sub name

EQ ENERGY FOR TEMPERATURE ON block_1 USING Q1 WITH DIFF SRC

Begin Volume Heating juan

add volume block_1

element subroutine = localCoord_vhs
End

Begin Initial Condition BlockName
All Volumes
Temperature = 400.0

End

USE FINITE ELEMENT MODEL FE_Block
Interpolate Function Value of ufunc Into Nodal Field Tex
BEGIN RESULTS OUTPUT TemperatureOutput

DATABASE NAME = output{N}.e
AT STEP 1, INCREMENT = 1

localCoord_bc type=node
localCoord_bc type=node
localCoord_bc type=node

TITLE Aria Temperature in Local Coordinate System Verification Problem

NODAL VARIABLES = solution->TEMPERATURE AS T

NODAL VARIABLES = Tex

Element Variables = 12_error_norm2 as l2error

Element Variables = linf_error_norm as linf
END RESULTS OUTPUT TemperatureOutput

USE LINEAR SOLVER LinearSolver
END

END
END SIERRA MyProblem
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