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ABSTRACT
Presented in this document is a portion of the tests that exist in the Sierra Thermal/Fluids verification
test suite. Each of these tests is run nightly with the Sierra/TF code suite and the results of the test
checked under mesh refinement against the correct analytic result. For each of the tests presented in this
document the test setup, derivation of the analytic solution, and comparison of the code results to the
analytic solution is provided. This document can be used to confirm that a given code capability is
verified or referenced as a compilation of example problems.
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1. INTRODUCTION

The Sierra/TF Verification Manual is divided into chapters based on related capabilities. Each section of
a chapter represents a distinct verification test. Some problems that are not yet fully documented are
listed at the end of each chapter.

All of these verification tests are run nightly by the development team to continually verify code
accuracy under mesh refinement. The graphics and charts in this document are automatically generated
by the nightly test runs.

The test files for these problems may be found in the Sierra regression test repository. Most are in the
sub-directory called "verification."

aria_rtest/verification

All tests are assigned the keyword "verification". Those that appear in this document also have the
keyword "self-documentine.

For each test, the approximate finite element solution Th is compared to the exact solution T using
several global norms, and in some cases using response quantities of interest. This is repeated over a
series of uniformly refined meshes (not necessarily nested) with mesh sizes {hi }, giving a sequence of
errors {E,}. For each pair of meshes, a convergence rate is estimated using the formula

ri = log(Ei/Ei_i)/ log(hi/hi—i)• (i.i)

The convergence of r, to the expected rate is monitored as the mesh is refined. A test passes if all of the
estimated convergence rates on the finest pair of meshes are within a given tolerance of the expected
rates.
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2. BASIC THERMAL TESTS

2.1. STEADY HEAT CONDUCTION: HEX8 MESHES

This problem tests basic steady state heat conduction in a 3D domain. The geometry consists of a unit
cube. A variety of different source terms and boundary conditions are simultaneously applied. The
exact solution is a manufactured solution.

2.1.1. Features Tested

Basic heat conduction on Hex8 meshes; dirichlet, heat flux, and convective flux boundary conditions;
constant source terms; heat flux and source term from Encore user subroutines.

2.1.2. Boundary Conditions

At surfaces 4 and 6, the temperature is prescribed as a constant value. On surfaces 3 and 5, a heat flux
condition is prescribed using a sum of a constant heat flux and a heat flux from an Encore function (user
subroutine). On surfaces i and 2, heat flux condition is prescribed using a sum of a convective flux
boundary condition (with constant flux and convective coefficient) and a heat flux from an Encore
function (user subroutine). Within the domain a source term is prescribed using a sum of a constant
source and an Encore function (user subroutine).

2.1.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both
blocks.

2.1.4. Verification of Solution

A manufactured solution is chosen as

T (x , y, z) = 
1 + (x — x2)2 (y — y2)2 (z — z2)2 .

The source and heat flux user subroutines are chosen so that the solution satisfies the heat equation
with the correct boundary conditions.
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For each mesh, the errors in the temperature solution are computed in the L2 , L°° and Hi norms. The
test passes, only if the observed rates of convergence in these norms are z, z, and I, respectively (within a
tolerance).

Coarse Mesh

1043
101 102 103 104

Num Nodes

Error Norms

Figure 2.1-1.. Steady Heat Conduction: Hex8 Meshes

io5

Table 2.1-1.. Steady Heat Conduction: Convergence Rates for Hex8 Meshes
Num Dofs L2 111 L"

125 0.83 -1.27 0.74

729 2.20 0.98 2.07

4913 2.15 1.05 2.08

35940 2.08 1.03 1.94

274600 2.05 I.02 1.97

For input decks see Appendix rza.r.

2.2. STEADY HEAT CONDUCTION: HEX20 MESHES

106

This problem tests basic steady state heat conduction in a 3D domain. The geometry consists of a unit
cube. A variety of different source terms and boundary conditions are simultaneously applied. The
exact solution is a manufactured solution.

2.2.1. Features Tested

Basic heat conduction on Hexzo meshes; dirichlet, heat flux, and convective flux boundary conditions;
constant source terms; heat flux and source term from Encore user subroutines.
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2.2.2. Boundary Conditions

At surfaces 4 and 6, the temperature is prescribed as a constant value. On surfaces 3 and 5, a heat flux
condition is prescribed using a sum of a constant heat flux and a heat flux from an Encore function (user
subroutine). On surfaces i and z, heat flux condition is prescribed using a sum of a convective flux
boundary condition (with constant flux and convective coefficient) and a heat flux from an Encore
function (user subroutine). Within the domain a source term is prescribed using a sum of a constant
source and an Encore function (user subroutine).

2.2.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both
blocks.

2.2.4. Verification of Solution

A manufactured solution is chosen as

T (x, y, z) = 1 + (x — x2)2 (y _ y2)2 (z - z2)2

The source and heat flux user subroutines are chosen so that the solution satisfies the heat equation
with the correct boundary conditions.

For each mesh, the errors in the temperature solution are computed in the L2, L°° and H1 norms. The
test passes, only if the observed rates of convergence in these norms are z, z, and i, respectively (within a
tolerance).

Table 2.2-1.. Steady Heat Conduction: Convergence Rates for Hex20 Meshes
Nurn Dofs L2 H1 L°°

2673 3.39 2.32 3.52
1878o 3.19 2.15 3.13

6o6zo 3.11 z.o8 3.04

140500 3.08 2. o6 3.01

For input decks see Appendix iz.i.z.

2.3. STEADY HEAT CONDUCTION: HEX27 MESHES

This problem tests basic steady state heat conduction in a 3D domain. The geometry consists of a unit
cube. A variety of different source terms and boundary conditions are simultaneously applied. The
exact solution is a manufactured solution.
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Figure 2.2-1.. Steady Heat Conduction: Hex20 Meshes

2.3.1. Features Tested

Basic heat conduction on Hexz7 meshes; dirichlet, heat flux, and convective flux boundary conditions;
constant source terms; heat flux and source term from Encore user subroutines.

2.3.2. Boundary Conditions

At surfaces 4 and 6, the temperature is prescribed as a constant value. On surfaces 3 and 5, a heat flux
condition is prescribed using a sum of a constant heat flux and a heat flux from an Encore function (user
subroutine). On surfaces r and z, heat flux condition is prescribed using a sum of a convective flux
boundary condition (with constant flux and convective coefficient) and a heat flux from an Encore
function (user subroutine). Within the domain a source term is prescribed using a sum of a constant
source and an Encore function (user subroutine).

2.3.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both
blocks.
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2.3.4. Verification of Solution

A manufactured solution is chosen as

T(x,y,z)= 1 + (x _ x2)2 (y _ y2)2 (z _ z2)2

The source and heat flux user subroutines are chosen so that the solution satisfies the heat equation
with the correct boundary conditions.

For each mesh, the errors in the temperature solution are computed in the L2 , L°° and H1 norms. The
test passes, only if the observed rates of convergence in these norms are 2, 2, and i, respectively (within a
tolerance).
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Figure 2.3-1.. Steady Heat Conduction: Hex27 Meshes

Table 2.3-1.. Steady Heat Conduction: Convergence Rates for Hex27 Meshes
Num Dofs L2 Hi L°°

12170 3.15 2.12 3.03

29790 3.10 2.07 3.01

59320 3.08 z.o6 3.02

117600 3.07 2.05 3.01

For input decks see Appendix 12.1.3.
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2.4. STEADY HEAT CONDUCTION: TET4 MESHES

This problem is identical to the one in Section 2.1 except that unstructured Tet4 meshes are used
instead. The meshes are obtained from Cubit.

2.4.1. Features Tested

Basic heat conduction on Tet4 meshes; dirichlet, heat flux, and convective flux boundary conditions;
constant source terms; heat flux and source term from Encore user subroutines.

2.4.2. Boundary Conditions

Same as in Section 2.I.

2.4.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both
blocks.

2.4.4. Verification of Solution

Same as in Section z.i.

Unlike the Hex8 case, we have observed in many cases, and in this test, that the convergence rate for the
temperature in the L°° norm is somewhat less than 2, in this case about 1.9. The exact reason for this
behavior is unclear.

Table 2.4-1.. Steady Heat Conduction: Convergence Rates for Tet4 Meshes
Num Dofs L2 Hi L°°

145

1104 2•45

o.56
I.22

1.36

2.I0

7725 2.07 1.03 2.02

5964o 1.99 0.99 1.91

For input decks see Appendix 12.1.4.
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Figure 2.4-1.. Steady Heat Conduction: Tet4 Meshes

2.5. STEADY HEAT CONDUCTION: TET4TET10
MESHES

This problem is identical to the one in Section z.i with the exception of constant thermal conductivity
and use of unstructured Tetio meshes. The meshes are obtained from Cubit.

2.5.1. Features Tested

Basic heat conduction with Tet4 solution on Tetio meshes; dirichlet, heat flux, and convective flux
boundary conditions; constant source terms; heat flux and source term from Encore user subroutines.

2.5.2. Boundary Conditions

Same as in Section z.i.

2.5.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both
blocks.
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2.5.4. Verification of Solution

Same as in Section z.t.

Unlike the Hex8 case, we have observed in many cases, and in this test, that the convergence rate for the
temperature in the L" norm is somewhat less than z, in this case about 1.9. The exact reason for this
behavior is unclear.

103
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104
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Figure 2.5-1.. Steady Heat Conduction: Tet4 Solutions on Tet10 Meshes

Table 2.5-1.. Steady Heat Conduction: Convergence Rates for Tet4Tet10 Meshes

Num Dofs L2 111 L°°
865 1.09 0.52 1.22

7831 z.z6 I.I2 1.90

58210 z.ot I.00 1.90

464400 1.96 0.98 2.05

For input decks see Appendix 12.1.5.

2.6. STEADY HEAT CONDUCTION: TETI 0 MESHES

This problem is identical to the one in Section z.i except that unstructured Tetio meshes are used
instead. The meshes are obtained from Cubit.
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2.6.1. Features Tested

Basic heat conduction on Tetio meshes; dirichlet, heat flux, and convective flux boundary conditions;
constant source terms; heat flux and source term from Encore user subroutines.

2.6.2. Boundary Conditions

Same as in Section z.i.

2.6.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both
blocks.

2.6.4. Verification of Solution

Same as in Section za.

Unlike the Hex8 case, we have observed in many cases, and in this test, that the convergence rate for the
temperature in the L°° norm is somewhat less than 3, in this case about 2.7. The exact reason for this
behavior is unclear.
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Figure 2.6-1.. Steady Heat Conduction: Tetl 0 Meshes

For input decks see Appendix 12.1.6.
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Table 2.6-1.. Steady Heat Conduction: Convergence Rates for Tet10 Meshes
Num Dofs L2 Ill L°°

865 2.65 1.5i 2.19

7831 3.3z z.o8 3.41

58zio 3.04 2.07 2.S8

464400 2.8o 1.8o 2.57

2.7. TRANSIENT HEAT CONDUCTION: HEX8 MESHES

This problem tests basic transient heat conduction in a 3D domain. The geometry consists of a unit
cube.

2.7.1. Features Tested

Basic transient heat conduction on Hex8 meshes; dirichlet, heat flux, and convective flux boundary
conditions; constant source terms; heat flux and source term from Encore user subroutines.

2.7.2. Boundary Conditions

At surfaces 4 and 6, the temperature is prescribed as a constant value. On surfaces 3 and 5, a heat flux
condition is prescribed using a sum of a constant heat flux and a heat flux from an Encore function (user
subroutine). On surfaces 1 and z, heat flux condition is prescribed using a sum of a convective flux
boundary condition (with constant flux and convective coefficient) and a heat flux from an Encore
function (user subroutine). Within the domain a source term is prescribed using a sum of a constant
source and an Encore function (user subroutine).

2.7.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both
blocks.

2.7.4. Verification of Solution

A manufactured solution is chosen as

T (x, y, z, t) = (x - x2)2 (y — y2)2 (z — z2)2m(t) + 1,
m(t) = 104 (1 - exp(—t) + t exp(—(t - 1)2))

The source and heat flux user subroutines are chosen so that the solution satisfies the heat equation
with the correct boundary conditions.
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For each mesh, the errors in the temperature solution at final time are computed in the L2 norm of T
and T , L°° and Hi norms. The test passes, only if the observed rates of convergence in these norms are
z, z, z and i, respectively (within a tolerance).

Coarse Mesh Error Norms

Figure 2.7-1.. Transient Heat Conduction: Hex8 Meshes

Table 2.7-1.. Transient Heat Conduction: Convergence Rates for Hex8 Meshes

Num Dofs L2 (T) L2 (T) Hi L°°
125 am 3.oz -0.89 -0.45

72,9 2.09 3.28 0.98 1.85

4913 2.09 2.46 1.05 i.86

35940 z.o6 2.07 1.04. 1.96

For input decks see Appendix tz.1.7.

2.8. TRANSIENT HEAT CONDUCTION: TET4 MESHES

This problem tests basic transient heat conduction in a 3D domain as in Section 2.7. The geometry
consists of a unit cube and a single bulk fluid element.

2.8.1. Features Tested

Basic transient heat conduction on Tet4 meshes; dirichlet, heat flux, and convective flux boundary
conditions; constant source terms; bulk fluid element; heat flux and source term from Encore user
subroutines.

38



2.8.2. Boundary Conditions

Identical to Section 2.7 except one convective flux boundary condition is now connected to a bulk fluid
element.

2.8.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both
blocks.

2.8.4. Verification of Solution

A manufactured solution is chosen as in Section 2.7.

For each mesh, the errors in the temperature solution at final time are computed in the L2 norm of T
and T , L°° and H1 norms. As in Section 2.4, we see convergence rates for L°° that are slightly less than
2.
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Figure 2.8-1.. Transient Heat Conduction: Tet4 Meshes

io°

Table 2.8-1.. Transient Heat Conduction: Convergence Rates for Tet4 Meshes

Num Dofs L2 (T) L2 (T) Hi L°° L' (T bulk)

146 1.20 2.19 0.57 1.36 2.53

1105 2-45 2-34 1.22 2.11 2.17

7726 2.07 2.16 1.03 2.02 z.z6

59640 1.99 2.04 0.99 1.91 2.12

1o5
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For input decks see Appendix iz.i.8.

2.9. TRANSIENT HEAT CONDUCTION: TET4TET10
MESHES

This problem tests basic transient heat conduction in a 3D domain as in Section z.8. The geometry
consists of a unit cube.

2.9.1. Features Tested

Basic transient heat conduction Tet4 analysis on Tetio meshes; dirichlet, heat flux, and convective flux
boundary conditions; constant source terms; heat flux and source term from Encore user subroutines.

2.9.2. Boundary Conditions

Identical to Section z.8

2.9.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both
blocks.

2.9.4. Verification of Solution

A manufactured solution is chosen as in Section z.8.

For each mesh, the errors in the temperature solution at final time are computed in the L2 norm of T
and T , L°° and H1 norms. As in Section z.8, we see convergence rates for L°° that are slightly less than
z.

Table 2.9-1.. Transient Heat Conduction: Convergence Rates for
Tet4 Solution on Teti 0 Meshes

Num Dofs L2 (T) L2 (f) Hi L°°
865 1.09 2.03 0.52 1.22

7831 z.z6 1.95 LI/ 1.90

58/10 2.01 2.00 1.00 1.90

464400 1.96 1.98 0.98 2.05

For input decks see Appendix 1/.1.9.

40



101

10°

2 
10-1

c
o

Coarse Mesh

3.o-3

103 104

Num Nodes

Error Norms

105 106

Figure 2.9-1.. Transient Heat Conduction: Tet4 Solution on Tet10 Meshes

2.10. TRANSIENT HEAT CONDUCTION: TET10 MESHES

This problem tests basic transient heat conduction in a 3D domain as in Section 2.7. The geometry
consists of a unit cube.

2.10.1. Features Tested

Basic transient heat conduction on Tetio meshes; dirichlet, heat flux, and convective flux boundary
conditions; constant source terms; heat flux and source term from Encore user subroutines.

2.10.2. Boundary Conditions

Identical to Section 2.7

2.10.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both
blocks.
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2.10.4. Verification of Solution

A manufactured solution is chosen as in Section 2.7.

For each mesh, the errors in the temperature solution at final time are computed in the L2 norm of T
and T , L°° and H1 norms. As in Section z.6, we see convergence rates for L°° that are slightly less than
2.
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Figure 2.10-1.. Transient Heat Conduction: Tet10 Meshes
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Table 2.10-1.. Transient Heat Conduction: Convergence Rates for Tet10 Meshes

Num Dofs L2(T) L2 (f) H1 L°°
865 z.66 4.15 1.51 2.21

7831 3.32 2-04 z.o8 3.4o
58zio 3.03 2.15 2.07 z.6i

464400 2,79 z.oz i.8o 2.55

For input decks see Appendix

2.11. POSTPROCESS MIN/MAX

2.11.1. Problem Description

This problem tests the min/max postprocessors in Aria.
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2.11.2. Features Tested

min max postprocessors

2.11.3. Boundary Conditions

Dirichlet BCs are specified using the exact solution on surfaces 1-4.

A source term is applied within all blocks based on substituting the exact solution into the heat
conduction operator.

2.11.4. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant.

2.11.5. Verification of Solution

The manufactured solution is
sin(7x) sin(8y).

For each uniformly refined mesh, the errors in the temperature solution are computed in the L2 , Hi ,
and L°° norms and for various postprocessors. Additionally, the nodal maximum and minimum values
on both block i and surface z are computed using Encore postprocessors and the convergence of these
values is compared as well. Since the maximum and minimums are nodal, the location of the nodes will
reflect the max/min values produced for a given mesh. Provided that the mesh is uniformly refined
(without smoothing that may shift the nodal locations), every mesh refinement will produce a better
result, dependent on how much closer to the maximum/minimum true solution the new nodes are.

Table 2.11-1.. Min Max Postprocess: Convergence Rates
Num Dofs L2 Hi L°° error_bl_max error_bl_min error_s2_max error_s2_min

62,5 1.00 1.00 1.89 1.92 0.40 0.46 z.83

37249 2.03 1.02 1.91 1.88 2-37 1.99 2-37

2.12. ADAPTIVITY

This problem is identical to the one in Section 2.4 except that we use adaptive mesh refinement to refine
from a coarse base mesh obtained from Cubit.
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Figure 2.11-1.. Min Max Postprocess

2.12.1. Features Tested

error bl_max

error_bl_min

error _s2_max

FM error _s2_min

104

Basic heat conduction on Tet4 meshes; dirichlet, heat flux, and convective flux boundary conditions;
constant source terms; heat flux and source term from Encore user subroutines; adaptive mesh
refinement; local error indicators based on jump in heat flux.

2.12.2. Boundary Conditions

Same as in Section

2.12.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both
blocks.

2.12.4. Verification of Solution

105

The mesh is adapted using code from Sierra/Percept that refines tetrahedral meshes without any
hanging nodes (conformal meshes only). The element error indicator is computed using a
residual-based error indicator in Encore, that computes the integrated jump in the normal heat flux
across inter-element faces. The input file is configured to refine elements so that the sum of the error in
the refined elements is approximately 75% of the total error in all elements.
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Because of variability in the meshes, we expect the error reduction to be noisy. In this case, we use linear
least squares to estimate the slope of the error on a log-log plot against mesh size. Since the solution is
smooth we also expect the meshes to eventually refine everywhere. We estimate convergence in the usual
error norms and observe rates close to the theoretical ones (second order convergence for the L2 and L°°
norms and first order convergence for the H1 norm). Mesh size is estimated using the formula
h ,c.--_, N-113, where N is the number of nodes in the mesh.

Coarse Mesh

Figure 2.12-1.. Steady Heat Conduction: Tet4 Meshes

Documentation for the following tests is in progress:

Error Norms

(Adaptive Mesh Refinement)

nlin_verifyl/ldnonlin_verifyl.testInp8

o_2d/aniso_2d.testInp8

o_3d/aniso_3d.testInp8

shell_2d/cyl_shell_2d.testInp8

shell_3d/cyl_shell_3d.testInp8

in_CJi/nonlin_CJi.testInpl

in_C_trap/nonlin_C_trap.testInpl

ce_parab/source_parab.testInpl

ce_parab_2d/source_parab_2d.testInpl

shell_axi/sph_shell_axi.testlnpl

rical_shell/spherical_shell.testlnp4

11_nonlin/x1lbll_nonlin.testInpl
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3. THERMAL BOUNDARY CONDITIONS

3.1. RADIATIVE HEAT FLUX

This problem tests the radiative flux boundary condition under steady state heat conduction in a zD
domain. The geometry consists of a unit square.

3.1.1. Features Tested

Basic heat conduction on Quad4 meshes; radiative flux boundary conditions with constant emissivity
and reference temperature; radiation form factor from C-style user subroutine; temperature boundary
conditions from C-style user subroutine and constant values.

3.1.2. Boundary Conditions

At surface 3, the temperature is prescribed from a C-style user subroutine. On surfaces z and 4, a
constant temperatre boundary condition is used. On surface i, a radiative heat flux condition is
prescribed. No source term is needed.

3.1.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant.

3.1.4. Verification of Solution

A manufactured solution is chosen as

T (x , y) = 200 exp( —7ry) sin (7rx) + 600

For each mesh, the errors in the temperature solution are computed in the L2 , H1 and L°° norms. The
test passes, only if the observed rates of convergence in these norms are z, i, and z, respectively (within a
tolerance).

For input decks see Appendix iz.z.i.
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Figure 3.1-1.. Radiative Heat Flux

Table 3.1-1.. Radiative Heat Flux• Convergence Rates for HexB Meshes

Num Dofs L2 111 L°°
121 2.27 1.13 2-34

441 2.14 1.07 2.17

1681 2.07 1.04 2.09

3.2. RADIATIVE HEAT FLUX FROM FORTRAN USER
SUBROUTINE

This test verifies that a user-supplied subroutine for convective coefficient and reference temperature
(restricted to a surface patch) produces the same results as the equivalent input syntax with constant
values. The user subroutine is applied to the entire exterior surface, while the case using constant values
must be applied only to specific sidesets that span a portion of the exterior surface.

3.2.1. Features Tested

Basic heat conduction on a Hex8 mesh; convective and radiative flux BCs, Fortran user subroutines.

3.2.2. Boundary Conditions

Convective and radiative flux BCs are applied to the exterior boundary.
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3.2.3. Material Parameters

The values of density, thermal conductivity, emissivity and specific heat are all constant.

3.2.4. Verification of Solution

The test compares Exodus output between two input files. The first does not use any user subroutines
and instead relies on sidesets to apply the correct convective and radiative boundary conditions with
constant coefficients. The second uses a single convective boundary condition with user subroutines for
both the convective coefficient and reference temperature. The two input files produce results that agree
to the default tolerances in the exodiff script.

For input decks see Appendix iz.z.z.

3.3. CONVECTIVE HEAT FLUX

This problem tests the convective flux boundary condition under transient heat conduction in a zD
domain. The geometry consists of a unit square.

3.3.1. Features Tested

Transient heat conduction on Quad4 meshes; convective flux boundary conditions with user
subroutines for convective coefficient and reference temperature; temperature boundary conditions
from C-style user subroutine and constant values.

3.3.2. Boundary Conditions

At surface 3, the temperature is prescribed from a C-style user subroutine. On surfaces z and 4, a
constant temperature boundary condition is used. On surface i, a convective heat flux condition is
prescribed. No source term is needed. The initial condition is provided by a C-style user subroutine

3.3.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant.
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3.3.4. Verification of Solution

A manufactured solution is chosen as

T (x , y, t) = 100 exp(-272t) sin(7x) (cos(7y) + sin(7y))

Because the solution is based on eigenfunctions, it satisfies the heat equation with no source term.

For each mesh, the errors in the temperature solution are computed in the L2, L°° and 111 norms. The
test passes, only if the observed rates of convergence in these norms are 2, z, and I, respectively (within a
tolerance).
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Figure 3.3-1.. Convective Heat Flux

Table 3.3-1.. Convective Heat Flux: Convergence Rates for Hex8 Meshes
Num Dofs L2 H1 L°°

121 2.22 1.21 2.22

441 2.13 1.09 2.12

1681 2.07 1.04 2.07

For input decks see Appendix i2.2.3.
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3.4. THERMAL CONVECTIVE FLUX (FORTRAN
SUB-ROUTINE)

3.4.1. Problem Description

This problem tests the convective flux boundary condition with a convective coefficient Fortran
subroutine for a steady thermal problem in a 3D domain whose geometry consists of a unit-sized
cube.

3.4.2. Features Tested

Convective Flux BC, Convective Coefficient Fortran Subroutine, user subroutine, integrated flux,
integrated power

3.4.3. Boundary Conditions

Convective flux boundary conditions are imposed on surfaces 1 and 2. Dirichlet BCs are specified using
the exact solution on surfaces 3-6. A source term is applied within all blocks based on substituting the
exact solution into the heat conduction operator.

3.4.4. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant.

3.4.5. Verification of Solution

The manufactured solution is

T(x,y, z) = (x — x2)2 (y — y2)2 (z — z2)2 + (z + z2) .

For each mesh, the errors in the temperature solution are computed in the L2 , Hi , and Lo° norms.

Table 3.4-1.. Thermal Convective BC: Convergence Rates
Num Dofs L2 Hi L°°

125 2.71 1.36 2.71

729 2.36 1.18 2.36

4913 2.18 1.09 1.18

35940 2.09 1.04 2.09
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Coarse Mesh Error Norms

Figure 3.4-1.. Convergence for 3D thermal steady convective flux BCs.

3.5. THERMAL CONVECTIVE FLUX (USER FIELD
FROM EXODUS READ-IN)

3.5.1. Problem Description

This problem evalutates a convective flux boundary condition with a convective coefficient and a
reference temperature from an exodus file for a steady thermal problem in a 3D domain whose
geometry consists of a unit-sized cube.

3.5.2. Features Tested

Convective Flux BC, Convective Coefficient, transfers, user subroutine, integrated flux, integrated
power

3.5.3. Boundary Conditions

Convective flux boundary conditions are imposed on surfaces 1 and z. Dirichlet BCs are specified using
the exact solution on surfaces 3-6. A source term is applied within all blocks based on substituting the
exact solution into the heat conduction operator.
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3.5.4. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant.

3.5.5. Verification of Solution

The manufactured solution is

T (x, y, z) = (x — x2)2 (y y2)2 (z z2)2 (z2 z).

For each mesh, the errors in the temperature solution are computed in the L2, Hi , and L°° norms.
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Figure 3.5-1.. Convergence for 3D thermal steady convective flux BCs.

Table 3.5-1.. Thermal Convective BC: Convergence Rates
Num Dofs L2 Hi L°°

125 2.74 1.36 2.71

729 2.36 1.18 2.36

4913 2.18 1.09 1.18

35940 2.09 1.05 2.09

274600 2.05 1.02, 2.05

106
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3.6. THERMAL HEAT FLUX

3.6.1. Thermal Heat Flux (Basic)

3.6.1.1. Problem Description

This problem tests a steady thermal solution on a unit cube with heat flux boundary conditions
imposed on one of the six surfaces. The mesh uses Hex8 elements.

3.6.1.2. Features Tested

Basic heat conduction, Calore style heat flux BCs, Integrated Flux Output, Integrated Power Output,
Hex8 meshes, user functions.

3.6.1.3. Boundary Conditions

Dirichlet BCs are specified using the exact solution on surfaces 2-6. On surface i, a heat flux BC is
specified, using a heat flux of 2 — exp(1). A source term is applied within all blocks based on
substituting the exact solution into the heat conduction operator. The integrated flux and power are
calculated and output as global variables, which should both be equal for a surface with area of i and
equal to 2 — exp(1) for all meshes considered.

3.6.1.4. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant with the same value for
both blocks.

3.6.1.5. Verification of Solution

The manufactured solution is

= (x x2)2(y y2)2(z z2)2 z2 exp(z).T(x,y,x)

For each mesh, the errors in the temperature solution are computed in the L2 , 1-11 , and L°° norms. The
test passes, only if the observed rates of convergence are z (except for the L°° norm, with convergence
order i).

53



Coarse Mesh

104
Num Nodes

Error Norms

Figure 3.6-1.. Thermal Heat Flux BC

Table 3.6-1.. Thermal Heat Flux BC: Convergence Rates
Num Dofs L2 L' Hi

729 2-33 1.15 2.25

4913 2.17 i.o8 2.13

35940 2.09 1.04 2.07

274600 2.04 I.02 2.04

3.6.2. Thermal Heat Flux (Flux node variable user field)

3.6.2.1. Problem Description

This problem tests a steady thermal solution on a unit cube with heat flux boundary conditions
imposed on one of the six surfaces. The mesh uses Hex8 elements.

3.6.2.2. Features Tested

Basic heat conduction, Calore style heat flux BCs, Flux Node Variable, User field, Field Scaling, Hex8
meshes, user functions, transfer.

3.6.2.3. Boundary Conditions

Dirichlet BCs are specified using the exact solution on surfaces i and 3-6. On surface 2, a heat flux BC is
specified, using a flux node variable user field. A source term is applied within all blocks based on
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substituting the exact solution into the heat conduction operator. Transfers are specified at the
surface.

3.6.2.4. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant with the same value for
both blocks.

3.6.2.5. Verification of Solution

The manufactured solution is

T (x, y, x) — — x2)2 (y — y2)2 (z — z2)2 + 20 * ( 2 z) * ( 1 + x y xy) .

For each mesh, the errors in the temperature solution are computed in the L2, H1, and L°° norms. The
test passes, only if the observed rates of convergence are z (except for the L°° norm, with convergence
order i).

Coarse Mesh Error Norms

Figure 3.6-2.. Thermal Heat Flux BC

3.6.3. Thermal Heat Flux (Flux node variable user field)

3.6.3.1. Problem Description

This problem tests a steady thermal solution on a unit cube with heat flux boundary conditions
imposed on one of the six surfaces. The mesh uses Hex8 elements.
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Table 3.6-2.. Thermal Heat Flux BC: Convergence Rates
Num Dofs L2 L°° HI

729

4913

35940
274600

3.6.3.2. Features Tested

2.36
2.18
2.09
2.05

2.31
2.16
2. o8
2.04

1.18

1.09

1.04

1.02

Basic heat conduction, Calore style heat flux BCs, User field real nodal vector, Hex8 meshes, user
functions, transfers.

3.6.3.3. Boundary Conditions

Dirichlet BCs are specified using the exact solution on surfaces i and 3-6. On surface z, a heat flux BC is
specified, using a flux vector node variable defined as a user field. A source term is applied within all
blocks based on substituting the exact solution into the heat conduction operator.

3.6.3.4. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant with the same value for
both blocks.

3.6.3.5. Verification of Solution

The manufactured solution is

T(x, y, x) = (x x2)2 (y y2)2 
(
z z2)2 + 20 * tz2 \ 

* 
(1

xy).

For each mesh, the errors in the temperature solution are computed in the L2, IP -, and L°° norms. The
test passes, only if the observed rates of convergence are z (except for the L°° norm, with convergence
order 1).

Table 3.6-3.. Thermal Heat Flux BC: Convergence Rates
Num Dofs L2 L°°

729

4913

35940

274600

2.36

1.18

2.09

2.05
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Figure 3.6-3.. Thermal Heat Flux BC

3.6.4. Thermal Heat Flux (Fortran Subroutine)

3.6.4.1. Problem Description

This problem tests a steady thermal solution on a unit cube with heat flux boundary conditions
imposed on one of the six surfaces. The mesh uses Hex8 elements.

3.6.4.2. Features Tested

Basic heat conduction, Calore style heat flux BCs, Integrated Flux Output, Integrated Power Output,
Fortran subroutine, Hex8 meshes, user plugin.

3.6.4.3. Boundary Conditions

Dirichlet BCs are specified using the exact solution on surfaces 3-6. On surfaces i and z, heat flux BCs are
specified, using Fortran subroutines. A source term is applied within all blocks based on substituting
the exact solution into the heat conduction operator.

3.6.4.4. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant with the same value for
both blocks.
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3.6.4.5. Verification of Solution

The manufactured solution is

_ (x - x2)2(y - y2)2(z - z2)2 + (z2 . m z \) *T (x, y, x) (1+x-Py+xy).

For each mesh, the errors in the temperature solution are computed in the L2 , H1, and L°° norms. The
test passes, only if the observed rates of convergence are z (except for the L°° norm, with convergence
order 1).

Coarse Mesh Error Norms

Figure 3.6-4.. Thermal Heat Flux BC

Table 3.6-4.. Thermal Heat Flux BC: Convergence Rates
Num Dofs L2 L°° IP-

729

4913

35940

274600

2.36

za8

2.09

2.05
58
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3.7. THERMAL RADIATIVE HEAT FLUX

3.7.1. Basic Calore-Style BC

3.7.1.1. Problem Description

This problem evaluates a steady thermal solution with radiative heat flux boundary conditions on a 3D
unit cube domain.

3.7.1.2. Features Tested

Basic heat conduction, Calore style radiative heat flux BCs, Integrated Flux Output, Integrated Power
Output, Hex8 meshes.

3.7.1.3. Boundary Conditions

Dirichlet BCs are specified using the exact solution on surfaces z-6. On surface t, a radiative heat flux BC
is specified with constant emissivity and a radiation form factor of o.z. A source term is applied within
all blocks based on substituting the exact solution into the heat conduction operator.

3.7.1.4. Material Parameters

The values of density, thermal conductivity, specific heat, and emissivity are all constant values.

3.7.1.5. Verification of Solution

The manufactured solution is

T (x , y , x) = (x — x2)2 (y y2)2 (z z2)2 + T aaTn(z2 z) .

For each discretization, the errors in the temperature solution are computed in the L2, H1, and L°°
norms. The observed rates of convergence are z (except for the L°° norm, with convergence order I).

Table 3.7-1.. Thermal Radiative Flux BC: Convergence Rates
Num Dofs L2 L°° H1

izs 2.71 1.36 2.71

729 2.36 t.t8 2.36

4913 2.18 1.09 2.18

35940 2.09 1.04. 2.09

274600 2.05 1.02 2.05
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Figure 3.7-1.. Thermal Radiative Flux

3.7.2. With Fortran Subroutines

3.7.2.1. Problem Description

This problem evaluates a steady thermal solution with radiative heat flux boundary conditions using
Fortran subroutines on a 3D unit cube domain.

3.7.2.2. Features Tested

106

Basic heat conduction, Calore style radiative heat flux BCs, Integrated Flux Output, Integrated Power
Output, Hex8 meshes, Fortran subroutines.

3.7.2.3. Boundary Conditions

Dirichlet BCs are specified using the exact solution on surfaces z-6. On surface i, a radiative heat flux BC
is specified with emissivity, reference temperature, and radiation form factor of provided by Fortran
subroutines. A source term is applied within all blocks based on substituting the exact solution into the
heat conduction operator.

3.7.2.4. Material Parameters

The values of density, thermal conductivity, specific heat, and emissivity are all constant values.
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3.7.2.5. Verification of Solution

The manufactured solution is

T (x , y , x) (x _ x2)2 (y y2)2 (z _ z2)2 + T _ 0n(z2 _ z) .

For each discretization, the errors in the temperature solution are computed in the L2 , H1, and L°°
norms. The observed rates of convergence are 2 (except for the L°° norm, with convergence order I).

Coarse Mesh Error Norms

Figure 3.7-2.. Thermal Radiative Flux

Table 3.7-2.. Thermal Radiative Flux BC: Convergence Rates
Num Dofs L2 L°° H1

125 2.72 1.38 2-59
729 2.36 TA 2.30

4913 2.18 1.09 2.15

35940 2.09 1.05 z.o8

3.7.3. With User Subroutines

3.7.3.1. Problem Description

This problem evaluates a steady thermal solution with radiative heat flux boundary conditions with
user subroutines on a 3D unit cube domain.
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3.7.3.2. Features Tested

Basic heat conduction, Calore style radiative heat flux BCs, Integrated Flux Output, Integrated Power
Output, Hex8 meshes, user subroutines.

3.7.3.3. Boundary Conditions

Dirichlet BCs are specified using the exact solution on surfaces 2.-6. On surface i, a radiative heat flux BC
is specified with emissivity, reference termperature and radiation form factor provided by user
subroutines. A source term is applied within all blocks based on substituting the exact solution into the
heat conduction operator.

3.7.3.4. Material Parameters

The values of density, thermal conductivity, specific heat, and emissivity are all constant values.

3.7.3.5. Verification of Solution

The manufactured solution is

T(x, y, x) (x - x2)2(y - y2)2(z - z2)2 + T — aaTn (z2 — z)

For each discretization, the errors in the temperature solution are computed in the L2, H1, and L°°
norms. The observed rates of convergence are z (except for the L°° norm, with convergence order t).

Table 3.7-3.. Thermal Radiative Flux BC: Convergence Rates
Num Dofs L2 L°° H1

125 2.72 1.38 2-59

719 2.36 1.18 1.30

4913 1.18 1.09 2.15

35940 2..09 1.05 1.08

3.8. ADVECTIVE BAR

Advective bar model verification tests.

3.8.1. Steady Advection-Diffusion

The three dimensional Barz meshes of one element block are generated in Cubit.
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Figure 3.7-3.. Thermal Radiative Flux

3.8.2. Features Tested

Steady heat conduction on 3D Barz meshes, Dirichlet boundary conditions, constant source term,
advection and SUPG stabilization.

3.8.3. Boundary Conditions

T(o) = T(1) = 0

3.8.4. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in the
block.

3.8.5. Verification of Solution

Solution verification is carried out by computing the error in the numerical solution based upon
comparison with the analytic solution.

1 [ 1 — exp(x-y)1
T (x)

pCV [x 1 — exp(-y) j
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where -y = pCV/k where p is the density, C is specific heat, k is the thermal conductivity and V is the
advection velocity. In this test, we find that the convergence rate for the temperature in the L°° and L2
norms are z.
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Figure 3.8-1.. Steady Advective Conduction: 3D Bar2 Meshes

Table 3.8-1.. Steady Advective Conduction: Convergence Rates
for 3D Bar2 Meshes

Num Dofs L2 L°°
21

41
81

161

321

2.14 2.11

2.07 z.o6
2.04 2.03

2.02 2.01

2.01 2.01

3.8.6. Transient Advection-Diffusion

The three dimensional Barz meshes of one element block are generated in Cubit.

3.8.7. Features Tested

Transient heat conduction on 3D Barz meshes, Dirichlet boundary conditions and Encore function
source term.
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3.8.8. Boundary Conditions

Dirichlet boundary conditions on the bar ends based upon the manufactured solution T (x)

T (0) = T (1) = Tz

3.8.9. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in the bar
block.

3.8.10. Verification of Solution

Solution verification is carried out by computing the error in the numerical solution based upon
comparison with the analytic solution.

T (x) = TZ + Atx(x — 1) exp(—Bt) exp(—Bx)

In this test, we find that the convergence rate for the temperature in the L°° and L2 norms are z.

2
co
o

 > x

Coarse Mesh

101

10-1

102

Num Nodes

Error Norms

Figure 3.8-2.. Transient Heat Conduction: 3D Bar2 Meshes

3.8.11. Transient Advection-Diffusion in 2D

The two dimensional Barz meshes of one elment block are generated in Cubit.
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Table 3.8-2.. Transient Heat Conduction: Convergence Rates for 3D Bar2 Meshes
Num Dofs L2 L°°

2I

41
81

161

3.8.12. Features Tested

2-33
/az

2.05

2.02

2.02

1.97
1.98

1.99

Transient heat conduction on zD Barz meshes, Dirichlet boundary conditions and Encore function
source term.

3.8.13. Boundary Conditions

Dirichlet boundary conditions on the bar ends

T(0) = T(1) = T,

3.8.14. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in the bar
block.

3.8.15. Verification of Solution

Solution verification is carried out by computing the error in the numerical solution based upon
comparison with the analytic solution.

T (x) = Tz + Atx(x — exp(—Bt) exp(—Bx)

In this test, we find that the convergence rate for the temperature in the L°° and L2 norms are z.

Table 3.8-3.. Transient Heat Conduction: Convergence Rates for 2D Bar2 Meshes

Num Dofs L2 L°°
2.1 2-33 2.02,

41 zaz 1.97

81 2.o5 1.98

161 2.02 1.99
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Figure 3.8-3.. Transient Heat Conduction: Bar2 Meshes

3.9. SOLUTION VERIFICATION

1 0

This test is for a Mock AFF (including a metal case, foam, mock components, and
temperature-dependent properties) that uses extrapolation to determine an approximation to the exact
solution as a function of the results from three levels of meshes.

3.9.1. Features Tested

Extrapolation, Radiative flux boundary condition

3.9.2. Material Parameters

Constant density, emissivity. Temperature dependent user functions for specific hear and thermal
conductivity.

3.9.3. Verification of Solution

Quantities of interest are the maximum, minimum, and average temperatures on both blocks and
points. There is no manufactured solution in this case, instead an extrapolated solution is calculated and
used to measure convergence and approximate the absolute error for a given mesh resolution.

Documentation for the following tests is in progress:

nic_material_decomposition/organic_material_decomposition.testInp4
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Figure 3.9-1.. Mock AFF Solution Verification
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Rates of convergence for Q01s

---- 2nd Order ----

<----- 1st Order ----

1000 2000 3000 4000

Rate of convergence

— max(T) on block 3

— ave(T) on block 3

—min(T) on block 2

—ave(T) on block 2

—T at point

5000 6C

Figure 3.9-2.. The convergence rates can vary over time and between Q01s
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4. THERMAL CONTACT

4.1. 1D FLAT CONTACT

This problem tests thermal contact along a flat surface using 3D domains. The geometry consists of two
thick blocks, which are in contact along a common flat surface. The mesh nodes on either side of the
contact surface are not aligned in general.

In this problem we observe sub-optimal convergence rates in the L°° norm when using Tet elements.
This is a known issue with unknown cause.

The contact search tolerances are fixed for all meshes, with a zero tangential and normal tolerances.

4.1.1. Features Tested

Basic heat conduction, tied and resistance thermal contact between non-matching meshes (Hex-Hex,
Tet-Tet, Hex-Tet).

4.1.2. Boundary Conditions

The interface between the two blocks is a thermal contact boundary condition. Both tied contact and
resistance contact (with finite contact resistance) are tested. The left and right boundary conditions are
prescribed using constant values. The remaining boundary conditions are adiabatic. A constant source
term is applied in each block (with different signs).

4.1.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both
blocks.
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4.1.4. Verification of Solution

A manufactured solution is chosen based on the contact interface at x = 0:

x)('y x),T (x, y, = _ x)(—ey , x),

where 7 = (2 — R)/ (2 R) is a constant depending on the thermal contact resistance R. Here R is
the inverse of the contact conductance that is provided as a code input. In the case of tied contact,
R = 0 and therefore 7 = 1. We note that when R > 0, this exact solution exhibits a jump in
temperature across the contact interface.

For each mesh, the errors in the temperature solution are computed in the L2 , L°° and II1 norms. The
test passes, only if the observed rates of convergence in these norms are 2., 2., and i, respectively (within a
tolerance).

These rates are observed for the Hex-Hex case; however, both of the cases involving Tet meshes exhibit a
reduced order of convergence in the L°° norms (convergence rate about 1.7).

For input decks see Appendix 12.3.1.

4.1.5. Results: Hex8 Tied
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Figure 4.1-1.. 1D Flat Contact: Hex8 Tied

4.1.6. Results: Hex8 Resistance
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Table 4.1-1.. 1D Flat Contact
Num Dofs

Convergence Rates for Hex8 Tied
L2 L" Hi

1241 2•45 2•44 1.38

7657 2.17 2.I2 I.Io

57890 2.II 2.11 1.07

4321oo 2.04 2.03 1.02

Coarse Mesh Error Norms

Figure 4.1-2.. 1D Flat Contact: Hex8 Resistance

Table 4.1-2.. 1D Flat Contact: Convergence Rates for Hex8 Resistance
Num Dofs L2 L" Hi

1241 2•55 2.70 I.25

7657 2.12 2.04 1.07

57890 2.13 2.17 i.o6

432100 2.03 2.01 1.02
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4.1.7. Results: Tet4 Tied
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Figure 4.1-3.. 1D Flat Contact: Tet4 Tied

Table 4.1-3.. 1D Flat Contact: Convergence Rates for Tet4 Tied
Nurn Dofs L2 L"

1348 2-33 z.o6 i.i8

9102 2.19 1.88 i.o6

666zo 2.09 1.78 1.03

509200 2.04 1.73 1.01

4.1.8. Results: Tet4 Resistance
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Figure 4.1-4.. 1D Flat Contact: Tet4 Resistance
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Table 4.1-4.. 1D Flat Contact: Convergence Rates for Tet4 Resistance
Nurn Dofs L2 L" Hi

1348 2.22 2.09 1.12

9102 2.08 1.95 1.05

666zo 2.04 1.6z 1.02

509200 z.ol 1.42 I.OI
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4.1.9. Results: Hex8-Tet4 Tied
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Figure 4.1-5.. 1D Flat Contact: Hex8-Tet4 Tied
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Table 4.1-5.. 1D Flat Contact: Convergence Rates for Hex8-Tet4 Tied
Num Dofs L2 L°° Hi

1231 2•32 2.10 1.24

8284 z.16 1.82 1.09

60570 z.o9 1.78 1.04

462800 2.04 1.82 1.02

4.1.10. Results: Hex8-Tet4 Resistance

4.2. 3D CURVED CONTACT

This problem tests thermal contact along a curved surface in 3D. The geometry consists of two thick
spherical shells, which are in contact along a shared surface. The mesh nodes on either side of the
contact surface are not aligned in general.

In this problem we observe sub-optimal convergence rates in the L°° norm when using tet elements.
This is a known issue with unknown cause.

The contact search tolerances are fixed for all meshes, with a zero tangential tolerance and a normal
tolerance large enough to insure a proper contact search on the coarsest mesh.
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Figure 4.1-6.. 1D Flat Contact: Hex8-Tet4 Resistance
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Table 4.1-6.. 1D Flat Contact: Convergence Rates for Hex8-Tet4 Resistance

Num Dofs L2 L°° Hi
1231 z.z8 2.10 1.15

8284 2.12, 1.95 1.07

60570 2..05 1.62 1.03

462800 z.oz 1.43 I.OI

4.2.1. Features Tested

Basic heat conduction, tied thermal contact between non-matching meshes (hex-hex, tet-tet, hex-tet).

4.2.2. Boundary Conditions

The interface between the two blocks is a tied thermal contact boundary condition. The outer and
inner boundary conditions are prescribed at the nodes using the analytic solution.

4.2.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both
blocks.
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4.2.4. Verification of Solution

A manufactured solution is chosen as

T(x, y, z) = —3x2z — 3y2z + 2z3

This solution is harmonic, implying that no source term is needed for the steady state heat equation
with constant conductivity.

For each mesh, the errors in the temperature solution are computed in the L2, L°° and H1 norms. The
test passes, only if the observed rates of convergence in these norms are 2, 2, and i, respectively (within a
tolerance).

These rates are observed for the hex-hex case; however, both of the cases involving tet meshes exhibit a
reduced order of convergence in the L°° norms (convergence rate about 1.7).

For input decks see Appendix 12.3.2.

4.2.5. Results: Hex8-Hex8 Contact
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Figure 4.2-1.. 3D Curved Contact: Hex8-Hex8 Case
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Table 4.2-1.. 3D Curved Contact: Convergence Rates for HexB-Hex8
Nurn Dofs L2 L°° Hi

540 3.16 z.6o 0.96

3752 Z•32 I•93 1.25

21110 2.62 2.66 1.07

150700 z•35 2.05 r.o6
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4.2.6. Results: Tet4-Tet4 Contact
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Figure 4.2-2.. 3D Curved Contact: Tet4-Tet4 Case
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Table 4.2-2.. 3D Curved Contact: Convergence Rates for Tet4-Tet4
Num Dofs L2 L"

674 2-47 2-34 100

3881 2-33 2.41

25010 2.09 1.96 1-04
159100 2.02, 1.73 1.04
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4.2.7. Results: Hex8-Tet4 Contact
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Figure 4.2-3.. 3D Curved Contact: Hex8-Tet4 Case
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Table 4.2-3.. 3D Curved Contact: Convergence Rates for Hex8-Tet4
Num Dofs L2 L°°

63o 2.34 1.87

383o 2.40 2.09

2342o 1.98 1.97 i.o6

1537oo 2.06 1.7o 1.04

4.3. STEADY HEX8 CONTACT

io6

This problem tests basic steady state heat conduction in a 3D domain. The geometry consists of a unit
cube.

4.3.1. Features Tested

Basic heat conduction on Hex8 meshes; dirichlet, heat flux, and convective flux boundary conditions;
constant source terms; heat flux and source term from Encore user subroutines.
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4.3.2. Boundary Conditions

At surfaces 4 and 6, the temperature is prescribed as a constant value. On surfaces 3 and 5, a heat flux
condition is prescribed using a sum of a constant heat flux and a heat flux from an Encore function (user
subroutine). On surfaces 1 and 2, heat flux condition is prescribed using a sum of a convective flux
boundary condition (with constant flux and convective coefficient) and a heat flux from an Encore
function (user subroutine). Within the domain a source term is prescribed using a sum of a constant
source and an Encore function (user subroutine).

4.3.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both
blocks.

4.3.4. Verification of Solution

A manufactured solution is chosen as

T(x,y, z) = 1 + (x — x2)2(y — y2)2(z — z2)2.

The source and heat flux user subroutines are chosen so that the solution satisfies the heat equation
with the correct boundary conditions.

For each mesh, the errors in the temperature solution are computed in the L2, L°° and H1 norms. The
test passes, only if the observed rates of convergence in these norms are 2, z, and I, respectively (within a
tolerance).

Table 4.3-1.. Steady Tied Contact: Convergence Rates for Hex8 Meshes
Num Dofs L2 H1 L°°

192 o.86 -0.44 o.6o
982 2.22 0.97 2.39
6419 2.31 1.07 2.28
46280 2.06 1.04 1.71
350600 1.95 1.02 z.o8

For input decks see Appendix 12.3.3.

4.4. STEADY HEX20 CONTACT

This problem tests basic steady state heat conduction in a 3D domain. The geometry consists of a unit
cube. A variety of different source terms and boundary conditions are simultaneously applied. The
exact solution is a manufactured solution.
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Figure 4.3-1.. Steady Tied Contact: Hex8 Meshes

4.4.1. Features Tested

Basic heat conduction on Hexzo meshes; dirichlet, heat flux, and convective flux boundary conditions;
constant source terms; heat flux and source term from Encore user subroutines.

4.4.2. Boundary Conditions

At surfaces 4 and 6, the temperature is prescribed as a constant value. On surfaces 3 and 5, a heat flux
condition is prescribed using a sum of a constant heat flux and a heat flux from an Encore function (user
subroutine). On surfaces r and z, heat flux condition is prescribed using a sum of a convective flux
boundary condition (with constant flux and convective coefficient) and a heat flux from an Encore
function (user subroutine). Within the domain a source term is prescribed using a sum of a constant
source and an Encore function (user subroutine).

4.4.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both
blocks.
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4.4.4. Verification of Solution

A manufactured solution is chosen as

T(x,y,z)= 1 + (x _ x2)2 (y _ y2)2 (z _ z2)2

The source and heat flux user subroutines are chosen so that the solution satisfies the heat equation
with the correct boundary conditions.

For each mesh, the errors in the temperature solution are computed in the L2 , L°° and H1 norms. The
test passes, only if the observed rates of convergence in these norms are 1, z, and I, respectively (within a
tolerance).
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Figure 4.4-1.. Steady Heat Conduction: Hex20 Meshes
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Table 4.4-1.. Steady Heat Conduction: Convergence Rates for Hex20 Meshes
Num Dofs L2 H1

2898

19620

62450
143700

For input decks see Appendix 12.3.4.

3.so

3.25

3-15
3.10
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4.5. STEADY HEX27 CONTACT

This problem tests basic steady state heat conduction in a 3D domain. The geometry consists of a unit
cube. A variety of different source terms and boundary conditions are simultaneously applied. The
exact solution is a manufactured solution.

4.5.1. Features Tested

Basic heat conduction on Hexz7 meshes; dirichlet, heat flux, and convective flux boundary conditions;
constant source terms; heat flux and source term from Encore user subroutines.

4.5.2. Boundary Conditions

At surfaces 4 and 6, the temperature is prescribed as a constant value. On surfaces 3 and 5, a heat flux
condition is prescribed using a sum of a constant heat flux and a heat flux from an Encore function (user
subroutine). On surfaces i and z, heat flux condition is prescribed using a sum of a convective flux
boundary condition (with constant flux and convective coefficient) and a heat flux from an Encore
function (user subroutine). Within the domain a source term is prescribed using a sum of a constant
source and an Encore function (user subroutine).

4.5.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both
blocks.

4.5.4. Verification of Solution

A manufactured solution is chosen as

T (x, y , z) = 1 + (x — x2)2 (y — y2)2 (z — z2)2.

The source and heat flux user subroutines are chosen so that the solution satisfies the heat equation
with the correct boundary conditions.

For each mesh, the errors in the temperature solution are computed in the L2 , L°° and Hi norms. The
test passes, only if the observed rates of convergence in these norms are z, z, and i, respectively (within a
tolerance).

For input decks see Appendix 12.3.5.
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Figure 4.5-1.. Steady Heat Conduction: Hex27 Meshes

Table 4.5-1.. Steady Heat Conduction: Convergence Rates for Hex27 Meshes

Num Dofs L2 H1 L°°

13750 3-25 2.18 3-19
z883o 3-13 z.io 2.97
6388o 3.14 2.09 3-25
120000 3.11 2.07 3.26

4.6. STEADY TET4 CONTACT

This problem is identical to the one in Section 2.1 except that unstructured Tet4 meshes are used
instead.

4.6.1. Features Tested

Basic heat conduction on Tet4 meshes; dirichlet, heat flux, and convective flux boundary conditions;
constant source terms; heat flux and source term from Encore user subroutines.

4.6.2. Boundary Conditions

Same as in Section z.i.
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4.6.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both
blocks.

4.6.4. Verification of Solution

Same as in Section z.i.
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Figure 4.6-1.. Steady Tied Contact: Tet4 Meshes
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Table 4.6-1.. Steady Tied Contact: Convergence Rates for Tet4 Meshes

Num Dofs L2 Hi L"
229 i.6o 0.76 1.48

1402 z.z9 1.09 2.65

8535 1.93 0.98 1.38

516zo 2.05 2-14
291200 i.88 0.94

For input decks see Appendix 12.3.6.

4.7. STEADY TET4TET1 0 CONTACT

This problem is identical to the one in Section z.i except that unstructured Tet4 meshes are used
instead.
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4.7.1. Features Tested

Basic heat conduction on Tet4 meshes; dirichlet, heat flux, and convective flux boundary conditions;
constant source terms; heat flux and source term from Encore user subroutines.

4.7.2. Boundary Conditions

Same as in Section

4.7.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both
blocks.

4.7.4. Verification of Solution

Same as in Section 2.1.
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Figure 4.7-1.. Steady Tied Contact: Tet4 Meshes

For input decks see Appendix Iz.3.7.
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Table 4.7-1.. Steady Tied Contact: Convergence Rates for Tet4 Meshes
Num Dofs L2 Hi L°°

1364 1-40 0.72 1.13

9663 2-14 1.02 2.46

62720 1.90 0.94 1.27

392000 1.98 T.00 2.16

2250000 1.89 0.93 1-84

4.8. STEADY TETI 0 CONTACT

This problem is identical to the one in Section 2.1 except that unstructured Tetio meshes are used
instead.

4.8.1. Features Tested

Basic heat conduction on Tetio meshes; dirichlet, heat flux, and convective flux boundary conditions;
constant source terms; heat flux and source term from Encore user subroutines.

4.8.2. Boundary Conditions

Same as in Section z.i.

4.8.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both
blocks.

4.8.4. Verification of Solution

Same as in Section 2.1.

Table 4.8-1.. Steady Tied Contact: Convergence Rates for Tetl 0 Meshes
Num Dofs L2 Hi L°°

1364 2.71 1.51 2.78

9663 3-34 2-14 2.99

62720 2.86 1.92 2-39
39z000 3.06 2.05 z.68

For input decks see Appendix 12.3.8.
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Figure 4.8-1.. Steady Tied Contact: Tetl 0 Meshes

4.9. STEADY TET10 DASH CONTACT

This problem is identical to the one in Section 2.1 except that unstructured Tetio meshes are used
instead.

4.9.1. Features Tested

106

Basic heat conduction on Tetio meshes; dirichlet, heat flux, and convective flux boundary conditions;
constant source terms; heat flux and source term from Encore user subroutines.

4.9.2. Boundary Conditions

Same as in Section z.i.

4.9.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both
blocks.
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Figure 4.9-1.. Steady Tied Dash Contact: Tet10 Meshes
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Table 4.9-1.. Steady Tied DASH Contact: Convergence Rates for Tetl 0 Meshes

Num Dofs L2 HI L°°

1364 2.8o 1.57 2.55
9663 3.34 2.14 3.14
61720 2-59 1.91 2.38
392000 2.70 2.06 2.61

4.9.4. Verification of Solution

Same as in Section 2.i.

For input decks see Appendix 12.3.9.

4.10. TRANSIENT TET4TET10 CONTACT

This problem tests basic transient heat conduction with contact in a 3D domain. The geometry consists
of two halves of a unit cube meshed with Tetio elements. The problem is solved using Tet4
interpolation and applying thermal contact at the common interface between the two domains.

4.10.1. Features Tested

Basic heat conduction on Tetio meshes; dirichlet, heat flux, and convective flux boundary conditions;
constant source terms; heat flux and source term from Encore user subroutines.
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4.10.2. Boundary Conditions

Using a manufactured solution, Dirichlet boundary conditions are applied on all the non-contact
exposed faces.

4.10.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both
blocks.

4.10.4. Verification of Solution

A manufactured solution is chosen as

T(x,y, z, t) = (x — x2)2 (y — y2)2 (z — z2)2m(t) + 1,

m(t) = 104 [1. — exp(—t) + t * exp( — (t — 1.0) * (t — 1.0))] ;

The source and heat flux user subroutines are chosen so that the solution satisfies the heat equation
with the correct boundary conditions.

Coarse Mesh
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Error Norms

Figure 4.10-1.. Transient Tied Contact: Tetl 0 Meshes

For input decks see Appendix 1/.3.1o.
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Table 4.10-1.. Transient Tied Contact: Convergence Rates for Tet10 Meshes

Num Dofs L2 (T) L2(t) 111 L°°
1364 1.41 2.85 0.72 1.14
9663 2.13 i.8i Loz 2.46
62720 1.90 1.94 0.94 1.27

4.11. TRANSIENT TETI 0 CONTACT

This problem tests basic transient heat conduction with contact in a 3D domain. The geometry consists
of two halves of a unit cube meshed with Tetio elements. The problem is solved by applying thermal
contact at the common interface between the two domains.

4.11.1. Features Tested

Basic heat conduction on Tetio meshes; dirichlet, heat flux, and convective flux boundary conditions;
constant source terms; heat flux and source term from Encore user subroutines.

4.11.2. Boundary Conditions

Using a manufactured solution, Dirichlet boundary conditions are applied on all the non-contact
exposed faces.

4.11.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both
blocks.

4.11.4. Verification of Solution

A manufactured solution is chosen as

T(x,y,z,t) = (x — x2)2 (y — y2)2 (z — z2)2 rn(t) + 1,

m(t) = 104 [1. — exp(—t) + t * exp( — (t — 1.0) * (t — 1.0))] ;

The source and heat flux user subroutines are chosen so that the solution satisfies the heat equation
with the correct boundary conditions.

For input decks see Appendix 12.3.11.
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Figure 4.11-1.. Transient Tied Contact: Tet10 Meshes

Table 4.11-1.. Transient Tied Contact: Convergence Rates for Tet10 Meshes

Num Dofs L2 (T) L2 (f) H1 L°°

1364 2•73 5.40 1.51 2.81

9663 3•33 2•23 2.14 3.00

6272o 2.85 z.3o 1.92 2.39

4.12. TRANSIENT HEX8 TIED CONTACT

This problem tests transient heat conduction on a 3D domains with a nonconformal mesh between two
blocks. Tied temperature (generalized contact) is used for matching the energy equation between
nonconformal blocks. The geometry consists of a unit cube.

4.12.1. Features Tested

Transient heat conduction on Hex8 meshes; dirichlet, heat flux, and convective flux boundary
conditions, Tied Contact, Nonconformal; constant source terms; heat flux and source term from
Encore user subroutines.

4.12.2. Boundary Conditions

At surfaces 4 and 6, the temperature is prescribed as a constant value. On surfaces 3 and 5, a heat flux
condition is prescribed using a sum of a constant heat flux and a heat flux from an Encore function (user
subroutine). On surfaces 1 and z, heat flux condition is prescribed using a sum of a convective flux
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boundary condition (with constant flux and convective coefficient) and a heat flux from an Encore
function (user subroutine). Within the domain a source term is prescribed using a sum of a constant
source and an Encore function (user subroutine). On the two interior surfaces connecting the
nonconformal blocks (surfaces 7 and 8), a contact definition is defined as tied temperature.

4.12.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both
blocks.

4.12.4. Verification of Solution

A manufactured solution is chosen as

T (x , y, z, t) = (x — x2)2 (y y2)2 (z z2)2m(t) 1,

m(t) = 104 (1 — exp(—t) + t exp(— (t — 1)2))

The source and heat flux user subroutines are chosen so that the solution satisfies the heat equation
with the correct boundary conditions.

For each mesh, the errors in the temperature solution at final time are computed in the L2 norm of T
and T, L°° and 111 norms. The test passes, only if the observed rates of convergence in these norms are
z, z, z and i, respectively (within a tolerance).
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Figure 4.12-1.. Tied Contact Transient Heat Conduction: Hex8 Meshes
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Table 4.12-1.. Tied Contact Transient Heat Conduction: Conver-
gence Rates for Hex8 Meshes

Num Dofs L2(T) L2(f) 1/1 L'
192 o.88 3.46 -0.44 o.6i

982 2.22 1.84 0.97 2•39

6419 2.31 2.30 1.07 2.29

4.13. TRANSIENT TET4 TIED CONTACT

This problem tests transient heat conduction and tied thermal contact in a 3D domain as in Section 2.7.
The geometry consists of a unit cube that is split along the plane at x = 0.5.

4.13.1. Features Tested

Basic transient heat conduction on Tet4 meshes; non-conformal tied thermal contact; dirichlet, heat
flux, and convective flux boundary conditions; constant source terms; heat flux and source term from
Encore user subroutines.

4.13.2. Boundary Conditions

Identical to Section 2.7.

4.13.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both
blocks.

4.13.4. Verification of Solution

A manufactured solution is chosen as in Section 2.7.

For each mesh, the errors in the temperature solution at final time are computed in the L2 norm of T
and T , L°° and H1 norms. We see convergence rates for T that are slightly greater than two.
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Figure 4.13-1.. Transient Heat Conduction with Tied Contact: Tet4 Meshes

Table 4.13-1.. Transient Heat Conduction with Tied Contact:
Convergence Rates for Tet4 Meshes

Nurn Dofs L2 (T) L2 (T) H1 L°°

229 i.6i 3.22 0.76 1.49

1402 2.29 1.94 1.10 2.64

8535 1.93 1.91 o.98 1.39

si62o 2.05 2.12 1.02 2.14
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5. ELEMENT DEATH

5.1. CDFEM ELEMENT DEATH (HEAT FLUX)

This problem tests transient conduction and CDFEM element death using zD and 3D domains. The
geometry consists of a thick 1/4 cylindrical or 1/8 spherical shell.

5.1.1. Features Tested

Transient heat conduction, adaptive second order time integration (BDFz), CDFEM element death,
temperature and heat flux boundary conditions, Tri3 and Tet4 meshes.

5.1.2. Boundary Conditions

On one surface, the exact solution is used to specify a time-varying temperature. At the other surface, an
analytic heat flux is applied using the exact solution. The erosion of the volume from CDFEM element
death causes the surface with the heat flux BC to gradually recede as the material is removed.

5.1.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both
blocks.

5.1.4. Verification of Solution

A manufactured solution T and exact source term S are chosen in zD to be:

and in 3D to be:

lnn(r
T (r , t) =   S(r,t) =  

l

ln(2

(r 

—

) 

t), (ln(2 — 0)

2)

(2 — t)

T(r, t) = (1+ t)/r, S(r, t) = 11r.

For each mesh, the errors in the temperature solution are computed in the L2, L°° and H1 norms over
the volume, and in the L2 and L°° norms over the outer surface. The test passes, only if the observed
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rates of convergence in these norms are one (within a tolerance). First order convergence is expected in

this case, due to the nature of the coupling of the CDFEM mesh decomposition and the heat

conduction solve.

5.1.5. Results: Tri3
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Figure 5.1-1.. CDFEM Element Death (Heat Flux): Tri3

Table 5.1-1.. CDFEM Element Death (Heat Flux): Convergence Rates for Tri3
Num Dofs L2 H1 L°° L2(surf) L°°(surf)

103 4.16 1.69 4.30 4•03 3•73

332 1.24 0.64 0.44 o.6o 0.98

1163 0.78 0.93 I.01 o.93 0•73

5.1.6. Results: Tet4

Table 5.1-2.. CDFEM Element Death (Heat Flux): Convergence Rates for Tet4
Num Dofs L2 H1 L°° L2(surf) L' (surf)

1014 0.63 0.39 0.76 o.6o 0.83

5470 1.66 1.40 1.71 1.57 1.68

32588 1.27 1.19 1.34 1.27 1.34

For input decks see Appendix 12.4.1.
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Figure 5.1-2.. CDFEM Element Death (Heat Flux): Tet4

5.2. 3D SPHERICAL SHELL ENCLOSURE

5.2.1. Problem Description

This problem tests transient conduction, enclosure radiation, and CDFEM element death. The initial
geometry of this problem is a hollow sphere (block z) inside and in contact with a second hollow sphere
(block i). The geometry is such that the solution maintains radial symmetry. The inner sphere
decomposes at a specific failure temperature, resulting in a changing enclosure geometry.

5.2.2. Features Tested

Transient heat conduction, enclosure radiation, CDFEM element death, Tet4 meshes.

5.2.3. Boundary and Initial Conditions

The initial condition is a piecewise steady state temperature distribution defined below in (5.0. The
boundary conditions specify the temperature T4 at the outer surface (4) of the outer sphere and T1 at
the inner surface (I) of the inner sphere. The inner temperature T1 will be gradually increased, while T4
remains constant in time.

An enclosure is defined initially using the outer surface of the inner volume (surface z of block z) and the
inner surface of the outer volume (surface 3 of block I). The erosion of the inner volume (block z) from
CDFEM element death causes surface z to gradually recede as the material within block z is removed.
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Dimensions are defined in Table 5.z-i.

Table 5.2-1.. Dimensions of problem

radius of surface_i r1 0.01
radius of surface_z r2 o.oz
radius of surface_3 r3 0.03
radius of surface_4 r4 0.04

5.2.4. Material Parameters

Material properties are shown in Table 5.2.-2.

Table 5.2-2.. Material properties

Thermal conductivity ic 1.0
Density p 7682.0
Specific heat CP Io.o
emissivity (inner) E2 o.6
emissivity (outer) E3 0.7
Stefan-Boltzmann constant a 5.6704e-8
failure temperature (block z) 71, 867.011674920813

5.2.5. Verification of Solution

The solution after failure occurs is specified using inner and outer temperature solutions of the form:

1/r — 1/rl
Tl — Tl) 

1/r2 — 1/ri

1/r — 1/r 3

Ti(r) rl < r < r2, (s-I)

T 0(r) Co + (T4 — Co) 
1/r4 — 1/r3 

r3 < r < r4 (5.1)

Here all parameters are known except r2 and Co, which will vary with time. The initial value of r2 is
given in Table 5.2-1; the initial value of Co is chosen to satisfy the enclosure radiation equilibrium
equations below.

To complete the solution, we now derive a system of two nonlinear equations to solve for r2 and G.
These are the energy balances on the outer and inner enclosure surfaces, given by

R2 = q2 - 0-€271+62 (F22 J2 + F23 J3) (5.3)
R3 = —q3 — cr€3T34 €3(F32J2 F33J3) (5.4)



where the three terms in each equation represent fluxes from conduction, radiative emission, and
radiative reflection. The conductive fluxes are defined by Fourier's law as

0T
2
 T, — T1

q2 /C2 r—r2 = K2 2
ar 

I 
r1(1Ir2 — 11 ri)

0T0 
I 

3 
— q3 —N3 rr = N3  2

Or — r3(1/r4 — 1

0

/r3)

The surface temperatures are

T2 —= Ti I r= r2 = Tc7 T3 = To 1r=r3 = Co

The radiosities are obtained by solving the linear system for enclosure radiation

— (1 — €2)F22 — (1 — 62 )F23 [ 0-€2771

[
1 
—(1 — €3)F32 1 — (1 — E3)F33

[ 
J3 [ o-e3T1

to obtain
1 — E3)F33 (1 — €2)F23 CrE2T1[ 

J3 a

[ 

(1 — 63 )F32 1 — (1 — 62 )F22 _
714ac.3_1_ 3

where a is the determinant

a = (1 — (1 — E2)F22) ( 1 — (1 — E3)F33) — (1 — e2)F23(1 — €3)F32

The viewfactor coefficients Fi3 are given by

F22 — 0 , F23 — 1 , F32 — (r2/r3)2, F33 — 1 — F32

The specific function we choose for T1 (t) is

(t) T1 + 400(1 — cos(irt))/2

(5.5)

The time histories of r2 and Co are shown in Figure

In order to derive the source term, the time derivatives of r2 and C, are computed once the pair of
nonlinear equations is solved using Newton's method. Since the spatial part of the piecewise solution is
harmonic, the source terms become just pcpOtT, where

otTi = ve to 1/r — 1/ri
(57)1/r2 — 1/ri ) (1/r — 1/ri)

c r3(1/r2 — 1/r1)2 ' 
r r2,

OtTo = 00(1 
1/r

 — 1/r3  )
1/r4 — 1/r3

5.2.6. Results

< r < r4

Results are presented running the problem on three meshes up to time t = 0.9.

(s.8)
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Figure 5.2-1.. Evolution of parameters r2 and G.

Table 5.2-3.. Convergence Rates at t = 0.9

Num Dofs L2 (T) L2 (t)

4307 2.11 2.09 0.83 1.03
25590 2.25 1.52 2.15 1.05
178700 2.03 1.49 1.87 0.99

For input decks see Appendix 12.4.2-

5.3. STANDARD ELEMENT DEATH (HEAT FLUX)

This problem tests transient conduction with standard element death on a zD square domain than is
essentially a ID problem.

5.3.1. Features Tested

Transient heat conduction, adaptive second order time integration (BDFz), standard element death,
temperature and heat flux boundary conditions, Tri3, Hex8 and Quad4 meshes.

5.3.2. Boundary Conditions

On one surface, the exact solution is used to specify a time-varying temperature. At the other surface, an
analytic heat flux is applied using the exact solution. The erosion of the volume from element death
causes the surface with the heat flux BC to recede element by element as the material is removed.
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The values of density, thermal conductivity, and specific heat are all constant, equal to one in both
blocks.

5.3.4. Verification of Solution

A manufactured solution T and exact source term S are chosen to be:

T (r,t) = exp(t — x).

For each mesh, the errors in the temperature solution are computed in the L2, L°° and H1 norms over
the area. The test passes, only if the observed rates of convergence in these norms are one (within a
tolerance). First order convergence is expected in this case.

5.3.5. Results: 10 Hex8

Table 5.3-1.. Element Death (Heat Flux): Convergence Rates for Hex8
Num Dofs

40
72
144
2,72

Van Varz Var3
nan nan nan
1.69 1.59 1.62

0.93 0.96 0.93

I.2a 1.14 1.17
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Figure 5.3-1.. Element Death (Heat Flux): Hex8

5.3.6. Results: 1D Quad4

Table 5.3-2.. Element Death (Heat Flux): Convergence Rates for Quad4
Num Dofs Van Varz Var3

22 I•38 1.38 I•34
36 1.85 I•52 1.66

68 1.16 I.I2 1.13

134 1.09 1.09 1.09

5.3.7. Results: 1D Tri3

Table 5.3-3.. Element Death (Heat Flux): Convergence Rates for Tri3
Num Dofs Van Varz Var3

20 nan nan nan

38 1.43 1.44 1.4o

73 1.09 1.04 1.04

138 1.19 LIZ 1.17

5.3.8. Results: 2D Quad4

This problem tests transient conduction with standard element death on a zD quarter slice of an
annulus.
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Figure 5.3-2.. Element Death (Heat Flux): Quad4

5.3.9. Features Tested

Transient heat conduction, fixed first order time integration, standard element death, Quad4 mesh.

5.3.10. Boundary Conditions

On one surface, the exact solution is used to specify a time-varying temperature. On the other surfaces,
the exact source solution is provided as the flux boundary condition. The erosion of the volume from
element death is caused by having a minimum nodal value of temperature less than I.

5.3.11. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both
blocks.

5.3.12. Verification of Solution

A manufactured solution T and exact source term S are chosen to be:

T (r, t) = ln(/x2 H-- y2)(1/ ln(2 — t)).
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Figure 5.3-3.. Element Death (Heat Flux): Tri3
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For each mesh, the errors in the temperature solution are computed in the L2, L°° and H1 norms over
the area. The test passes, only if the observed rates of convergence in these norms are one (within a
tolerance). First order convergence is expected in this case.

Table 5.3-4.. 2D Element Death (Heat Flux): Convergence Rates for Quad4

Num Dofs Van Varz Var3 Var4 Vars
63 4.53 2.35 3.z8 16.25 nan

246 0.79 I.Io 0.91 -5.66 nan
8io 1.45 I.z5 1.31 1.16 1.16
z898 1.12 1.02 1.04 I.I0 1.08

5.3.13. Results: 3D Hex8

This problem evaluates transient conduction with standard element death on a 3D quarter of a hollow
sphere geometry.

5.3.14. Features Tested

Transient heat conduction, fixed first order time integration, standard element death, Hex8 mesh.
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Figure 5.3-4.. Element Death (Heat Flux): Quad4

5.3.15. Boundary Conditions

On surface z, the exact solution is used to specify a time-varying temperature. On all remaining surfaces,
a heat flux boundary condition is imposed with a flux time function specified. The erosion of the
volume from element death is caused by having a maximum nodal value of temperature greater than
I.

5.3.16. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both
blocks.

5.3.17. Verification of Solution

A manufactured solution T and exact source term S are chosen to be:

1 + t
T(r,t) =  

\/x2 + y2 + z2

For each mesh, the errors in the temperature solution are computed in the L2 , L°° and H1 norms over
the area. The observed rates of convergence in these norms are one (within a tolerance). First order
convergence is expected in this case.
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Figure 5.3-5.. Element Death (Heat Flux): Hex8
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Table 5.3-5.. Element Death (Heat Flux): Convergence Rates for Hex8
Num Dofs L2 H1 L'

2382 1.6 4 I.I2 I.8o
16 214 1.36 I . I 0 1. 0 0

122 8 9 2 1.57 I. 0 5 o 8

io 8

1 u



6. TIME INTEGRATION

6.1. ADAPTIVE TIME INTEGRATION

This problem tests the various implicit time integrators using both fixed and adaptive time stepping.
The integrators are first order (Backward Euler), second order (Crank-Nicolson) and BDE. The
geometry is a 2D square.

6.1.1. Features Tested

Transient heat conduction, time integrators, adaptive time stepping, polynomial temperature
dependence of density and thermal conductivity.

6.1.2. Boundary Conditions

The boundary conditions are prescribed at the nodes using the analytic solution. The initial condition
is specified using an Encore function evaluated at the nodes.

6.1.3. Material Parameters

The specific heat is constant. The density and thermal conductivity are linear polynomials in the
temperature.

6.1.4. Verification of Solution

A manufactured solution is chosen as

T (x , y , t) = sin(C it) + 2x cos(C2t) + 3y sin(C3t) + 4xy cos(C4t) + 5x2 sin(C5t) + 6y2 cos(C6t)

which requires a source term. This solution is designed to have a non-trivial time-dependence using
constants:

C1 = 7 , C2 = 27, C3 = 37 , C4 = 7 , C5 = 2.57r, C6 = 0.57

10 9



For each mesh, the errors in the temperature solution are computed in the L2 , L°° and H1 norms. The
L2 error in the temperature time derivative is also computed. The test passes, only if the observed rates
of convergence in these norms are i for Hi and z for all other norms (within a tolerance).

Because the adaptive meshes use less time steps, we use time step size instead of mesh size for estimation
of the convergence rates. We also include the L2 error in the time derivative of the temperature.

For input decks see Appendix 12,.5.1.

6.1.5. Results: First Order Fixed
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Figure 6.1-1.. Adaptive Time Integration: Errors for First Order Fixed

Table 6.1-1.. Adaptive Time Integration: Convergence Rates for First Order Fixed

Num Dofs LZ (T) L2 (t) HI L°°
zo o.i8 1 . 0 5 0.89 0.43

40 0.89 I . 0 I 0.94 o.91

8o 0.95 I . 0 I LoI 0.97

160 0.98 I . 0 0 0.99 0.99

3zo 0.99 . 0 0 Imo 0.99

6.1.6. Results: First Order Adaptive

I I 0



Figure 6.1-2.. Adaptive Time Integration: Errors for First Order Adaptive

Table 6.1-2.. Adaptive Time Integration: Convergence Rates for
First Order Adaptive

Num Dofs L2 (T) L2 (t) H1 Ex)
23 0.13 1.13 1.09 0.34
46 0.77 o.68 o.86 0.81

89 LoI 1.04 1.09 1.03

178 0.93 0.95 o.96 0.95

355 0.96 0.81 0.98 0.97

III



6.1.7. Results: Second Order Fixed

Figure 6.1-3.. Adaptive Time Integration: Errors for Second Order Fixed

Table 6.1-3.. Adaptive Time Integration: Convergence Rates for
Second Order Fixed

Num Dofs L2 (T) (T) Hi L°°
20 2.59 2.II 1'37 2.46

40 1.90 z.o6 0.92 1.90

8o 2.13 z.o3 LED 1.8s

16o 1.98 1.82 o.99 2.22

320 2.03 1.71 1.02 1.75

6.1.8. Results: Second Order Adaptive
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Figure 6.1-4.. Adaptive Time Integration: Errors for Second Order Adaptive

Table 6.1-4.. Adaptive Time Integration: Convergence Rates for
Second Order Adaptive

Num Dofs V (T) L2 (t) H1 L'
u, 4.81 4.2,6 3.24 4.34
19 z.8i 2.39 1.41 2.71

z6 1.6i 4.38 2.38 1.35

41 i.88 2.77 1.51 1.92

70 2.17 1.70 1.34 2-2,4
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6.1.9. Results: BDF2 Fixed

Figure 6.1-5.. Adaptive Time Integration: Errors for BDF2 Fixed

Table 6.1-5.. Adaptive Time Integration: Convergence Rates for BDF2 Fixed

Num Dofs L2 (T) L2 (T) Hi L"
20 2.00 1.75 1.36 1.80

40 1.51 1.79 0.92 1.61

8o 1.90 1.90 I.To 1.93

i6o 1.92 1.95 0.99 1.93

320 1.98 1.98 1.02 1.98

6.1.10. Results: BDF2 Adaptive
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Figure 6.1-6.. Adaptive Time Integration: Errors for BDF2 Adaptive

Table 6.1-6.. Adaptive Time Integration: Convergence Rates for BDF2 Adaptive

Nurn Dofs L2 (T) L2 (t) Hi L"
13 4.03 4.12 z.86 3.8o

19 o.z7 o.65 1.58 0.49
z8 1.59 1.73 1.89 1.78

44 1.09 0.90 1.42 i.zz

74 2.13 z.37 1.51 2.17
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7. ENCLOSURE RADIATION

7.1. 2D CYLINDRICAL SHELL ENCLOSURE

7.1.1. Problem Description

This problem tests steady state coupled conduction and enclosure radiation. The geometry of this
problem is a hollow cylinder (block z) inside a second hollow cylinder (block I), which is a radially
symmetric problem.

7.1.2. Features Tested

Basic heat conduction, enclosure radiation, Quad4/Tri3 meshes.

7.1.3. Boundary Conditions

The boundary conditions specify the temperature of the outer surface of the outer sphere (T(r4) = T4)
and the inner surface of the inner sphere (T(ri) = TO.

The problem is steady state but is initialized with a constant temperature of 3oo in both blocks. The
inner surface temperature T1 is set to 300. The outer surface temperature T4 is set to 1300.

Dimensions are defined in Table 7.1-1.

Table 7.1-1.. Dimensions of problem

radius of surface_i r1 0.01
radius of surface_z r2 o.oz
radius of surface_3 r3 0.03
radius of surface_4 r4 0.04

7.1.4. Material Parameters

Material properties are shown in Table 7.1-2.
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Table 7.1-2.. Material properties

Thermal conductivity (block_i) Ki z.o
Thermal conductivity (block_z) K2 0.35
Density p 1. o
Specific heat CP 1 o•
emissivity (surface_z) E2 0.50
emissivity (surface_3) E3 0.55
Stefan-Boltzmann constant o- 5.6704e-8

7.1.5. Verification of Solution

In cylindrical coordinates, the temperature is independent of 9 and z. Integrating this equation twice
with respect to the radius r, we obtain the general solution in either hollow cylinder to be

T(r) = CI log(r) + C2,

for arbitrary constants C1 and C2. We will use ri, i = 1, . , 4 to denote the location of the four
surfaces of constant r, numbered from inside to outside. Unless specified otherwise, we will use these
subscripts for other quantities which are evaluated at one of the four surfaces.

Including the boundary conditions into the solution allows us to eliminate two constants and gives

Tinner(r) = TI + cI log(r/ri) for r1 < r < r2 (7.0

Touter (r) = T4 + Co log(r/r4) for r3 < r < r4 (7.z)

To solve for cI and co we compute the temperatures at the enclosure surfaces r2 and r3, defined as

T2 — Tinner (7' 2) and T3 = Touter (r3):

7.1.6. Results

The exact temperatures at the enclosure surfaces (to six digits precision) are T2 = 444.7977 and
T3 = 956.5915. From these values we can compute the values of c0 and cI and thus the exact
solution.

For each mesh, the errors in the temperature solution are computed in the L2, L°° and H1 norms. The
test passes, only if the observed rates of convergence in these norms are z, z, and 1, respectively (within a
tolerance).

These optimal rates are observed in this test.

For input decks see Appendix iz.6.1.
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Figure 7.1-1.. Enclosure Radiation 2D

Table 7.1-3.. Enclosure Radiation 2D: Convergence Rates
Num Dofs L2 L°° Hi

640 2-54 1.88 I.II

2276 2.50 2-33 I.II

8673 2.10 2.01 1.07

33500 1.90 2.00 1.02

7.2. 2D ANNULAR ENCLOSURE

7.2.1. Problem Description

This problem tests steady state coupled conduction and enclosure radiation. The geometry is an
annulus with a crack.

7.2.2. Features Tested

Basic heat conduction, enclosure radiation, Tri3 mesh.

7.2.3. Boundary Conditions

The outer and crack boundary conditions are prescribed at the nodes using the analytic solution. The
inner boundary uses an enclosure boundary condition.
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7.2.4. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant.

7.2.5. Verification of Solution

The manufactured solution is

J (6) = kJ_ + kn / cos (\/:9) / sin ( 
71
2 1,

H (0) = kJ. + k2( 1\ / 6) (cos ( le) / sin

q(9) = J (0) — H (0), 1 / 4

No) = (ki + k2 cos (g)) ,
a

T (7-, 9) = O(e) + (r — r„,i) (1(9) NO))

(1 2

where J is the radiosity, H is the irradiance, q is the flux, and

a = 5.6704 x 10-8,

ic = 1,

rcy1 = 1,

6 = 0.9,

k1 = 8000,

k2 = 400.

,V .cos le
(2) ) '

For each mesh, the errors in the temperature solution are computed in the L2 , L°° and Hi norms. The
test passes, only if the observed rates of convergence in these norms are z, z, and I, respectively (within a
tolerance). Additionally, the errors in the radiosity and irradiance are computed in the L2 norms and be
1 (within a tolerance).

These optimal rates are observed in this test.

For input decks see Appendix iz.6.z.
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Figure 7.2-1.. 2D Full Enclosure Radiation
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Table 7.2-1.. 2D Full Enclosure Radiation: Convergence Rates
Num Dofs L2 Lcs° Hi L2 (Rad) L2 (I rr)

65 2.76 1.31 2.00 2.36 2.46

232 2.38 1.13 2.15 zao 2.40

734 2.18 1.04 1.27 1.32 1.49

2788 2.26 1.03 2.07 1.32 1.85

10420 2.37 1.03 2.17 1.09 1.18

40530 1.8i LoI 2.08 LoI 1.04

7.3. 3D SPHERICAL SHELL ENCLOSURE

7.3.1. Problem Description

This problem tests steady state coupled conduction and enclosure radiation. The geometry of this
problem is a hollow sphere (block z) inside a second hollow sphere (block I), which is a radially
symmetric problem.

7.3.2. Features Tested

Basic heat conduction, enclosure radiation, Hex8 meshes.
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7.3.3. Boundary Conditions

The boundary conditions specify the temperature of the outer surface of the outer sphere (T(r4) = T4)
and the inner surface of the inner sphere (T(ri) = T1).

The problem is steady state but is initialized with a constant temperature of 3oo in both blocks. The
inner surface temperature T1 is set to 300. The outer surface temperature T4 is set to 1300.

Dimensions are defined in Table 7.3-1.

Table 7.3-1.. Dimensions of problem

radius of surface_t r1 o.ot
radius of surface_z, r2 o.oz,
radius of surface_3 r3 0.03
radius of surface_4 r4 0.04

7.3.4. Material Parameters

Material properties are shown in Table 7.3-1.

Table 7.3-2.. Material properties

Thermal conductivity (block_i) Ki z.o
Thermal conductivity (block_z) K2 0.35
Density p I.o

Specific heat C p •1 o
emissivity (surface_z) E2 0.50

emissivity (surface_3) E3 0.55

Stefan-Boltzmann constant o- 5.67o4e-8

7.3.5. Verification of Solution

In spherical coordinates, the temperature is independent of B and 0. Integrating this equation twice
with respect to the radius r, we obtain the general solution in either hollow sphere to be

T(r) = C1r-1 + C2,

for arbitrary constants C1 and C2. We will use ri,i = 1, . , 4 to denote the location of the four
surfaces of constant r, numbered from inside to outside. Unless specified otherwise, we will use these
subscripts for other quantities which are evaluated at one of the four surfaces.



Including the boundary conditions into the solution allows us to eliminate two constants and gives

Tinner(r) + cr (— 
1 1 
— —) for r1 < r < r2

r r4

Touter (r) = T- 4 + Co (- 
1 1 
- —) for r3 < r < r4

r ri

To solve for c/ and co we compute the temperatures at the enclosure surfaces r2 and r3, defined as

T2 = Tinner(r2) and T3 = Touter (r3):

(
1

T2 = T1 + CI — — 
1)
—

r2 r 4

= T4 + CO (— 
_

r3 rl

1 1
T3

The fluxes at the surfaces between the two hollow spheres are

(— aTK

ar r=r3

q3 = (—
ar

aT r=r2)
n =

n —

K1CI

2
r2

K2CO

r 2
3

Here we have used K1 and K2 to denote the thermal conductivity of the inner and outer blocks,
respectively.

(7.3)

(74)

(7.5)

(7.6)

These normal conductive fluxes are included in the total energy balance at the enclosure surfaces using
the radiative transport equations (for grey diffuse surfaces):

= (sTE2TL21 — 62 E F2PI

q3 = CrE3r31 — E F3i
3

where a is the Stefan Boltzmann constant, e is the emissivity, Fi3 is the geometric viewfactor of surface i
with respect to surface j and J3 is the radiosity for surface j.

The viewfactor coefficient Fii is the fraction of energy that leaves surface i and arrives at surface j. For
this geometric setup, no point on the inner surface at r2 can "see" itself (no straight line can be drawn
from a point on its surface onto itself) and so F22 = O. By viewfactor reciprocity

E Fi3 = 1
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we must have F23 = 1. The outer-to-inner view factor F32 can be computed analytically to be

and again by viewfactor reciprocity

2r2
F32 =

r3

r2
F33 — 1 — F32 — 1 — 2

rg

The system of equations that must be solved for the radiosities at the inner and outer surfaces is given
by

J2 = 620-D21 + (1 — 62) [F22J2 + F23J3]

J3 — E30-T1 + (1 — E3) [F32J2 + F33 J3]

Solving this system of equations, we can write J2 and J3 in terms of temperature, and plug this back
into the equation for the surface flux. We then get a system of two nonlinear equations to solve for T2
and T3 , the temperatures of the adjacent surfaces without Dirichlet boundary conditions. For our given
set of parameters, these equations are solved iteratively in Matlab using the fsolve function.

7.3.6. Results

The exact temperatures at the enclosure surfaces (to six digits precision) are T2 = 564.783 and
T3 = 1047.825. From these values we can compute the values of co and ci and thus the exact
solution.

For each mesh, the errors in the temperature solution are computed in the L2, L°° and Hi norms. The
test passes, only if the observed rates of convergence in these norms are z, z, and I, respectively (within a
tolerance).

These optimal rates are observed in this test.

Table 7.3-3.. Enclosure Radiation: Convergence Rates
Num Dofs L2 L°° H1

15590 2.14 2 . 17 i.o6
117600 2.05 2.05 1.03
912500 2.02 2 . 0 2 I.oI

For input decks see Appendix 12.6.3.
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Figure 7.3-1.. Enclosure Radiation

7.4. 3D SPHERICAL SHELL PARTIAL ENCLOSURE

7.4.1. Problem Description

This problem tests coupled conduction and enclosure radiation with a partial enclosure. The geometry
consists of two thick spherical shells separated by a gap. The outer shell has a section removed so that
the enclosure is only partial.

7.4.2. Features Tested

Basic heat conduction, enclosure radiation with partial enclosure, Hex8 meshes.

7.4.3. Boundary Conditions

The outer and inner boundary conditions are prescribed at the nodes using the analytic solution. The
analytic solution is used to set the boundary conditions on the cutaway face near the opening in the
outer shell.

7.4.4. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant within each element block;
however, the values differ between blocks.
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7.4.5. Verification of Solution

The analytic solution is identical to Section 7.3. The area for the partial enclosure is computed
analytically.

For each mesh, the errors in the temperature solution are computed in the 1,2 , L°° and H1 norms. The
test passes, only if the observed rates of convergence in these norms are z, 2, and i, respectively (within a
tolerance).

These optimal rates are observed in this test.

Coarse Mesh Error Norms

Figure 7.4-1.. Partial Enclosure Radiation

Table 7.4-1.. Partial Enclosure Radiation: Convergence Rates
Num Dofs L2 L°° Hi

4338 2.26 2.32 1.13

29690 2.13 2.07 i.o6
223200 2.06 2.06 1.03

For input decks see Appendix 12.6.4.
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8. CHEMISTRY

8.1. FIRST ORDER REACTION (SPATIALLY VARYING
TEMPERATURE)

This problem tests the interface to the CHEMEQ solver under the assumption that the temperature
remains is variable in space but remains constant in time. The geometry consists of a unit cube meshed
with Hex8 elements refined only in one direction (x).

8.1.1. Features Tested

CHEMEQ solver; source term from chemistry; nonlinear solver; second order time integrator with
fixed time steps; constant initial temperature; constant temperature boundary condition.

8.1.2. Boundary Conditions

A constant temperature is applied on surface i. The initial temperature is provided by an Encore user
subroutine and the initial species values are A = 1 and B = 0.

8.1.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both
blocks. The CHEMEQ parameters are chosen to model a single first order reaction A —> B with
constant values of pre-exponential factor and activation energy.

8.1.4. Verification of Solution

A manufactured solution is chosen as

T (x) = 400 (1 + 0.2 coseir x)),

1000
A(x,t) = exp {— exp(5) exp(

RT W
)
t

B(x,t) = 1 — A(x,t)

12.6

,



where R = 1.9872 is the ideal gas constant. A source term is used to insure that the temperature does
not vary in time.

For each mesh, the errors in the temperature and species A and B are computed in the L2 norm. The
test passes, only if the observed rates of convergence in these norms are z (within a tolerance).
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Figure 8.1-1.. First Order Reaction (Spatially Varying Temperature)

Table 8.1-1.. First Order Reaction (Spatially Varying Tempera-
ture): Convergence Rates for Hex8 Meshes

Num Dofs L2(A, B) L2 (T) 
36 2.37 2.34
68 1.18 z.18
13z z.09 z.o9
z6o 2.04 2.04
516 2.02 2.02

For input decks see Appendix t2.7.2.

8.2. FIRST ORDER REACTION

This problem tests the interface to the CHEMEQ solver under a temperature field that is variable in
space and time. The geometry consists of a unit cube meshed with Hex8 elements refined only in one
direction.

8.2.1. Features Tested

CHEMEQ solver; source term from chemistry; nonlinear solver; second order time integrator with
fixed time steps; initial temperature from user sub; constant temperature boundary condition.
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8.2.2. Boundary Conditions

The initial temperature and the temperature boundary condition on surface I are provided by an Encore
user subroutine and the initial species values are A = 1 and B = 0.

8.2.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both
blocks. The CHEMEQ parameters are chosen to model a single first order reaction A —>- B with
constant values of pre-exponential factor and activation energy.

8.2.4. Verification of Solution

A manufactured solution is chosen as

0(x, t) = exp(a — E ART))) (1 + 0.1 sin(x)) exp(t),

(I) (x , t) = exp(a — E ART))) (1 + 0.1 sin(x))(exp(t) — 1),

T (x, t) = (E 1 R) 1 (a — 1n(0(x, t))),

A(x , t) = exp(—(I)(x, t)),

B (x , t) = 1 — A(x , t)

where a is the log pre-exponential factor, R is the ideal gas constant, E is the activation energy, and To is
a reference temperature value. The form of the solution is contrived so that

OtA(x ,t) = —OtB (x , t) = —0(x ,t) A(x ,t)

E
0(x , t) = exp (a) exp(  

RT (x , t))

This allows the chemistry ODEs to be satisfied exactly, but a source term is needed in the energy
equation.

For each mesh, the errors in the temperature and species A and B are computed in the L2 norm. The
test passes, only if the observed rates of convergence in these norms are 1 (within a tolerance). Currently
it is not clear why the convergence rates are only first order.

For input decks see Appendix 12.7.3.

8.3. DAE AND PRESSURE TEST

This test runs CHEMEQ with a kinetics model that includes both pressure dependence and distributed
activation energy for a single element mesh with uniform temperature and pressure.
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Figure 8.2-1.. First Order Reaction

Table 8.2-1.. First Order Reaction: Convergence Rates for HexB Meshes

Num Dofs
20

40
8o
i6o
320
64o

8.3.1. Features Tested

1,2 (A, B) L2(T) L' (T) Hi (T)

1.50 1.15 1.17 1.00

1.30 Lo8 Lio Loo
Lis Loq. Los Loo
Lo7 Loz 1.03 Loo
Loo Loi Loi Loo
o.88 Loi Loi Loo

Basic heat conduction on a Hex8 mesh; CHEMEQ solver with pressure dependence and distributed
activation energy.

8.3.2. Boundary Conditions

No boundary conditions are prescribed, resulting in an adiabatic flux BC.

8.3.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant.
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8.3.4. Verification of Solution

The analytic solution for the concentration of species A as a function of time for the constant values
used in this test case is

A(t) = 
2 
—
1 
erfc( 

6 
—
1
( f(2) — 6erf1(1 — 4502 exp(-

61
)))))

18

The test compares the temperature errors against a gold file of the error at each time step. The exact
solution for the concentration of A is also output to the exodus file and a comparison plotting that and
the solved for concentration as a function of time has them lying on top of one another.

For input decks see Appendix 12.7.4.

8.4. PMDI PLUGIN TEST

This test verifies that the PMDI plugin calculates the correct pressure and effective conductivity based
on the auxiliary variable values.

8.4.1. Features Tested

Basic heat conduction on a Hex8 mesh; CHEMEQ solver with pressure dependence and a user plugin
to model a seven-species PDMI foam decomposition reaction.

8.4.2. Boundary Conditions

No boundary conditions are prescribed, resulting in an adiabatic flux BC.

8.4.3. Material Parameters

The values of density, emissivity and specific heat are all constant. The thermal conductivity is
computed using a C-style user subroutine contained within the foam model.

8.4.4. Verification of Solution

The initial conditions are specified as follows: The test includes a Mathematica notebook file
(ExpectedSolution.nb) for calculation of expected pressure which is 1.1512.5e7 Pa or 1669.75 psi.

For input decks see Appendix 12.7.5.
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Table 8.4-1.. PMDI Plugin Test:

Variable

Initial Conditions

Value Units
Bulk Density 321.4431149

Initial condensed density 1500

Initial porosity 0.786301

Mass fraction of all ChemEQ species 1/7

Temperature 599.8
Initial gas pressure (Nz) 101325

Initial gas temperature 199.9

kg1m3
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9. MISCELLANEOUS

9.1. THERMAL POSTPROCESSING

9.1.1. Problem Description

This problem tests basic thermal postprocessors in Aria.

9.1.2. Features Tested

Basic heat conduction, thermal postprocessors, Hex8 meshes.

9.1.3. Boundary Conditions

Dirichlet BCs are specified using the exact solution on surface i. On surface z, a natural convection BC is
specified, using the exact solution as the reference temperature and a constant heat transfer coefficient.
Similarly, a radiative flux BC is applied on surface 3, with constant values of emissivity and radiation
form factor. A source term is applied within all blocks based on substituting the exact solution into the
heat conduction operator.

9.1.4. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant with the same value for
both blocks.

9.1.5. Verification of Solution

The manufactured solution is

To + exp(Co(x2 — 1) + Ci(y2 — 0.25) + C2(z2 — 0.25) + C3t).

Postprocessors are computed for the integrated power output for convective and radiative BCs
(cf bc_ipo, rf bc_ipo), the integrated flux output for convective and radiative BCs (cf bc_ifo,
rf bc_ifo), the integrated power output for volume source terms (src_ipo), and several point
evaluations (eval_bi, eval_bibz, eval_sz).
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For each mesh, the errors in the temperature solution are computed in the L2 norm and for various
postprocessors. The test passes, only if the observed rates of convergence are z (except for the integrated
power output for source terms, which convergences with order 4).

These optimal rates are observed in this test clearly in most cases. However, for the point evaluation
cases, a large amount of variability exists in the convergence rates.
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Figure 9.1-1.. Thermal Postprocess

Table 9.1-1.. Thermal Postprocess: Convergence Rates

los 106

Num Dofs L2 c f _bc_ipo r f _bc_ipo cf _bc_i f o r f _bc_i f o src_ipo eval_bl eval_b1b2 eval_s2

225 2.52 z.88 2.83 z.88 2.83 4.62 2.21 1.94 2-56

1377 2-27 2.52 2-48 2.52 2-48 4.44 2.83 3.47 5.75

9537 2-14 2-27 2.25 2.27 2.25 4.26 1.71 1.98 -o.i6

70785 2.07 2.13 zaz 2.13 zaz 4.14 2.15 2.05 2.37
545025 2.0.4 z.o6 z.os z.o6 z.o5 4.07 z.zo 1.57 2.44

For input decks see Appendix iz.8.i.

9.2. LOCAL COORDINATES: CARTESIAN

This problem tests the use of a local Cartesian coordinate system in a material model. The geometry is a
3D cube that has been rotated.
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9.2.1. Features Tested

Steady heat conduction, time integrators, tensor thermal conductivity, local Cartesian coordinates in a
material model.

9.2.2. Boundary Conditions

The boundary conditions are prescribed at the nodes using the analytic solution. The initial condition
is specified using an Encore function evaluated at the nodes.

9.2.3. Material Parameters

The specific heat is constant. The density and thermal conductivity are constant, with a diagonal
(tensor) thermal conductivity in the local coordinate space of the material.

9.2.4. Verification of Solution

A manufactured solution is chosen as

T (X ,Y, Z) = To + T1 cos(xkX) cos(ykY) cos(zkZ)

where (X, Y, Z) are the local material coordinates, which are related to the Cartesian coordinates
(x, y, z) by a rotation matrix consisting of a product of rotations (22.5 deg around the z-axis and
45 deg around the x-axis).

For each mesh, the errors in the temperature solution are computed in the L2 , L°° and H1 norms. The
test passes, only if the observed rates of convergence in these norms are 1 for _111 and z for all other
norms (within a tolerance).

Table 9.2-1.. Local Cartesian Coordinate System: Convergence Rates
Num Dofs L2 L°°

1331

92,61

For input decks see Appendix 12.8.3.

2.29 2.27

2.15 2.14

9.3. LOCAL COORDINATES: CYLINDRICAL

This problem tests the use of a local cylindrical coordinate system in a material model. The geometry is a
3D cube that has been rotated.
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Figure 9.2-1.. Local Cartesian Coordinate System

9.3.1. Features Tested

Steady heat conduction, time integrators, tensor thermal conductivity, local coordinates in a material
model.

9.3.2. Boundary Conditions

10 '

The boundary conditions are prescribed at the nodes using the analytic solution. The initial condition
is specified using an Encore function evaluated at the nodes.

9.3.3. Material Parameters

The specific heat and density are constant. The diagonal (tensor) components of the thermal
conductivity are specified using constant values in the local coordinate space of the material.

9.3.4. Verification of Solution

A manufactured solution is chosen as

T(X, Y, Z) = To + T1(2R)3 cos(0) cos(zkZ)

where (R, e, Z) are the local cylindrical material coordinates, which are related to the standard
cylindrical coordinates (x, y, z) by a rotation matrix consisting of a product of rotations (22.5 deg
around the z-axis and 45 deg around the x-axis).
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For each mesh, the errors in the temperature solution are computed in the L2 , L°° and Hi norms. The
test passes, only if the observed rates of convergence in these norms are i for H1 and z for all other
norms (within a tolerance).

Coarse Mesh
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Figure 9.3-1.. Local Cylindrical Coordinate System

Table 9.3-1.. Local Cylindrical Coordinate System: Convergence Rates
Num Dofs L2 L°°

2692

22723

For input decks see Appendix 12.8.4
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10. LOW-MACH FLUID FLOW

Documentation for the following tests is in progress:

_rtest/aria/cvfemConvTaylorVortex/cvfemConvTaylorVortex.testInp4

_rtest/aria/gfemConvTaylorVortex/gfemConvTaylorVortex.testInp4

_rtest/aria/hfemConvTaylorVortex/hfemConvTaylorVortex.testInp4

mConvTaylorVortex/cvfemConvTaylorVortex.testInp8

mSteadyTaylorVortex/cvfemSteadyTaylorVortex.testInp8

msteadyTaylorVortexKeps/cvfemsteadyTaylorVortexKeps.testInp8

m_couette_flow/cdfem_couette_flow.testicdfem_couette_flow_tri3

m_couette_flow/cdfem_couette_flow.testicdfem_couette_flow_tri6

ConvTaylorlortex/gfemConvTaylorlortex.testInp8

SteadyTaylorlortex/gfemsteadyTaylorVortex.testlnp8
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11. HOW TO BUILD THIS DOCUMENT

You need to have Sierra developer access (through WebCars). Then you should clone the Sierra Git
repository containing the tests to a location with adequate memory (currently more than 8oGB), using
a command like this:

git clone sierra-git:/git/tests

Then you need to assign the verification tests, running the following command from your local tests
repository:

assign --path aria_rtest/verification

This will produce a text file called assigned.tests containing the list of all tests to run. You should edit the
second line of this file to indicate the remote location (accessible from the HPC machine where you will
run the tests). For example, I might have something like this:

# Created by assign at Fri Sep 19 09:52:09 2014

#@ /gscratchl/bcarnes/TESTS

aria_rtest/verification/ldnonlin_verifyl/ldnonlin_verifyl.testInp8

aria_rtest/verification/cyl_shell_2d/cyl_shell_2d.testInp8

aria_rtest/verification/cyl_shell_3d/cyl_shell_3d.testinp8

Next you need to copy the test files and the assigned.test file to the remote location (here it is
"/gscratchi/bcarnes/TESTS/"):

rsync -azv aria_rtest/verification redsky:/gscratchl/bcarnes/TESTS/aria_rtest

scp assigned.tests redsky:/gscratchl/bcarnes/TESTS/

Here I am only copying the verification test sub-directory, since I do not want to run any other tests.

On the HPC machine, you will need to load a pre-built version of the code such as the nightly master
build:

module load sierra/master

To see where the executables are located, you can run something like:
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[bcarnes@redsky-login9 1$ which aria

/projects/sierra/redsky/install/master/bin/aria

Finally, to run the tests, you use the testrun script, with a few additional arguments. The first locates the
source code needed to compile the various user subroutines (which we just found from running "which
aria"), the second enables tests to run as long as needed, the third uses the queue, and the fourth saves
the results so you can use them in the manual.

testrun --user sourcedir=/projects/sierra/ticc2/install/master/ \

--allow-multipliers=time \

--queued \

--save-all-results

It may take hours to run all the tests. Note that if the tests start to fail with an error associated with
the ACCOUNT not being set, you may need to set it using your WCID:

export ACCOUNT=fyXXXXX

To view your available WCIDs, run the following command:

mywcid

To build this manual, you should clone the Sierra Git repository containing the documentation files
using a command like this:

git clone sierra-git:/git/docs

Then go to the directory within your local repository containing the Aria Verification Manual files:

cd aria/doc/verification_manual

Once the tests have all ran successfully, you should sync the results from the remote location back to this
directory:

rsync -azv redsky:/gscratchl/bcarnes/TESTS/results .

Then run the a script to execute any local postprocessing needed to create the plots for the tests:

python ariaPostprocess.py

Finally you can create the manual using pdflatex:

pdflatex Aria_Verification_Manual.tex

which should create a new PDF output file.
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12. INPUT DECKS FOR VERIFICATION
PROBLEMS

12.1. BASIC THERMAL TESTS

12.1.1. Steady Heat Conduction: Hex8 Meshes

BEGIN SIERRA myJob

begin definition for function kxx

type = piecewise linear

begin values

0.0 0.5

1.0 2.0

2.0 8.0

end values

end

begin definition for function kyy

type = piecewise linear

begin values

0.0 0.2

1.0 1.2

2.0 2.1

20.0 20.2

end values

end

begin definition for function kzz

type = piecewise linear

begin values

0.0 1.0

1.0 2.0

2.0 3.0

20.0 21.0

end values

scale by 2.0

end

BEGIN ARIA MATERIAL Kryptonite

Density = Constant rho=1

tensor thermal conductivity = user_function X = temperature name_xx = kxx name_yy = kyy name_zz = kzz

Specific Heat = Constant cp=1

heat conduction = Generalized

END ARIA MATERIAL Kryptonite

{if(useTpetra)}

BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN SUPERLU SOLVER

END

END TPETRA EQUATION SOLVER

{else}
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Begin Trilinos Equation Solver Direct_Solver

Solution Method = amesos-superlu

End
{endif}

{if(useTpetra)}

BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER

BEGIN CG SOLVER

BEGIN JACOBI PRECONDITIONER

END

MAXIMUM ITERATIONS = 1000

RESIDUAL SCALING = NONE

CONVERGENCE TOLERANCE = 1.000000e-14

END

END TPETRA EQUATION SOLVER

{else}
Begin Trilinos Equation Solver Iterative_Solver

Solution Method = CG

Preconditioning Method = Jacobi

Maximum Iterations = 1000

Residual Norm Scaling = None

Residual Norm Tolerance = 1.Oe-14

End
{endif}

BEGIN FINITE ELEMENT MODEL cube

database name = cube_h{N}_hex8.e

coordinate system is cartesian

decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1

material Kryptonite

END PARAMETERS FOR BLOCK block_1

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln

Load From File ./exact.so Using Function registerExactSoln

End

Begin User Function exact_src

Load From File ./exact.so Using Function registerExactSrc

End

Begin User Function flux_surface_3

Load From File ./exact.so Using Function registerFlux_Surface_3

End

Begin User Function flux_surface_5

Load From File ./exact.so Using Function registerFlux_Surface_5

End

Begin User Function flux_surface_1

Load From File ./exact.so Using Function registerFlux_Surface_1

End

Begin User Function flux_surface_2

Load From File ./exact.so Using Function registerFlux_Surface_2

End

Begin Norm Postprocessor 12

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms L2

End

Begin Norm Postprocessor hl

Use Function exact_soln
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Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms H1

End

Begin Norm Postprocessor linf

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms Llnfinity

End

Begin Postprocessor Output Control pp_out

Comment Character Is %

Write To File errors_thermal_steady_hex8_h{N}.dat

Floating Point Precision Is 3

Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description

Use System Main

Begin System Main

Begin Sequential The_Time_Block

Advance myRegion

End

Simulation Start Time = 0

Simulation Termination Time = 1

End

End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton

Maximum Nonlinear Iterations = 10

Nonlinear Residual Tolerance = 1.Oe-12

Nonlinear Correction Tolerance = 1.Oe-12

Nonlinear Relaxation Factor = 1.0

use dof averaged nonlinear residual

use finite element model cube

Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q1 with DIFF SRC

# surface_4: x=0

# surface_6: x=1

# surface_3: y=0

# surface_5: y=1

# surface_1: z=1

# surface_2: z=0

# const Temp BC (x)

BC const dirichlet at surface_4 Temperature = 1.0

BC const dirichlet at surface_6 Temperature = 1.0

# const flux BC (y)

BC FLUX for Energy on surface_3 = constant flux = 3

BC FLUX for Energy on surface_5 = constant flux = 5

BC FLUX for Energy on surface_3 = Encore_Function Name=flux_surface_3

BC FLUX for Energy on surface_5 = Encore_Function Name=flux_surface_5

# convective flux BC with const Temp and H (z)

BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1

BC Flux for Energy on surface_2 = Nat_Conv T_Ref=2 H=2
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BC FLUX for Energy on surface_1 = Encore_Function Name=flux_surface_l

BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

# const source term

Source For ENERGY on block_1 = Constant value=1

Source For ENERGY on block_1 = Encore_Function Name=exact_src

Output Number of Nodes

Evaluate Postprocessor 12

Evaluate Postprocessor hl

Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output

database Name = thermal_steady_hex8_h{N}.e

at step 1, increment = 1

# time interval is 1.0

title Aria cube test

nodal variables = nonlinear_solution->TEMPERATURE as T

END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion

END PROCEDURE myAriaProcedure

END SIERRA myJob

12.1.2. Steady Heat Conduction: Hex20 Meshes

BEGIN SIERRA myJob

load user plugin file ./exact.so

begin definition for function kxx

type = piecewise linear

begin values

0.0 0.5

1.0 2.0

2.0 8.0

end values

end

begin definition for function kyy

type = piecewise linear

begin values

0.0 0.2

1.0 1.2

2.0 2.1

20.0 20.2

end values

end

begin definition for function kzz

type = piecewise linear

begin values

0.0 1.0

1.0 2.0

2.0 3.0

20.0 21.0

end values

scale by 2.0

end

BEGIN ARIA MATERIAL Kryptonite

Density = Constant rho=1
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tensor thermal conductivity = user_function X = temperature name_xx = kxx name_yy = kyy name_zz = kzz

Specific Heat = Constant cp=1

heat conduction = Generalized

END ARIA MATERIAL Kryptonite

{if(useTpetra)}

BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN SUPERLU SOLVER

END

END TPETRA EQUATION SOLVER

{else}

Begin Trilinos Equation Solver Direct_Solver

Solution Method = amesos-superlu

End
{endif}

{if(useTpetra)}

BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER

BEGIN CG SOLVER

BEGIN JACOBI PRECONDITIONER

END

MAXIMUM ITERATIONS = 1000

RESIDUAL SCALING = NONE

CONVERGENCE TOLERANCE = 1.000000e-14

END

END TPETRA EQUATION SOLVER

{else}

Begin Trilinos Equation Solver Iterative_Solver

Solution Method = CG

Preconditioning Method = Jacobi

Maximum Iterations = 1000

Residual Norm Scaling = None

Residual Norm Tolerance = 1.Oe-14

End

{endif}

BEGIN FINITE ELEMENT MODEL cube

database name = cube_h{N}_hex20.g

coordinate system is cartesian

decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1

material Kryptonite

END PARAMETERS FOR BLOCK block_1

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln

Load From File ./exact.so Using Function registerExactSoln

End

Begin User Function exact_src

Load From File ./exact.so Using Function registerExactSrc

End

Begin User Function flux_surface_3

Load From File ./exact.so Using Function registerFlux_Surface_3

End

Begin User Function flux_surface_5

Load From File ./exact.so Using Function registerFlux_Surface_5

End

Begin User Function flux_surface_1

Load From File ./exact.so Using Function registerFlux_Surface_1

End

Begin User Function flux_surface_2
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Load From File ./exact.so Using Function registerFlux_Surface_2

End

Begin Norm Postprocessor 12

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms L2

End

Begin Norm Postprocessor hl

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms H1

End

Begin Norm Postprocessor linf

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms Llnfinity

End

Begin Postprocessor Output Control pp_out

Comment Character Is %

Write To File errors_thermal_steady_hex20_11011.dat

Floating Point Precision Is 3

Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description

Use System Main

Begin System Main

Begin Sequential The_Time_Block

Advance myRegion

End

Simulation Start Time = 0

Simulation Termination Time = 1

End

End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton

Maximum Nonlinear Iterations = 10

Nonlinear Residual Tolerance = 1.Oe-12

Nonlinear Correction Tolerance = 1.Oe-12

Nonlinear Relaxation Factor = 1.0

use dof averaged nonlinear residual

use finite element model cube

Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q2S with DIFF SRC

# surface_4: x=0

# surface_6: x=1

# surface_3: y=0

# surface_5: y=1

# surface_1: z=1

# surface_2: z=0

# const Temp BC (x)

BC const dirichlet at surface_4 Temperature = 1.0

BC const dirichlet at surface_6 Temperature = 1.0
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# const flux BC (y)

BC FLUX for Energy on surface_3 = constant flux = 3

BC FLUX for Energy on surface_5 = constant flux = 5

BC FLUX for Energy on surface_3 = Encore_Function Name=flux_surface_3

BC FLUX for Energy on surface_5 = Encore_Function Name=flux_surface_5

# convective flux BC with const Temp and H (z)

BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1

BC Flux for Energy on surface_2 = Nat_Conv T_Ref=2 H=2

BC FLUX for Energy on surface_1 = Encore_Function Name=flux_surface_1

BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

# const source term

Source For ENERGY on block_1 = Constant value=1

Source For ENERGY on block_1 = Encore_Function Name=exact_src

Output Number of Nodes

Evaluate Postprocessor 12

Evaluate Postprocessor hl

Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output

database Name = thermal_steady_hex20_11{N}.e

at step 1, increment = 1

# time interval is 1.0

title Aria cube test

nodal variables = nonlinear_solution->TEMPERATURE as T

END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion

END PROCEDURE myAriaProcedure

END SIERRA myJob

12.1.3. Steady Heat Conduction: Hex27 Meshes

BEGIN SIERRA myJob

load user plugin file ./exact.so

begin definition for function kxx

type = piecewise linear

begin values

0.0 0.5

1.0 2.0

2.0 8.0

end values

end

begin definition for function kyy

type = piecewise linear

begin values

0.0 0.2

1.0 1.2

2.0 2.1

20.0 20.2

end values

end

begin definition for function kzz

type = piecewise linear

146



begin values

0.0 1.0

1.0 2.0

2.0 3.0

20.0 21.0

end values

scale by 2.0

end

BEGIN ARIA MATERIAL Kryptonite

Density = Constant rho=1

tensor thermal conductivity = user_function X = temperature name_xx = kxx name_yy = kyy name_zz = kzz

Specific Heat = Constant cp=1

heat conduction = Generalized

END ARIA MATERIAL Kryptonite

{if(useTpetra)}

BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN SUPERLU SOLVER

END

END TPETRA EQUATION SOLVER

{else}

Begin Trilinos Equation Solver Direct_Solver

Solution Method = amesos-superlu

End
{endif}

{if(useTpetra)}

BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER

BEGIN CG SOLVER

BEGIN JACOBI PRECONDITIONER

END

MAXIMUM ITERATIONS = 1000

RESIDUAL SCALING = NONE

CONVERGENCE TOLERANCE = 1.000000e-14

END

END TPETRA EQUATION SOLVER

{else}

Begin Trilinos Equation Solver Iterative_Solver

Solution Method = CG

Preconditioning Method = Jacobi

Maximum Iterations = 1000

Residual Norm Scaling = None

Residual Norm Tolerance = 1.Oe-14

End
{endif}

BEGIN FINITE ELEMENT MODEL cube

database name = cube_h{N}_hex27.g

coordinate system is cartesian

decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1

material Kryptonite

END PARAMETERS FOR BLOCK block_1

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln

Load From File ./exact.so Using Function registerExactSoln

End

Begin User Function exact_src

Load From File ./exact.so Using Function registerExactSrc

End

Begin User Function flux_surface_3

Load From File ./exact.so Using Function registerFlux_Surface_3
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End

Begin User Function flux_surface_5

Load From File ./exact.so Using Function registerFlux_Surface_5

End

Begin User Function flux_surface_1

Load From File ./exact.so Using Function registerFlux_Surface_1

End

Begin User Function flux_surface_2

Load From File ./exact.so Using Function registerFlux_Surface_2

End

Begin Norm Postprocessor 12

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms L2

End

Begin Norm Postprocessor hl

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms H1

End

Begin Norm Postprocessor linf

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms Llnfinity

End

Begin Postprocessor Output Control pp_out

Comment Character Is %

Write To File errors_thermal_steady_hex27_h{N}.dat

Floating Point Precision Is 3

Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description

Use System Main

Begin System Main

Begin Sequential The_Time_Block

Advance myRegion

End

Simulation Start Time = 0

Simulation Termination Time = 1

End

End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton

Maximum Nonlinear Iterations = 10

Nonlinear Residual Tolerance = 1.0e-12

Nonlinear Correction Tolerance = 1.Oe-12

Nonlinear Relaxation Factor = 1.0

use dof averaged nonlinear residual

use finite element model cube

Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q2 with DIFF SRC

# surface_4: x=0

# surface_6: x=1
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# surface_3: y=0

# surface_5: y=1

# surface_1: z=1

# surface_2: z=0

# const Temp BC (x)

BC const dirichlet at surface_4 Temperature = 1.0

BC const dirichlet at surface_6 Temperature = 1.0

# const flux BC (y)

BC FLUX for Energy on surface_3 = constant flux = 3

BC FLUX for Energy on surface_5 = constant flux = 5

BC FLUX for Energy on surface_3 = Encore_Function Name=flux_surface_3

BC FLUX for Energy on surface_5 = Encore_Function Name=flux_surface_5

# convective flux BC with const Temp and H (z)

BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1

BC Flux for Energy on surface_2 = Nat_Conv T_Ref=2 H=2

BC FLUX for Energy on surface_1 = Encore_Function Name=flux_surface_l

BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

# const source term

Source For ENERGY on block_1 = Constant value=1

Source For ENERGY on block_1 = Encore_Function Name=exact_src

Output Number of Nodes

Evaluate Postprocessor 12

Evaluate Postprocessor hl

Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output

database Name = thermal_steady_hex27_h{N}.e

at step 1, increment = 1

# time interval is 1.0

title Aria cube test

nodal variables = nonlinear_solution->TEMPERATURE as T

END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion

END PROCEDURE myAriaProcedure

END SIERRA myJob

12.1.4. Steady Heat Conduction: Tet4 Meshes

BEGIN SIERRA myJob

load user plugin file ./exact.so

BEGIN ARIA MATERIAL Kryptonite

Density = Constant rho=1

Thermal Conductivity = constant k=1

Specific Heat = Constant cp=1

heat conduction = basic

END ARIA MATERIAL Kryptonite

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN SUPERLU SOLVER
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END

END TPETRA EQUATION SOLVER

{else}

Begin Trilinos Equation Solver Direct_Solver

Solution Method = amesos-superlu

End
{endif}

{if(useTpetra)}

BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER

BEGIN CG SOLVER

BEGIN JACOBI PRECONDITIONER

END

MAXIMUM ITERATIONS = 1000

RESIDUAL SCALING = NONE

CONVERGENCE TOLERANCE = 1.000000e-14

END

END TPETRA EQUATION SOLVER

{else}

Begin Trilinos Equation Solver Iterative_Solver

Solution Method = CG

Preconditioning Method = Jacobi

Maximum Iterations = 1000

Residual Norm Scaling = None

Residual Norm Tolerance = 1.Oe-14

End
{endif}

BEGIN FINITE ELEMENT MODEL cube

database name = cube_h{N}_tet4.e

coordinate system is cartesian

decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1

material Kryptonite

END PARAMETERS FOR BLOCK block_1

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln

Load From File ./exact.so Using Function registerExactSoln

End

Begin User Function exact_soln_dot

Load From File ./exact.so Using Function registerExactSolnDot

End

Begin User Function exact_src

Load From File ./exact.so Using Function registerExactSrc

End

Begin User Function flux_surface_3

Load From File ./exact.so Using Function registerFlux_Surface_3

End

Begin User Function flux_surface_5

Load From File ./exact.so Using Function registerFlux_Surface_5

End

Begin User Function flux_surface_1

Load From File ./exact.so Using Function registerFlux_Surface_1

End

Begin User Function flux_surface_2

Load From File ./exact.so Using Function registerFlux_Surface_2

End

Begin Norm Postprocessor 12
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Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms L2

End

Begin Norm Postprocessor hi

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms H1

End

Begin Norm Postprocessor linf

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms Llnfinity

End

Begin Postprocessor Output Control pp_out

Comment Character Is %

Write To File errors_h{N}.dat

Floating Point Precision Is 3

Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description

Use System Main

Begin System Main

Begin Sequential The_Time_Block

Advance myRegion

End

Simulation Start Time = 0

Simulation Termination Time = 1

End

End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton

Maximum Nonlinear Iterations = 10

Nonlinear Residual Tolerance = 1.Oe-12

Nonlinear Correction Tolerance = 1.Oe-12

Nonlinear Relaxation Factor = 1.0

use dof averaged nonlinear residual

use finite element model cube

Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q1 with DIFF SRC

# surface_4: x=0

# surface_6: x=1

# surface_3: y=0

# surface_5: y=1

# surface_1: z=1

# surface_2: z=0

# const Temp BC (x)

BC const dirichlet at surface_4 Temperature = 1.0

BC const dirichlet at surface_6 Temperature = 1.0

# const flux BC (y)

BC FLUX for Energy on surface_3 = constant flux = 3

BC FLUX for Energy on surface_5 = constant flux = 5
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BC FLUX for Energy on surface_3 = Encore_Function Name=flux_surface_3

BC FLUX for Energy on surface_5 = Encore_Function Name=flux_surface_5

# convective flux BC with const Temp and H (z)
BC Flux for Energy on surface_1 = Nat_Conv

BC Flux for Energy on surface_2 = Nat_Conv

BC FLUX for Energy on surface_1 = Encore_Function

BC FLUX for Energy on surface_2 = Encore_Function

# const source term

Source For ENERGY on block_1 = Constant value=1

Source For ENERGY on block_1 = Encore_Function Name=exact_src

Output Number of Nodes

T_Ref=1 H=1

T_Ref=2 H=2

Evaluate Postprocessor 12

Evaluate Postprocessor hl

Evaluate Postprocessor linf

Name=flux_surface_1

Name=flux_surface_2

BEGIN RESULTS OUTPUT LABEL diffusion output

database Name = thermal_steady_tet4_h{N}.e

at step 1, increment = 1

# time interval is 1.0

title Aria cube test

nodal variables = nonlinear_solution->TEMPERATURE as T

END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion

END PROCEDURE myAriaProcedure

END SIERRA myJob

12.1.5. Steady Heat Conduction: Tet4Tet10 Meshes

BEGIN SIERRA myJob

load user plugin file ./exact.so

BEGIN ARIA MATERIAL Kryptonite

Density = Constant

Thermal Conductivity = constant

Specific Heat = Constant

heat conduction = basic

END ARIA MATERIAL Kryptonite

rho=1

k=1

cp=1

{if(useTpetra)}

BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN SUPERLU SOLVER

END

END TPETRA EQUATION SOLVER

{else}

Begin Trilinos Equation Solver Direct_Solver

Solution Method = amesos-superlu

End
{endif}

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER

BEGIN CG SOLVER

BEGIN JACOBI PRECONDITIONER

END

MAXIMUM ITERATIONS = 1000

RESIDUAL SCALING = NONE
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CONVERGENCE TOLERANCE = 1.000000e-14

END

END TPETRA EQUATION SOLVER

{else}

Begin Trilinos Equation Solver Iterative_Solver

Solution Method = CG

Preconditioning Method = Jacobi

Maximum Iterations = 1000

Residual Norm Scaling = None

Residual Norm Tolerance = 1.0e-14

End

{endif}

BEGIN FINITE ELEMENT MODEL cube

database name = cube_h{N}_tet10.e

coordinate system is cartesian

decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1

material Kryptonite

END PARAMETERS FOR BLOCK block_l

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln

Load From File ./exact.so Using Function registerExactSoln

End

Begin User Function exact_soln_dot

Load From File ./exact.so Using Function registerExactSolnDot

End

Begin User Function exact_src

Load From File ./exact.so Using Function registerExactSrc

End

Begin User Function flux_surface_3

Load From File ./exact.so Using Function registerFlux_Surface_3

End

Begin User Function flux_surface_5

Load From File ./exact.so Using Function registerFlux_Surface_5

End

Begin User Function flux_surface_1

Load From File ./exact.so Using Function registerFlux_Surface_1

End

Begin User Function flux_surface_2

Load From File ./exact.so Using Function registerFlux_Surface_2

End

Begin Norm Postprocessor 12

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms L2

End

Begin Norm Postprocessor hi

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms H1

End

Begin Norm Postprocessor linf

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms Llnfinity

153



End

Begin Postprocessor Output Control pp_out

Comment Character Is %
Write To File errors_thermal_steady_tet4_11011.dat

Floating Point Precision Is 3

Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description

Use System Main

Begin System Main

Begin Sequential The_Time_Block

Advance myRegion

End

Simulation Start Time = 0

Simulation Termination Time = 1

End

End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton

Maximum Nonlinear Iterations = 10

Nonlinear Residual Tolerance = 1.0e-12

Nonlinear Correction Tolerance = 1.Oe-12

Nonlinear Relaxation Factor = 1.0

use dof averaged nonlinear residual

use finite element model cube

Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q1 with DIFF SRC

# surface_4: x=0

# surface_6: x=1

# surface_3: y=0

# surface_5: y=1

# surface_1: z=1

# surface_2: z=0

# const Temp BC (x)
BC const dirichlet at surface_4 Temperature = 1.0

BC const dirichlet at surface_6 Temperature = 1.0

# const flux BC (y)
BC FLUX for Energy on surface_3 = constant flux = 3

BC FLUX for Energy on surface_5 = constant flux = 5

BC FLUX for Energy on surface_3 = Encore_Function Name=flux_surface_3

BC FLUX for Energy on surface_5 = Encore_Function Name=flux_surface_5

# convective flux BC with const Temp and H (z)
BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1

BC Flux for Energy on surface_2 = Nat_Conv T_Ref=2 H=2

BC FLUX for Energy on surface_1 = Encore_Function Name=flux_surface_1

BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

# const source term

Source For ENERGY on block_1 = Constant value=1

Source For ENERGY on block_1 = Encore_Function Name=exact_src
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Output Number of Nodes

Evaluate Postprocessor 12

Evaluate Postprocessor hl

Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output

database Name = thermal_steady_tet4_h{N}.e

at step 1, increment = 1

# time interval is 1.0

title Aria cube test

nodal variables = nonlinear_solution->TEMPERATURE as T

END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion

END PROCEDURE myAriaProcedure

END SIERRA myJob

12.1.6. Steady Heat Conduction: Tet10 Meshes

BEGIN SIERRA myJob

load user plugin file ./exact.so

BEGIN ARIA MATERIAL Kryptonite

Density = Constant rho=1

Thermal Conductivity = constant k=1

Specific Heat = Constant cp=1

heat conduction = basic

END ARIA MATERIAL Kryptonite

{if(useTpetra)}

BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN SUPERLU SOLVER

END

END TPETRA EQUATION SOLVER

{else}
Begin Trilinos Equation Solver Direct_Solver

Solution Method = amesos-superlu

End
{endif}

{if(useTpetra)}

BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER

BEGIN CG SOLVER

BEGIN JACOBI PRECONDITIONER

END

MAXIMUM ITERATIONS = 1000

RESIDUAL SCALING = NONE

CONVERGENCE TOLERANCE = 1.000000e-14

END

END TPETRA EQUATION SOLVER

{else}
Begin Trilinos Equation Solver Iterative_Solver

Solution Method = CG

Preconditioning Method = Jacobi

Maximum Iterations = 1000

Residual Norm Scaling = None

Residual Norm Tolerance = 1.Oe-14

End
{endif}

BEGIN FINITE ELEMENT MODEL cube

database name = cube_h{N}_tet10.e
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coordinate system is cartesian

decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1

material Kryptonite

END PARAMETERS FOR BLOCK block_1

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln

Load From File ./exact.so Using Function registerExactSoln

End

Begin User Function exact_soln_dot

Load From File ./exact.so Using Function registerExactSolnDot

End

Begin User Function exact_src

Load From File ./exact.so Using Function registerExactSrc

End

Begin User Function flux_surface_3

Load From File ./exact.so Using Function registerFlux_Surface_3

End

Begin User Function flux_surface_5

Load From File ./exact.so Using Function registerFlux_Surface_5

End

Begin User Function flux_surface_1

Load From File ./exact.so Using Function registerFlux_Surface_1

End

Begin User Function flux_surface_2

Load From File ./exact.so Using Function registerFlux_Surface_2

End

Begin Norm Postprocessor 12

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms L2

End

Begin Norm Postprocessor hl

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms H1

End

Begin Norm Postprocessor linf

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms Llnfinity

End

Begin Postprocessor Output Control pp_out

Comment Character Is %

Write To File errors_thermal_steady_tet10_11{N}.dat

Floating Point Precision Is 3

Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description

Use System Main

Begin System Main

Begin Sequential The_Time_Block
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Advance myRegion

End

Simulation Start Time = 0

Simulation Termination Time = 1

End

End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton

Maximum Nonlinear Iterations = 10

Nonlinear Residual Tolerance = 1.Oe-12

Nonlinear Correction Tolerance = 1.Oe-12

Nonlinear Relaxation Factor = 1.0

use dof averaged nonlinear residual

use finite element model cube

Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q2 with DIFF SRC

# surface_4: x=0

# surface_6: x=1

# surface_3: y=0

# surface_5: y=1

# surface_1: z=1

# surface_2: z=0

# const Temp BC (x)

BC const dirichlet at surface_4 Temperature = 1.0

BC const dirichlet at surface_6 Temperature = 1.0

# const flux BC (y)

BC FLUX for Energy on surface_3 = constant flux = 3

BC FLUX for Energy on surface_5 = constant flux = 5

BC FLUX for Energy on surface_3 = Encore_Function Name=flux_surface_3

BC FLUX for Energy on surface_5 = Encore_Function Name=flux_surface_5

# convective flux BC with const Temp and H (z)

BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1

BC Flux for Energy on surface_2 = Nat_Conv T_Ref=2 H=2

BC FLUX for Energy on surface_1 = Encore_Function Name=flux_surface_1

BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

# const source term

Source For ENERGY on block_1 = Constant value=1

Source For ENERGY on block_1 = Encore_Function Name=exact_src

Output Number of Nodes

Evaluate Postprocessor 12

Evaluate Postprocessor hl

Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output

database Name = thermal_steady_tet10_11011.e

at step 1, increment = 1

# time interval is 1.0

title Aria cube test

nodal variables = nonlinear_solution->TEMPERATURE as T

END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion
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END PROCEDURE myAriaProcedure

END SIERRA myJob

12.1.7. Transient Heat Conduction: Hex8 Meshes

BEGIN SIERRA myJob

load user plugin file ./exact_transient.so

# L = { L = 10

# rho = f rho = 1 }

# Cp = f Cp = 1 }
BEGIN ARIA MATERIAL Kryptonite

Density = Constant rho={rho}

Thermal Conductivity = constant k=1

Specific Heat = Constant cp={Cp}

heat conduction = basic

latent heat = constant value={L}

END ARIA MATERIAL Kryptonite

fif(useTpetra)1
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN SUPERLU SOLVER

END

END TPETRA EQUATION SOLVER
{else}

Begin Trilinos Equation Solver Direct_Solver

Solution Method = amesos-superlu

End
{endif}

fif(useTpetra)1

BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER

BEGIN CG SOLVER

BEGIN JACOBI PRECONDITIONER

END

MAXIMUM ITERATIONS = 1000

RESIDUAL SCALING = NONE

CONVERGENCE TOLERANCE = 1.000000e-12

END

END TPETRA EQUATION SOLVER

{else}
Begin Trilinos Equation Solver Iterative_Solver

Solution Method = CG

Preconditioning Method = Jacobi

Maximum Iterations = 1000

Residual Norm Scaling = None

Residual Norm Tolerance = 1.0e-12

End
{endif}

BEGIN FINITE ELEMENT MODEL cube

database name = cube_h{N}_hex8.e

coordinate system is cartesian

decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1

material Kryptonite

END PARAMETERS FOR BLOCK block_1

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln

Load From File ./exact_transient.so Using Function registerExactSoln
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End

Begin User Function exact_soln_dot

Load From File ./exact_transient.so Using Function registerExactSolnDot

End

Begin User Function exact_src

Load From File ./exact_transient.so Using Function registerExactSrc

End

Begin User Function flux_surface_3

Load From File ./exact_transient.so Using Function registerFlux_Surface_3

End

Begin User Function flux_surface_5

Load From File ./exact_transient.so Using Function registerFlux_Surface_5

End

Begin User Function flux_surface_1

Load From File ./exact_transient.so Using Function registerFlux_Surface_1

End

Begin User Function flux_surface_2

Load From File ./exact_transient.so Using Function registerFlux_Surface_2

End

# Ts = Ts = 0.5 }

# Tl = Tl = 1.5

# Tm = { Tm = 0.5 * (Ts + Tl) }

# sigma = sigma = 0.429858 * (Tm - Ts)

Begin Norm Postprocessor 12

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms L2

End

Begin Norm Postprocessor 12_dot

Use Function exact_soln_dot

Subtract Function time_derivative_at_time->TEMPERATURE

Compute Norms L2

End

Begin Norm Postprocessor hl

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms H1

End

Begin Norm Postprocessor linf

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms Llnfinity

End

Begin Postprocessor Output Control pp_out

Comment Character Is %

Write To File errors{N}.dat

Floating Point Precision Is 3

Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description

Use System Main

Begin System Main

Begin Transient The_Time_Block
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Advance myRegion

End

Simulation Start Time = 0

Simulation Termination Time = 3

End

Begin Parameters For Transient The_Time_Block

Begin Parameters For Aria Region myRegion

Initial Time Step Size = {0.5/2**N}

Time Integration Method = Second_Order

Time Step Variation = fixed

End

End

End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton

Maximum Nonlinear Iterations = 10

Nonlinear Residual Tolerance = 1.Oe-12

Nonlinear Correction Tolerance = 1.Oe-12

Nonlinear Relaxation Factor = 1.0

use dof averaged nonlinear residual

use finite element model cube

Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q1 with MASS DIFF SRC

IC for temperature on block_1 = encore_function name=exact_soln

# surface_4: x=0

# surface_6: x=1

# surface_3: y=0

# surface_5: y=1

# surface_1: z=1

# surface_2: z=0

# const Temp BC (x)

BC const dirichlet at surface_4 Temperature = 1.0

BC const dirichlet at surface_6 Temperature = 1.0

# const flux BC (y)

BC FLUX for Energy on surface_3 = constant flux = 3

Begin Heat Flux Boundary Condition hfbc2

Add Surface surface_5

Flux = -5

End

BC FLUX for Energy on surface_3 = Encore_Function Name=flux_surface_3

BC FLUX for Energy on surface_5 = Encore_Function Name=flux_surface_5

# convective flux BC with const Temp and H (z)

BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1

Begin Convective Flux Boundary Condition cfbc2

Add Surface surface_2

Convective Coefficient = 2

Reference Temperature = 2

End

BC FLUX for Energy on surface_1 = Encore_Function Name=flux_surface_1

BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

# const source term

Begin Volume Heating vh1
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Add Volume block_1

Value = 1

End

Source for Energy on block_1 = melting Ts={Ts} T1={T1}

Source For ENERGY on block_1 = Encore_Function Name=exact_src

Output Number of Nodes

Evaluate Postprocessor 12

Evaluate Postprocessor 12_dot

Evaluate Postprocessor hl

Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output

database Name = output{N}.e

at step 0, increment = {2**N}

#at step 0, increment = 1

title Aria cube test

nodal variables = solution->TEMPERATURE as T

nodal variables = time_derivative_at_time->TEMPERATURE as TDOT

END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion

END PROCEDURE myAriaProcedure

END SIERRA myJob

12.1.8. Transient Heat Conduction: Tet4 Meshes

BEGIN SIERRA myJob

load user plugin file ./exact_transient.so

BEGIN ARIA MATERIAL Kryptonite

Density = Constant rho=1

Thermal Conductivity = constant k=1

Specific Heat = Constant cp=1

heat conduction = basic

END ARIA MATERIAL Kryptonite

BEGIN ARIA MATERIAL Air

Density = Constant rho=1

Thermal Conductivity = constant k=1

Specific Heat = Constant cp=1

heat conduction = basic

END ARIA MATERIAL

{if(useTpetra)}

BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN SUPERLU SOLVER

END

END TPETRA EQUATION SOLVER

{else}

Begin Trilinos Equation Solver Direct_Solver

Solution Method = amesos-superlu

End
{endif}

{if(useTpetra)}

BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER

BEGIN CG SOLVER

BEGIN JACOBI PRECONDITIONER

END
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MAXIMUM ITERATIONS = 1000

RESIDUAL SCALING = NONE

CONVERGENCE TOLERANCE = 1.000000e-12

END

END TPETRA EQUATION SOLVER

{else}

Begin Trilinos Equation Solver Iterative_Solver

Solution Method = CG

Preconditioning Method = Jacobi

Maximum Iterations = 1000

Residual Norm Scaling = None

Residual Norm Tolerance = 1.Oe-12

End
{endif}

BEGIN FINITE ELEMENT MODEL cube

database name = cube_h{N}_tet4.e

coordinate system is cartesian

decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1

material Kryptonite

END PARAMETERS FOR BLOCK block_1

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln

Load From File ./exact_transient.so Using Function registerExactSoln

End

Begin User Function exact_soln_dot

Load From File ./exact_transient.so Using Function registerExactSolnDot

End

Begin User Function exact_src

Load From File ./exact_transient.so Using Function registerExactSrc

End

Begin User Function flux_surface_3

Load From File ./exact_transient.so Using Function registerFlux_Surface_3

End

Begin User Function flux_surface_5

Load From File ./exact_transient.so Using Function registerFlux_Surface_5

End

Begin User Function flux_surface_1

Load From File ./exact_transient.so Using Function registerFlux_Surface_1

End

Begin User Function flux_surface_2

Load From File ./exact_transient.so Using Function registerFlux_Surface_2

End

# TO = { TO = 2
# h=fh= 2 I

# rho = { rho = 1

# cp = { cp = 1 }

# omega = { omega = PI }

# bn_vol = { bn_vol = 0.5 }

Begin String Function bulk_node_exact_solution

Value is "{TO} * (sin({omega} * t) + 1)"
End

Begin String Function bulk_node_source

use function bulk_node_exact_solution as Tb

Value is "{rho * cp * omega * TO} * cos({omega} * t) - * (1 - Tb))/{bn_vol}"
End

Begin String Function bulk_node_flux_bc_corr
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use function bulk_node_exact_solution as Tb

Value is "Mil * (Tb - 2))"
End

Begin Norm Postprocessor 12

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms L2

volumes block_1

End

Begin Norm Postprocessor 12_dot

Use Function exact_soln_dot

Subtract Function time_derivative_at_time->TEMPERATURE

Compute Norms L2

volumes block_1

End

Begin Norm Postprocessor hl

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms H1

volumes block_1

End

Begin Norm Postprocessor linf

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms Llnfinity

volumes block_1

End

Begin Norm Postprocessor linf_bulk_node

Use Function bulk_node_exact_solution

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms Nodal Llnfinity

volumes block_for_abulknode

End

Begin Postprocessor Output Control pp_out

Comment Character Is %

Write To File errors{N}.dat

Floating Point Precision Is 3

Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description

Use System Main

Begin System Main

Begin Transient The_Time_Block

Advance myRegion

End

Simulation Start Time = 0

Simulation Termination Time = 3

End

Begin Parameters For Transient The_Time_Block

Begin Parameters For Aria Region myRegion

Initial Time Step Size = {0.5/2**N}

Time Integration Method = Second_Order

Time Step Variation = fixed

End

End

End

BEGIN ARIA REGION myRegion
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Nonlinear Solution Strategy = Newton

Minimum Nonlinear Solves = 1

Maximum Nonlinear Iterations = 10

Nonlinear Residual Tolerance = 1.0e-12

nonlinear residual minimum convergence rate = 0.999 number of steps = 3

Nonlinear Correction Tolerance = 1.Oe-12

Nonlinear Relaxation Factor = 1.0

use dof averaged nonlinear residual

use finite element model cube

Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q1 with MASS DIFF SRC

IC const on block_1 temperature = 1.0

# surface_4: x=0

# surface_6: x=1

# surface_3: y=0

# surface_5: y=1

# surface_1: z=1

# surface_2: z=0

# const Temp BC (x)

BC const dirichlet at surface_4 Temperature = 1.0

BC const dirichlet at surface_6 Temperature = 1.0

# const flux BC (y)
BC FLUX for Energy on surface_3 = constant flux = 3

BC FLUX for Energy on surface_5 = constant flux = 5

BC FLUX for Energy on surface_3 = Encore_Function Name=flux_surface_3

BC FLUX for Energy on surface_5 = Encore_Function Name=flux_surface_5

# convective flux BC with const Temp and H (z)

BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1

Begin Bulk Fluid Element aBulkNode

material = Air

bulk element volume = constant v = {bn_vol}

initial temperature = {TO}

bulk eq energy for temperature using p0 with mass src

bulk source for energy = encore_function name=bulk_node_source

End

Begin Convective Flux Boundary Condition bulk_flux

add surface surface_2

use bulk element aBulkNode

convective coefficient =
End

BC Flux for Energy on surface_2 = encore_function name=bulk_node_flux_bc_corr

BC FLUX for Energy on surface_1 = Encore_Function Name=flux_surface_1

BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

# const source term

Source For ENERGY on block_1 = Constant value=1

Source For ENERGY on block_1 = Encore_Function Name=exact_src

Output Number of Nodes

Evaluate Postprocessor 12

Evaluate Postprocessor 12_dot

Evaluate Postprocessor hl

Evaluate Postprocessor linf

Evaluate Postprocessor linf_bulk_node
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BEGIN RESULTS OUTPUT LABEL diffusion output

database Name = output{N}.e

at step 0, increment = {2**N}

title Aria cube test

nodal variables = solution->TEMPERATURE as T

nodal variables = time_derivative_at_time->TEMPERATURE as TDOT

global variables = abulknode_T

END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion

END PROCEDURE myAriaProcedure

END SIERRA myJob

12.1.9. Transient Heat Conduction: Tet4Tet10 Meshes

BEGIN SIERRA myJob

load user plugin file ./exact_transient.so

BEGIN ARIA MATERIAL Kryptonite

Density = Constant rho=1

Thermal Conductivity = constant k=1

Specific Heat = Constant cp=1

heat conduction = basic

END ARIA MATERIAL Kryptonite

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN SUPERLU SOLVER

END

END TPETRA EQUATION SOLVER

{else}

Begin Trilinos Equation Solver Direct_Solver

Solution Method = amesos-superlu

End
{endif}

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER

BEGIN CG SOLVER

BEGIN JACOBI PRECONDITIONER

END

MAXIMUM ITERATIONS = 1000

RESIDUAL SCALING = NONE

CONVERGENCE TOLERANCE = 1.000000e-12

END

END TPETRA EQUATION SOLVER

{else}
Begin Trilinos Equation Solver Iterative_Solver

Solution Method = CG

Preconditioning Method = Jacobi

Maximum Iterations = 1000

Residual Norm Scaling = None

Residual Norm Tolerance = 1.Oe-12

End
{endif}

BEGIN FINITE ELEMENT MODEL cube

database name = cube_h{N}_tetl0.e

coordinate system is cartesian

decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1
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material Kryptonite

END PARAMETERS FOR BLOCK block_1

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln

Load From File ./exact_transient.so Using Function registerExactSoln

End

Begin User Function exact_soln_dot

Load From File ./exact_transient.so Using Function registerExactSolnDot

End

Begin User Function exact_src

Load From File ./exact_transient.so Using Function registerExactSrc

End

Begin User Function flux_surface_3

Load From File ./exact_transient.so Using Function registerFlux_Surface_3

End

Begin User Function flux_surface_5

Load From File ./exact_transient.so Using Function registerFlux_Surface_5

End

Begin User Function flux_surface_1

Load From File ./exact_transient.so Using Function registerFlux_Surface_1

End

Begin User Function flux_surface_2

Load From File ./exact_transient.so Using Function registerFlux_Surface_2

End

Begin Norm Postprocessor 12

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms L2

End

Begin Norm Postprocessor 12_dot

Use Function exact_soln_dot

Subtract Function time_derivative_at_time->TEMPERATURE

Compute Norms L2

End

Begin Norm Postprocessor hl

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms H1

End

Begin Norm Postprocessor linf

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms Llnfinity

End

Begin Postprocessor Output Control pp_out

Comment Character Is %

Write To File errors{N}.dat

Floating Point Precision Is 3

Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description

Use System Main
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Begin System Main

Begin Transient The_Time_Block

Advance myRegion

End

Simulation Start Time = 0

Simulation Termination Time = 3

End

Begin Parameters For Transient The_Time_Block

Begin Parameters For Aria Region myRegion

Initial Time Step Size = {0.5/2**N}

Time Integration Method = Second_Order

Time Step Variation = fixed

End

End

End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton

Maximum Nonlinear Iterations = 10

Nonlinear Residual Tolerance = 1.Oe-12

Nonlinear Correction Tolerance = 1.Oe-12

Nonlinear Relaxation Factor = 1.0

use dof averaged nonlinear residual

use finite element model cube

Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q1 with MASS DIFF SRC

IC const on block_1 temperature = 1.0

# surface_4: x=0

# surface_6: x=1

# surface_3: y=0

# surface_5: y=1

# surface_1: z=1

# surface_2: z=0

# const Temp BC (x)

BC const dirichlet at surface_4 Temperature = 1.0

BC const dirichlet at surface_6 Temperature = 1.0

# const flux BC (y)
BC FLUX for Energy on surface_3 = constant flux = 3

BC FLUX for Energy on surface_5 = constant flux = 5

BC FLUX for Energy on surface_3 = Encore_Function Name=flux_surface_3

BC FLUX for Energy on surface_5 = Encore_Function Name=flux_surface_5

# convective flux BC with const Temp and H (z)

BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1

BC Flux for Energy on surface_2 = Nat_Conv T_Ref=2 H=2

BC FLUX for Energy on surface_1 = Encore_Function Name=flux_surface_1

BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

# const source term

Source For ENERGY on block_1 = Constant value=1

Source For ENERGY on block_1 = Encore_Function Name=exact_src

Output Number of Nodes

Evaluate Postprocessor 12

Evaluate Postprocessor 12_dot
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Evaluate Postprocessor hl

Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output

database Name = output{N}.e

at step 0, increment = {2**N}

title Aria cube test

nodal variables = solution->TEMPERATURE as T

nodal variables = time_derivative_at_time->TEMPERATURE as TDOT

END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion

END PROCEDURE myAriaProcedure

END SIERRA myJob

12.1.10. Transient Heat Conduction: Tet10 Meshes

BEGIN SIERRA myJob

load user plugin file ./exact_transient.so

BEGIN ARIA MATERIAL Kryptonite

Density = Constant rho=1

Thermal Conductivity = constant k=1

Specific Heat = Constant cp=1

heat conduction = basic

END ARIA MATERIAL Kryptonite

{if(useTpetra)}

BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN SUPERLU SOLVER

END

END TPETRA EQUATION SOLVER

{else}

Begin Trilinos Equation Solver Direct_Solver

Solution Method = amesos-superlu

End

{endif}

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER

BEGIN CG SOLVER

BEGIN JACOBI PRECONDITIONER

END

MAXIMUM ITERATIONS = 1000

RESIDUAL SCALING = NONE

CONVERGENCE TOLERANCE = 1.000000e-12

END

END TPETRA EQUATION SOLVER

{else}

Begin Trilinos Equation Solver Iterative_Solver

Solution Method = CG

Preconditioning Method = Jacobi

Maximum Iterations = 1000

Residual Norm Scaling = None

Residual Norm Tolerance = 1.Oe-12

End
{endif}

BEGIN FINITE ELEMENT MODEL cube

database name = cube_h{N}_tet10.e

coordinate system is cartesian

decomposition method = rcb
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BEGIN PARAMETERS FOR BLOCK block_1

material Kryptonite

END PARAMETERS FOR BLOCK block_1

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln

Load From File ./exact_transient.so Using Function registerExactSoln

End

Begin User Function exact_soln_dot

Load From File ./exact_transient.so Using Function registerExactSolnDot

End

Begin User Function exact_src

Load From File ./exact_transient.so Using Function registerExactSrc

End

Begin User Function flux_surface_3

Load From File ./exact_transient.so Using Function registerFlux_Surface_3

End

Begin User Function flux_surface_5

Load From File ./exact_transient.so Using Function registerFlux_Surface_5

End

Begin User Function flux_surface_1

Load From File ./exact_transient.so Using Function registerFlux_Surface_1

End

Begin User Function flux_surface_2

Load From File ./exact_transient.so Using Function registerFlux_Surface_2

End

Begin Norm Postprocessor 12

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms L2

End

Begin Norm Postprocessor 12_dot

Use Function exact_soln_dot

Subtract Function time_derivative_at_time->TEMPERATURE

Compute Norms L2

End

Begin Norm Postprocessor hi

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms H1

End

Begin Norm Postprocessor linf

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms Llnfinity

End

Begin Postprocessor Output Control pp_out

Comment Character Is %

Write To File errors{N}.dat

Floating Point Precision Is 3

Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
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Use System Main

Begin System Main

Begin Transient The_Time_Block

Advance myRegion

End

Simulation Start Time = 0

Simulation Termination Time = 3

End

Begin Parameters For Transient The_Time_Block

Begin Parameters For Aria Region myRegion

Initial Time Step Size = {0.5/2**N}

Time Integration Method = Second_Order

Time Step Variation = fixed

End

End

End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton

Maximum Nonlinear Iterations = 10

Nonlinear Residual Tolerance = 1.Oe-12

Nonlinear Correction Tolerance = 1.Oe-12

Nonlinear Relaxation Factor = 1.0

use dof averaged nonlinear residual

use finite element model cube

Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q2 with MASS DIFF SRC

IC const on block_1 temperature = 1.0

# surface_4: x=0

# surface_6: x=1

# surface_3: y=0

# surface_5: y=1

# surface_1: z=1

# surface_2: z=0

# const Temp BC (x)

BC const dirichlet at surface_4 Temperature = 1.0

BC const dirichlet at surface_6 Temperature = 1.0

# const flux BC (y)

BC FLUX for Energy on surface_3 = constant flux = 3

BC FLUX for Energy on surface_5 = constant flux = 5

BC FLUX for Energy on surface_3 = Encore_Function Name=flux_surface_3

BC FLUX for Energy on surface_5 = Encore_Function Name=flux_surface_5

# convective flux BC with const Temp and H (z)

BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1

BC Flux for Energy on surface_2 = Nat_Conv T_Ref=2 H=2

BC FLUX for Energy on surface_1 = Encore_Function Name=flux_surface_1

BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

# const source term

Source For ENERGY on block_l = Constant value=1

Source For ENERGY on block_1 = Encore_Function Name=exact_src

Output Number of Nodes

Evaluate Postprocessor 12
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Evaluate Postprocessor 12_dot

Evaluate Postprocessor hl

Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output

database Name = output{N}.e

at step 0, increment = {2**N}

title Aria cube test

nodal variables = solution->TEMPERATURE as T

nodal variables = time_derivative_at_time->TEMPERATURE as TDOT

END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion

END PROCEDURE myAriaProcedure

END SIERRA myJob
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12.2. THERMAL BOUNDARY CONDITIONS

12.2.1. Radiative Heat Flux 3.1

BEGIN SIERRA Aria

Title Radiation Form Factor Flux User_Sub

Begin Global Constants

Stefan Boltzmann constant = 5.6704E-8

End Global Constants

load user plugin file ./FormFactor.so

load user plugin file ./DirichletBC.so

Begin User Function exact_soln

Load From File ./Exact_Solution.so Using Function registerExactSoln

End

Begin Norm Postprocessor 12

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms L2

End

Begin Norm Postprocessor hl

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms H1

End

Begin Norm Postprocessor linf

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms Llnfinity

End

Begin Postprocessor Output Control pp_out

Comment Character Is %

Write To File errors{N}.dat

Floating Point Precision Is 3

Floating Point Format Is Scientific

End

Begin Aria Material matl

density = constant rho = 0.1

thermal conductivity = constant k = 1.0

specific heat = constant cp = 1.0

heat conduction = basic

End Aria Material matl

Begin Aria Material mat_sl

emissivity = constant e = 0.8

bc rad reference temperature = constant t_ref = 500

radiation form factor = calore_user_sub name = form_factor type = element

End

Begin Finite Element Model myModel

Database Name = mesh{N}.g

Coordinate System = Cartesian

decomposition method = rcb

Database Type = EXODUSII

Use Material matl for block_l

Use Material mat_sl for surface_1

End Finite Element Model myModel
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{if(useTpetra)}

BEGIN TPETRA EQUATION SOLVER SOLVE_TEMPERATURE

BEGIN CG SOLVER

BEGIN JACOBI PRECONDITIONER

END

MAXIMUM ITERATIONS = 1000

RESIDUAL SCALING = RO

CONVERGENCE TOLERANCE = 1.000000e-12

END

END TPETRA EQUATION SOLVER

{else}
begin aztec equation solver solve_temperature

solution method = cg

preconditioning method = jacobi

maximum iterations = 1000

residual norm tolerance = 1.Oe-12

residual norm scaling = r0

end aztec equation solver solve_temperature
{endif}

begin procedure myProcedure

Begin Solution Control Description

Use System Main

Begin System Main

Begin Sequential MySolveBlock

Advance myRegion

End

End

End

begin Aria region myRegion

Use Finite Element Model myModel

Use Linear Solver solve_temperature

Nonlinear Solution Strategy = Newton

Maximum nonlinear iterations = 10

Nonlinear residual tolerance = 1.0e-10

Nonlinear correction tolerance = 1.0e-10

Nonlinear relaxation factor = 1.0

EQ ENERGY for TEMPERATURE on block_1 using Q1 with DIFF

BC dirichlet for temperature on surface_3 = calore_user_sub name = localCoord_bc type=node

• Begin Radiative Flux Boundary Condition fraction

• Add surface surface_1

• Emissivity = 0.8

• Reference Temperature = 500.0

• Radiation Form Factor Subroutine = form_factor

• End

BC Flux for Energy at surface_1 = generalized_rad

BC const DIRICHLET at surface_2 temperature = 600.0

BC const DIRICHLET at surface_4 temperature = 600.0

Output Number of Nodes

Evaluate Postprocessor 12

Evaluate Postprocessor hl

Evaluate Postprocessor linf

Begin Results Output Label diffusion output

database Name = output{N}.e

At Step 1, Increment = 1

Timestep Adjustment Interval = 1
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Title Radiative Flux BC User Sub Test

Nodal Variables = solution->temperature as T

End Results Output Label diffusion output

end Aria region myRegion

end procedure myProcedure

end sierra Aria

12.2.2. Radiative Heat Flux From Fortran User Subroutine

begin sierra Fandl_VnVtest

title Verification of Fire and Ice BC subroutine, AKA Directed Heating User Sub \$

Simplified model with sidesets to check that BCs are applied to faces specified \$

Load User Plugin File ./FireAndIceBC.so USING function conv_subs_register

###################################################

######## Material property definitions ############

###################################################

begin aria material VnVmat

heat conduction = basic

density = constant rho = 8000.0 # Approximate value for VnV study

emissivity = constant e = 0.30 # Approximate value for VnV study

specific heat = constant cp = 550 # Approximate value for VnV study

thermal conductivity = constant k = 20 # Approximate value for VnV study

end aria material VnVmat

#####################################################################

############ UPDATE THE FINITE ELEMENT MODEL ########################

#####################################################################

begin finite element model fem

database name = VnVmesh2.g

database type = exodusll

use material VnVmat for block_1

# - Block id 10 had name 10

use material VnVmat for block_10

# - Block id 11 had name 11

use material VnVmat for block_11

# - Block id 12 had name 12

use material VnVmat for block_12

# - Block id 13 had name 13

use material VnVmat for block_13

# - Block id 2 had name 2

use material VnVmat for block_2

# - Block id 3 had name 3

use material VnVmat for block_3

# - Block id 4 had name 4

use material VnVmat for block_4

# - Block id 5 had name 5

use material VnVmat for block_5

# - Block id 6 had name 6

use material VnVmat for block_6
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# - Block id 7 had name 7

use material VnVmat for block_7

# - Block id 8 had name 8

use material VnVmat for block_8

# - Block id 9 had name 9

use material VnVmat for block_9

end finite element model fem

###################################################

begin global constants

stefan boltzmann constant = 5.67e-8

end global constants

################################################

{if(useTpetra)}

BEGIN TPETRA EQUATION SOLVER TRILINOS_SOLVE

BEGIN GMRES SOLVER

BEGIN DD-ILUT PRECONDITIONER

DROP TOLERANCE = 0

FILL FRACTION = 5.000000e+00

END

MAXIMUM ITERATIONS = 1000

RESTART ITERATIONS = 100

RESIDUAL SCALING = RO

CONVERGENCE TOLERANCE = 1.000000e-12

END

MATRIX SCALING = ONE_NORM

END TPETRA EQUATION SOLVER

{else}
Begin TRILINOS Equation Solver trilinos_solve

Solution Method = GMRES

Preconditioning Method = DD-ILUT

Maximum Iterations = 1000

Matrix Scaling = row-sum

Residual Norm Tolerance = 1.Oe-12

Residual Norm Scaling = RO

Restart Iterations is 100

preconditioning steps is 1

Param-Real AZ_ilut_fill value 5.0

polynomial order = 300

ilu threshold = 1.Oe-6

End TRILINOS Equation Solver trilinos_solve
{endif}

begin procedure aria_procedure

begin solution control description

Use System Main

Begin System Main

Simulation Max Global Iterations = 10000

Simulation Start Time = 0.0

#Simulation Termination Time = 3600.0

Begin Transient Main

Advance myRegion

End

End

Begin Parameters For Transient Main

Start Time = 0.0



Termination Time = 0.1

Begin Parameters for Aria Region myRegion

Time Integration Method = Second_Order #Second_Order

Time Step Variation = Adaptive

Initial Time Step Size = 0.01

Minimum Time Step Size = 0.01

Maximum Time Step Size = 0.01

#Minimum Resolved Time Step Size = 0.001

Predictor-Corrector Tolerance = 1.Oe-08

End

End

End #solution control

#######################################################

begin aria region myRegion

# solve energy equation for temperature at the nodes (lst order) with diffusion

EQ ENERGY for TEMPERATURE on all_blocks using Q1 with lumped_mass Diff

use finite element model fem

nonlinear solution strategy = newton

use dof averaged nonlinear residual

accept solution after maximum nonlinear iterations = true

use linear solver trilinos_solve

nonlinear relaxation factor = 1.0

nonlinear residual tolerance = 1.Oe-10 # for transient

maximum nonlinear iterations = 10 # for transient

#nonlinear residual tolerance = 1.Oe-15 # for steady state

#maximum nonlinear iterations = 150 # for steady state

#########################################################

############## Initial Conditions #######################

#########################################################

IC Const on all_blocks temperature = 300.0

#########################################################

########### Convective Boundary Conditions ##############

#########################################################

begin convective flux boundary condition FireAndlceBC

add surface surface_1 surface_2 surface_3 surface_4

add surface surface_5 surface_6 surface_7 surface_8

add surface surface_9 surface_10 surface_11 surface_12

add surface surface_13 surface_14 surface_15 surface_16

add surface surface_17 surface_18 surface_19 surface_20

add surface surface_21 surface_22 surface_23 surface_24

add surface surface_25 # A11 external surfaces

# User Sub Integer Input Constants:

# cosdistA=idat(1), for x < xA

# cosdistAB=idat(2), for xA <= x <= xB

# cosdistB=idat(3), for x > xB

# User Sub Real Input Constants:

# xoffset=rdat(1), such that abs(xnosetip-xoffset)=0

# xA=rdat(2), distance from nosetip to position A (xA>0)

# xB=rdat(3), distance from nosetip to position B (xB>0)

# hAl=rdat(4), convective htc for x < xA for azimuthal section 1

# hAB1=rdat(5), convective htc for xA <= x <= xB for section 1

# hBl=rdat(6), convective htc for x > xB for azimuthal section 1
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# TrefAl=rdat(7), Tref for x < xA for azimuthal section 1

# TrefABl=rdat(8), Tref for xA <= x <= xB for azimuthal section 1

# TrefBl=rdat(9), Tref for x > xB for azimuthal section 1

# emisAl=rdat(10), emis for x < xA for azimuthal section 1

# emisAB1=rdat(11), emis for xA <= x <= xB for azimuthal section 1

# emisBl=rdat(12), emis for x > xB for azimuthal section 1

# hA2=rdat(13), convective htc for x < xA for azimuthal section 2

# hAB2=rdat(14), convective htc for xA <= x <= xB for azimuthal section 2

# hB2=rdat(15), convective htc for x > xB for azimuthal section 2

# TrefA2=rdat(16), Tref for x < xA for azimuthal section 2

# TrefAB2=rdat(17), Tref for xA <= x <= xB for azimuthal section 2

# TrefB2=rdat(18), Tref for x > xB for azimuthal section 2

# emisA2=rdat(19), emis for x < xA for azimuthal section 2

# emisAB2=rdat(20), emis for xA <= x <= xB for azimuthal section 2

# emisB2=rdat(21), emis for x > xB for azimuthal section 2

# thetaA=rdat(22), azimuthal reference angle (degrees) for section 1 of region A

# thetaAB=rdat(23), azimuthal reference angle (degrees) for section 1 of region AB

# thetaB=rdat(24), azimuthal reference angle (degrees) for section 1 of region B

# dphiA=rdat(25), subtended angle (degrees) for section 1 of region A

# dphiAB=rdat(26), subtended angle (degrees) for section 1 of region AB

# dphiB=rdat(27), subtended angle (degrees) for section 1 of region B

# notes:

# if cosdistA (or AB,or B) set to 1 then impose cosine distribution on radiative htc

# otherwise, distribution is uniform (convective distribution is always uniform)

# x coordinate assumed to lie on centerline of bomb

# htc_total = convective htc + effective radiative htc

# effective radiative htc = sigma*emis*(Twall+Tref)*(Twall-2+Tref-2)

# emissivities should be the same as associated material emissivities, but

# can be set to zero to eliminate radiative heat transfer from a region

# set convective htc to zero to eliminate convective heat tranfer from a region

# set both convective htc and emis to zero for an adiabatic (insulated) surface

# a zero-degree angle corresponds to the y axis

# angle is positive in clockwise direction when looking in the positive x axis direction

# theta is the angle for the center of the azimuthal section and dphi is the delta angle

# with section 1 extending from theta-dphi/2 to theta+dphi/2, centered on theta

# section 2 is opposite section 1 and can be empty if dphi = 360 degrees.

convective coefficient fortran subroutine is coef_directed_angle

reference temperature fortran subroutine is tref_directed_angle

integer data 0 0 0

xoffset xA xB

# hA1 hAB1 hB1

# TrefAl TrefAB1 TrefB1

# emisAl emisAB1 emisBl

# hA2 hAB2 hB2

# TrefA2 TrefAB2 TrefB2

# emisA2 emisAB2 emisB2

• thetaA thetaAB thetaB

• dphiA dphiAB dphiB

real data -1.5 0.5 1.0 \$
0.0 50.0 0 \$

300.0 1000.0 300.0 \$
0.0 0.8 0.0 \$
0.0 0.0 100.0 \$
300.0 300.0 900.0 \$
0.0 0.0 0.0 \$

0.0 300.0 240. \$
0.0 120.0 240.0

+theta

xA xB azimuthal section 1 -dphi/2 - I
A I AB I B axial (x axis) regions I yl yl V
  surfaces 0-theta I_ _ > x I_ _ >z

xA xB azimuthal section 2 dphi/2 z out of page x into page

integrated power output qFirelce

integrated flux output fluxFireIce



end convective flux boundary condition FireAndlceBC

#######################################################

############# Results #################################

#######################################################

#######################################################

Begin user variable HTC

type is face real length = 1

initial value = 0.0

add part surface_1 surface_2 surface_3 surface_4

add part surface_5 surface_6 surface_7 surface_8

add part surface_9 surface_10 surface_11 surface_12

add part surface_13 surface_14 surface_15 surface_16

add part surface_17 surface_18 surface_19 surface_20

add part surface_21 surface_22 surface_23 surface_24

add part surface_25

End

Begin user variable SurfFlux

type is face real length 1

initial value = 0.0

add part surface_1 surface_2 surface_3 surface_4

add part surface_5 surface_6 surface_7 surface_8

add part surface_9 surface_10 surface_11 surface_12

add part surface_13 surface_14 surface_15 surface_16

add part surface_17 surface_18 surface_19 surface_20

add part surface_21 surface_22 surface_23 surface_24

add part surface_25

End

Begin user variable Tref #for checking only

type is face real length = 1

initial value = 0.0

add part surface_1 surface_2 surface_3 surface_4

add part surface_5 surface_6 surface_7 surface_8

add part surface_9 surface_10 surface_11 surface_12

add part surface_13 surface_14 surface_15 surface_16

add part surface_17 surface_18 surface_19 surface_20

add part surface_21 surface_22 surface_23 surface_24

add part surface_25

End

Begin Results Output NodalTdata

Title VnVtest Nodal Temperature Data

database name = VnVinputTest.e

Nodal Variables = solution->temperature as T

#nodal variables = temperaturedot as Tdot

#Face Variables = HTC SurfFlux Tref #costheta

Global Variables = time_step as timestep

Global Variables = PEinterior_T as PEinterior_T

Timestep Adjustment Interval is 1

At Time 0.0, Increment = 0.01 #

End

#######################################################

end aria region myRegion

end procedure aria_procedure

end sierra FandI_VnVtest
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12.2.3. Convective Heat Flux 3.3

Begin SIERRA Aria

load user plugin file ./Exact_Solution.so

Begin User Function exact_soln

Load From File ./Exact_Solution.so Using Function registerExactSoln

End

Begin Norm Postprocessor 12_norm

Use Function exact_soln

Subtract Function nonlinear_solution->temperature

Compute Norms L2

End

Begin Norm Postprocessor hl_norm

Use Function exact_soln

Subtract Function nonlinear_solution->temperature

Compute Norms H1

End

Begin Norm Postprocessor linf_norm

Use Function exact_soln

Subtract Function nonlinear_solution->temperature

Compute Norms Llnfinity

End

Begin Postprocessor Output Control pp_out

Comment Character Is %

Write To File errors{N}.dat

Floating Point Precision Is 3

Floating Point Format Is Scientific

End

load user plugin file ./FluxBC.so

load user plugin file ./DirichletBC.so

load user plugin file ./Init.so

Begin Aria Material M_Block

density = constant rho = 1.

specific heat = constant cp = 1.

heat conduction = basic

Thermal conductivity = constant k = 1.

End

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER SOLVE_TEMPERATURE

BEGIN GMRES SOLVER

BEGIN DD-ILU PRECONDITIONER

END

MAXIMUM ITERATIONS = 1000

RESIDUAL SCALING = NONE

CONVERGENCE TOLERANCE = 1.000000e-12

END

END TPETRA EQUATION SOLVER

{else}

Begin AZTEC Equation Solver solve_temperature

Solution Method = gmres

Preconditioning Method = dd-ilu

Maximum Iterations = 1000

Residual Norm Tolerance = 1e-12

Residual Norm Scaling = NONE

End
{endif}

Begin Finite Element Model myModel
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Database Name = mesh{N}.g

Coordinate System = cartesian

decomposition method = rcb

Use Material M_Block for block_1

End

Begin procedure myProcedure

Begin solution control description

Use System Main

Begin System Main

Simulation Start Time 0.0

Simulation Termination Time 0.1

Simulation Max Global Iterations 100

Begin Transient Time_Block

advance myRegion

End

End System Main

Begin parameters for transient Time_Block

Start Time = 0.0

Begin parameters for aria Region myRegion

time step variation = fixed # adaptive

initial time step size = {0.008*0.5**(N)}

time integration method = second_order

predictor-corrector tolerance = 1.0E-5

End

End

End Solution Control Description

begin aria region myRegion

Use Finite Element Model myModel

Use Linear Solver solve_temperature

nonlinear solution strategy = newton

nonlinear residual tolerance = 1.Oe-10

maximum nonlinear iterations = 10

Nonlinear Relaxation Factor = 1.0

EQ energy for temperature on block_1 using Q1 with diff mass

BC const dirichlet on surface_2 Temperature = 0.0

Begin Temperature Boundary Condition s4

Add Surface surface_4

Temperature = 0.0

End

BC dirichlet for temperature on surface_3 = calore_user_sub name = localCoord_bc type=node

IC for temperature on block_1 = calore_user_sub name = localCoord_ic type=node

Output Number of Nodes

Evaluate Postprocessor 12_norm

Evaluate Postprocessor hl_norm

Evaluate Postprocessor linf_norm

Begin Convective Flux Boundary Condition internal

Add Surface surface_1 #y=1, 0<x<1, normal=(0,1)

Reference Temperature Subroutine = tref_coeff

Convective Coefficient Subroutine = convec_coeff

End

Begin Results Output output

Database Name = output{N}.e

AT STEP 0, INCREMENT = {2**(N)}

TITLE Aria Heat Convective Flux BC Condition

Nodal Variables = nonlinear_solution->temperature as T

i8o



End

end aria region myRegion

End procedure myProcedure

End sierra Aria
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12.3. THERMAL CONTACT

12.3.1. 1D Flat Contact 4.1

12.3.1.1. HexB Tied

#fR=0.01

begin sierra Aria

title Adaptive Square

load user plugin file ./Exact_solution.so

BEGIN ARIA MATERIAL M1

Density

Thermal Conductivity =

Specific Heat

heat conduction

END

BEGIN ARIA MATERIAL M2

Density

Thermal Conductivity =

Specific Heat

heat conduction

END

Constant rho=1

constant k=1

Constant cp=1

basic

Constant rho=1

constant k=1

Constant cp=1

= basic

Begin Finite Element Model bar

Database Name = 2blocks_contact_unaligned_hex8_11{N}.g

for block block_1Begin parameters

material M1

End

Begin parameters for block block_2

material M2

End

End Finite Element Model bar

{if(useTpetra)}

BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN UMFPACK SOLVER

END

END TPETRA EQUATION SOLVER

{else}

begin trilinos equation solver direct_solver

solution method = amesos-umfpack

end trilinos equation solver direct_solver
{endif}

{if(useTpetra)}

BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER

BEGIN GMRES SOLVER

BEGIN JACOBI PRECONDITIONER

END

MAXIMUM ITERATIONS = 20000

RESIDUAL SCALING = RO

CONVERGENCE TOLERANCE = 1.000000e-12

END

END TPETRA EQUATION SOLVER

{else}

Begin Trilinos Equation Solver Iterative_Solver

Solution Method = GMRES

Preconditioning Method = Jacobi

Maximum Iterations = 20000

Residual Norm Scaling = RO

Residual Norm Tolerance = 1.Oe-12

End

182



{endif}

Begin Field Function ffunc

Use Nodal Field solution->temperature As Value

End

Begin User Function exact_soln

Load From File ./Exact_solution.so Using Function registerExactSolution

Parameter R = {R}

End

Begin Norm Postprocessor 12

Use Function exact_soln

Subtract Function ffunc

Compute Norms L2

Store in 12_err

End

Begin Norm Postprocessor linf

Use Function exact_soln

Subtract Function ffunc

Compute Norms Llnfinity

Store in linf_err

End

Begin Norm Postprocessor hl

Use Function exact_soln

Subtract Function ffunc

Compute Norms H1

Store in h1_err

End

Begin Postprocessor Output Control pp_out

Comment Character Is %

Write To File errors_tied_h{N}.dat

Floating Point Precision Is 3

Floating Point Format Is Scientific

End

begin procedure myProcedure

Begin Solution Control Description

Use System Main

Begin System Main

Begin Sequential The_Time_Block

Advance myRegion

End

Simulation Start Time = 0

Simulation Termination Time = 1

End

End

begin Aria region myRegion

Nonlinear Solution Strategy = Newton

Maximum Nonlinear Iterations = 10

Nonlinear Residual Tolerance = 1.Oe-12

Nonlinear Correction Tolerance = 1.Oe-12

Nonlinear Relaxation Factor = 1.0

use dof averaged nonlinear residual

use finite element model bar

use linear solver Iterative_Solver #Direct_Solver #

EQ ENERGY for TEMPERATURE on all_blocks using Q1 with DIFF SRC

Begin TEMPERATURE BOUNDARY CONDITION xml

add surface surface_1
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end

end

end

TEMPERATURE = O.

End

Begin TEMPERATURE BOUNDARY CONDITION xp1

add surface surface_2

TEMPERATURE = 1.

End

Begin VOLUME HEATING sm

add volume block_1

VALUE = -1.

End

Begin VOLUME HEATING sp

add volume block_2

VALUE = 1.

End

begin contact definition resl

contact surface surf_1 contains surface_3

contact surface surf_2 contains surface_4

begin interaction inter_1

surfaces = surf_1 surf_2

end interaction inter_1

begin enforcement enf_1

Enforcement for Energy = Tied_Temperature

end enforcement

end contact definition resl

Output Number of Nodes

Evaluate Postprocessor 12

Evaluate Postprocessor linf

Evaluate Postprocessor hl

Begin Results Output Label diffusion output

database Name = 2blocks_tied_h{N}.e

At Step 1, Increment = 1

Title Calore Two Blocks

Nodal Variables = solution->temperature as T

Element Variables = 12_err linf_err hl_err

End

12.3.1.2. Hex8 Resistance

#{R=4.0}

begin sierra Aria

title Adaptive Square

BEGIN ARIA MATERIAL M1

Density = Constant rho=1

Thermal Conductivity = constant k=1

Specific Heat = Constant cp=1

heat conduction = basic

END

BEGIN ARIA MATERIAL M2
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Density = Constant rho=1

Thermal Conductivity = constant k=1

Specific Heat = Constant cp=1

heat conduction = basic

END

Begin Finite Element Model bar

Database Name = 2blocks_contact_unaligned_hex8_11011.g

Begin parameters for block block_1

material M1

End

Begin parameters for block block_2

material M2

End

End Finite Element Model bar

{if(useTpetra)}

BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN UMFPACK SOLVER

END

END TPETRA EQUATION SOLVER

{else}

begin trilinos equation solver direct_solver

solution method = amesos-umfpack

end trilinos equation solver direct_solver
{endif}

{if(useTpetra)}

BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER

BEGIN GMRES SOLVER

BEGIN JACOBI PRECONDITIONER

END

MAXIMUM ITERATIONS = 20000

RESIDUAL SCALING = RO

CONVERGENCE TOLERANCE = 1.000000e-12

END

END TPETRA EQUATION SOLVER

{else}

Begin Trilinos Equation Solver Iterative_Solver

Solution Method = GMRES

Preconditioning Method = Jacobi

Maximum Iterations = 20000

Residual Norm Scaling = RO

Residual Norm Tolerance = 1.Oe-12

End
{endif}

Begin Field Function ffunc

Use Nodal Field solution->temperature As Value

End

Begin User Function exact_soln

Load From File ./Exact_solution.so Using Function registerExactSolution

Parameter R = {R}

End

Begin Norm Postprocessor 12

Use Function exact_soln

Subtract Function ffunc

Compute Norms L2

Store in 12_err

End

Begin Norm Postprocessor linf

Use Function exact_soln

Subtract Function ffunc

Compute Norms Llnfinity

Store in linf_err
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End

Begin Norm Postprocessor hl

Use Function exact_soln

Subtract Function ffunc

Compute Norms H1

Store in h1_err

End

Begin Postprocessor Output Control pp_out

Comment Character Is %

Write To File errors_res_h{N}.dat

Floating Point Precision Is 3

Floating Point Format Is Scientific

End

begin procedure myProcedure

Begin Solution Control Description

Use System Main

Begin System Main

Begin Sequential The_Time_Block

Advance myRegion

End

Simulation Start Time = 0

Simulation Termination Time = 1

End

End

begin Aria region myRegion

Nonlinear Solution Strategy = Newton

Maximum Nonlinear Iterations = 10

Nonlinear Residual Tolerance = 1.Oe-12

Nonlinear Correction Tolerance = 1.Oe-12

Nonlinear Relaxation Factor = 1.0

use dof averaged nonlinear residual

use finite element model bar

use linear solver Iterative_Solver #Direct_Solver #

EQ ENERGY for TEMPERATURE on all_blocks using Q1 with DIFF SRC

Begin TEMPERATURE BOUNDARY CONDITION xml

add surface surface_1

TEMPERATURE = O.

End

Begin TEMPERATURE BOUNDARY CONDITION xpl

add surface surface_2

TEMPERATURE = 1.

End

Begin VOLUME HEATING sm

add volume block_1

VALUE = -1.

End

Begin VOLUME HEATING sp

add volume block_2

VALUE = 1.

End

begin contact definition resl

contact surface surf_1 contains surface_3

contact surface surf_2 contains surface_4

begin interaction inter_1
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end

end

end

surfaces = surf_1 surf_2

end interaction inter_1

begin enforcement enf_1

conductance coefficient= {1.0/R}

Enforcement for Energy = gap_conductance

end enforcement

end contact definition resl

Output Number of Nodes

Evaluate Postprocessor 12

Evaluate Postprocessor linf

Evaluate Postprocessor hl

Begin Results Output Label diffusion output

database Name = 2blocks_res_h{N}.e

At Step 1, Increment = 1

Title Calore Two Blocks

Nodal Variables = solution->temperature as T

Element Variables = 12_err linf_err hl_err

End

12.3.1.3. Tet4 Tied

#{R=0.0}

begin sierra Aria

title Adaptive Square

load user plugin file ./Exact_solution.so

BEGIN ARIA MATERIAL M1

Density = Constant rho=1

Thermal Conductivity = constant k=1

= Constant cp=1

= basic

Specific Heat

heat conduction

END

BEGIN ARIA MATERIAL M2

Density = Constant rho=1

Thermal Conductivity = constant k=1

Specific Heat = Constant cp=1

heat conduction = basic

END

Begin Finite Element Model bar

Database Name = 2blocks_contact_unaligned_tet4_11{N}.g

Begin parameters for block block_1

material M1

End

Begin parameters for block block_2

material M2

End

End Finite Element Model bar

{if(useTpetra)}

BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN UMFPACK SOLVER
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END

END TPETRA EQUATION SOLVER

{else}

begin trilinos equation solver direct_solver

solution method = amesos-umfpack

end trilinos equation solver direct_solver
{endif}

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER

BEGIN GMRES SOLVER

BEGIN DD-ILU PRECONDITIONER

END

MAXIMUM ITERATIONS = 200

RESIDUAL SCALING = RO

CONVERGENCE TOLERANCE = 1.000000e-12

END

END TPETRA EQUATION SOLVER

{else}

Begin Trilinos Equation Solver Iterative_Solver

Solution Method = GMRES

Preconditioning Method = dd-ilu

Maximum Iterations = 200

Residual Norm Scaling = RO

Residual Norm Tolerance = 1.Oe-12

End
{endif}

Begin Field Function ffunc

Use Nodal Field solution->temperature As Value

End

Begin User Function exact_soln

Load From File ./Exact_solution.so Using Function registerExactSolution

Parameter R = {R}
End

Begin Norm Postprocessor 12

Use Function exact_soln

Subtract Function ffunc

Compute Norms L2

Store in 12_err

End

Begin Norm Postprocessor linf

Use Function exact_soln

Subtract Function ffunc

Compute Norms Llnfinity

Store in linf_err

End

Begin Norm Postprocessor hl

Use Function exact_soln

Subtract Function ffunc

Compute Norms H1

Store in hl_err

End

Begin Postprocessor Output Control pp_out

Comment Character Is %

Write To File errors_tied_h{N}.dat

Floating Point Precision Is 3

Floating Point Format Is Scientific

End

begin procedure myProcedure

Begin Solution Control Description
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Use System Main

Begin System Main

Begin Sequential The_Time_Block

Advance myRegion

End

Simulation Start Time = 0

Simulation Termination Time = 1

End

End

begin Aria region myRegion

Nonlinear Solution Strategy = Newton

Maximum Nonlinear Iterations = 10

Nonlinear Residual Tolerance = 1.Oe-12

Nonlinear Correction Tolerance = 1.Oe-12

Nonlinear Relaxation Factor = 1.0

use dof averaged nonlinear residual

use finite element model bar

use linear solver Iterative_Solver #Direct_Solver #

EQ ENERGY for TEMPERATURE on all_blocks using Q1 with DIFF SRC

Begin TEMPERATURE BOUNDARY CONDITION xm1

add surface surface_1

TEMPERATURE = O.

End

Begin TEMPERATURE BOUNDARY CONDITION xpl

add surface surface_2

TEMPERATURE = 1.

End

Begin VOLUME HEATING sm

add volume block_1

VALUE = -1.

End

Begin VOLUME HEATING sp

add volume block_2

VALUE = 1.

End

begin contact definition resl

contact surface surf_1 contains surface_3

contact surface surf_2 contains surface_4

begin interaction inter_1

surfaces = surf_1 surf_2

end interaction inter_l

begin enforcement enf_1

Enforcement for Energy = Tied_Temperature

end enforcement

end contact definition resl

Output Number of Nodes

Evaluate Postprocessor 12

Evaluate Postprocessor linf

Evaluate Postprocessor hl

Begin Results Output Label diffusion output

database Name = 2blocks_tied_h{N}.e

At Step 1, Increment = 1

Title Calore Two Blocks
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end

end

end

Nodal Variables = solution->temperature as T

Element Variables = 12_err linf_err hl_err

End

12.3.1.4. Tet4 Resistance

#{11=4.0}

begin sierra Aria

title Adaptive Square

BEGIN ARIA MATERIAL M1

Density = Constant rho=1

Thermal Conductivity = constant k=1

Specific Heat = Constant cp=1

heat conduction = basic

END

BEGIN ARIA MATERIAL M2

Density = Constant rho=1

Thermal Conductivity = constant k=1

Specific Heat = Constant cp=1

heat conduction = basic

END

Begin Finite Element Model bar

Database Name = 2blocks_contact_unaligned_tet4_11{N}.g

Begin parameters for block block_1

material M1

End

Begin parameters for block block_2

material M2

End

End Finite Element Model bar

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN UMFPACK SOLVER

END

END TPETRA EQUATION SOLVER

{else}

begin trilinos equation solver direct_solver

solution method = amesos-umfpack

end trilinos equation solver direct_solver
{endif}

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER

BEGIN GMRES SOLVER

BEGIN DD-ILU PRECONDITIONER

END

MAXIMUM ITERATIONS = 200

RESIDUAL SCALING = RO

CONVERGENCE TOLERANCE = 1.000000e-12

END

END TPETRA EQUATION SOLVER

{else}

Begin Trilinos Equation Solver Iterative_Solver

Solution Method = GMRES

Preconditioning Method = dd-ilu

190



Maximum Iterations = 200

Residual Norm Scaling = RO

Residual Norm Tolerance = 1.0e-12

End
{endif}

Begin Field Function ffunc

Use Nodal Field solution->temperature As Value

End

Begin User Function exact_soln

Load From File ./Exact_solution.so Using Function registerExactSolution

Parameter R =
End

Begin Norm Postprocessor 12

Use Function exact_soln

Subtract Function ffunc

Compute Norms L2

Store in 12_err

End

Begin Norm Postprocessor linf

Use Function exact_soln

Subtract Function ffunc

Compute Norms Llnfinity

Store in linf_err

End

Begin Norm Postprocessor hl

Use Function exact_soln

Subtract Function ffunc

Compute Norms H1

Store in hi_err

End

Begin Postprocessor Output Control pp_out

Comment Character Is %

Write To File errors_res_h{N}.dat

Floating Point Precision Is 3

Floating Point Format Is Scientific

End

begin procedure myProcedure

Begin Solution Control Description

Use System Main

Begin System Main

Begin Sequential The_Time_Block

Advance myRegion

End

Simulation Start Time = 0

Simulation Termination Time = 1

End

End

begin Aria region myRegion

Nonlinear Solution Strategy = Newton

Maximum Nonlinear Iterations = 10

Nonlinear Residual Tolerance = 1.0e-12

Nonlinear Correction Tolerance = 1.Oe-12

Nonlinear Relaxation Factor = 1.0

use dof averaged nonlinear residual

use finite element model bar

use linear solver Iterative_Solver #Direct_Solver #
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end

end

end

EQ ENERGY for TEMPERATURE on all_blocks using Q1 with DIFF SRC

Begin TEMPERATURE BOUNDARY CONDITION xml

add surface surface_1

TEMPERATURE = O.

End

Begin TEMPERATURE BOUNDARY CONDITION xpl

add surface surface_2

TEMPERATURE = 1.

End

Begin VOLUME HEATING sm

add volume block_1

VALUE = -1.

End

Begin VOLUME HEATING sp

add volume block_2

VALUE = 1.

End

begin contact definition resl

contact surface surf_1 contains surface_3

contact surface surf_2 contains surface_4

begin interaction inter_1

surfaces = surf_1 surf_2

end interaction inter_1

begin enforcement enf_1

conductance coefficient= 11.0/RI

Enforcement for Energy = gap_conductance

end enforcement

end contact definition resl

Output Number of Nodes

Evaluate Postprocessor 12

Evaluate Postprocessor linf

Evaluate Postprocessor hl

Begin Results Output Label diffusion output

database Name = 2blocks_res_h{N}.e

At Step 1, Increment = 1

Title Calore Two Blocks

Nodal Variables = solution->temperature as T

Element Variables = 12_err linf_err hl_err

End

12.3.1.5. HexB-Tet4 Tied

#{R=0.0}

begin sierra Aria

title Adaptive Square

load user plugin file ./Exact_solution.so
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BEGIN ARIA MATERIAL M1

Density

Thermal Conductivity =

Specific Heat

heat conduction

END

Constant rho=1

constant k=1

= Constant cp=1

= basic

BEGIN ARIA MATERIAL M2

Density

Thermal Conductivity =

Specific Heat

heat conduction

END

Constant rho=1

constant k=1

Constant cp=1

= basic

Begin Finite Element Model bar

Database Name = 2blocks_contact_unaligned_hex8_tet4_12011.g

Begin parameters for block block_1

material M1

End

Begin parameters for block block_2

material M2

End

End Finite Element Model bar

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN UMFPACK SOLVER

END

END TPETRA EQUATION SOLVER

{else}
begin trilinos equation solver direct_solver

solution method = amesos-umfpack

end trilinos equation solver direct_solver
{endif}

{if(useTpetra)}

BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER

BEGIN GMRES SOLVER

BEGIN DD-ILU PRECONDITIONER

END

MAXIMUM ITERATIONS = 200

RESIDUAL SCALING = RO

CONVERGENCE TOLERANCE = 1.000000e-12

END

END TPETRA EQUATION SOLVER

{else}
Begin Trilinos Equation Solver Iterative_Solver

Solution Method = GMRES

Preconditioning Method = dd-ilu

Maximum Iterations = 200

Residual Norm Scaling = RO

Residual Norm Tolerance = 1.Oe-12

End
{endif}

Begin Field Function ffunc

Use Nodal Field solution->temperature As Value

End

Begin User Function exact_soln

Load From File ./Exact_solution.so Using Function registerExactSolution

Parameter R = {R}

End

Begin Norm Postprocessor 12

Use Function exact_soln

Subtract Function ffunc

Compute Norms L2
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Store in 12_err

End

Begin Norm Postprocessor linf

Use Function exact_soln

Subtract Function ffunc

Compute Norms Llnfinity

Store in linf_err

End

Begin Norm Postprocessor hl

Use Function exact_soln

Subtract Function ffunc

Compute Norms H1

Store in hl_err

End

Begin Postprocessor Output Control pp_out

Comment Character Is %

Write To File errors_tied_h{N}.dat

Floating Point Precision Is 3

Floating Point Format Is Scientific

End

begin procedure myProcedure

Begin Solution Control Description

Use System Main

Begin System Main

Begin Sequential The_Time_Block

Advance myRegion

End

Simulation Start Time = 0

Simulation Termination Time = 1

End

End

begin Aria region myRegion

Nonlinear Solution Strategy = Newton

Maximum Nonlinear Iterations = 10

Nonlinear Residual Tolerance = 1.Oe-12

Nonlinear Correction Tolerance = 1.Oe-12

Nonlinear Relaxation Factor = 1.0

use dof averaged nonlinear residual

use finite element model bar

use linear solver Iterative_Solver #Direct_Solver #

EQ ENERGY for TEMPERATURE on all_blocks using Q1 with DIFF SRC

Begin TEMPERATURE BOUNDARY CONDITION xml

add surface surface_1

TEMPERATURE = O.

End

Begin TEMPERATURE BOUNDARY CONDITION xp1

add surface surface_2

TEMPERATURE = 1.

End

Begin VOLUME HEATING sm

add volume block_1

VALUE = -1.

End

Begin VOLUME HEATING sp

add volume block_2
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end

end

end

VALUE = 1.

End

begin contact definition res1

contact surface surf_1 contains surface_3

contact surface surf_2 contains surface_4

begin interaction inter_1

surfaces = surf_1 surf_2

end interaction inter_1

begin enforcement enf_1

Enforcement for Energy = Tied_Temperature

end enforcement

end contact definition resl

Output Number of Nodes

Evaluate Postprocessor 12

Evaluate Postprocessor linf

Evaluate Postprocessor hl

Begin Results Output Label diffusion output

database Name = 2blocks_tied_h{N}.e

At Step 1, Increment = 1

Title Calore Two Blocks

Nodal Variables = solution->temperature as T

Element Variables = 12_err linf_err hl_err

End

12.3.1.6. Hex8-Tet4 Resistance

#{R=4.0}

begin sierra Aria

title Adaptive Square

BEGIN ARIA MATERIAL M1

Density = Constant rho=1

Thermal Conductivity = constant k=1

Specific Heat = Constant cp=1

heat conduction = basic

END

BEGIN ARIA MATERIAL M2

Density = Constant rho=1

Thermal Conductivity = constant k=1

Specific Heat = Constant cp=1

heat conduction = basic

END

Begin Finite Element Model bar

Database Name = 2blocks_contact_unaligned_hex8_tet4_11{N}.g

Begin parameters for block block_1

material M1

End

Begin parameters for block block_2

material M2

End
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End Finite Element Model bar

{if(useTpetra)}

BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN UMFPACK SOLVER

END

END TPETRA EQUATION SOLVER

{else}

begin trilinos equation solver direct_solver

solution method = amesos-umfpack

end trilinos equation solver direct_solver

{endif}

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER

BEGIN GMRES SOLVER

BEGIN DD-ILU PRECONDITIONER

END

MAXIMUM ITERATIONS = 200

RESIDUAL SCALING = RO

CONVERGENCE TOLERANCE = 1.000000e-12

END

END TPETRA EQUATION SOLVER

{else}

Begin Trilinos Equation Solver Iterative_Solver

Solution Method = GMRES

Preconditioning Method = dd-ilu

Maximum Iterations = 200

Residual Norm Scaling = RO

Residual Norm Tolerance = 1.Oe-12

End
{endif}

Begin Field Function ffunc

Use Nodal Field solution->temperature As Value

End

Begin User Function exact_soln

Load From File ./Exact_solution.so Using Function registerExactSolution

Parameter R = {R}

End

Begin Norm Postprocessor 12

Use Function exact_soln

Subtract Function ffunc

Compute Norms L2

Store in 12_err

End

Begin Norm Postprocessor linf

Use Function exact_soln

Subtract Function ffunc

Compute Norms Llnfinity

Store in linf_err

End

Begin Norm Postprocessor h1

Use Function exact_soln

Subtract Function ffunc

Compute Norms H1

Store in hl_err

End

Begin Postprocessor Output Control pp_out

Comment Character Is %

Write To File errors_res_h{N}.dat

Floating Point Precision Is 3

Floating Point Format Is Scientific
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End

begin procedure myProcedure

Begin Solution Control Description

Use System Main

Begin System Main

Begin Sequential The_Time_Block

Advance myRegion

End

Simulation Start Time = 0

Simulation Termination Time = 1

End

End

begin Aria region myRegion

Nonlinear Solution Strategy = Newton

Maximum Nonlinear Iterations = 10

Nonlinear Residual Tolerance = 1.0e-12

Nonlinear Correction Tolerance = 1.Oe-12

Nonlinear Relaxation Factor = 1.0

use dof averaged nonlinear residual

use finite element model bar

use linear solver Iterative_Solver #Direct_Solver #

EQ ENERGY for TEMPERATURE on all_blocks using Q1 with DIFF SRC

Begin TEMPERATURE BOUNDARY CONDITION xml

add surface surface_1

TEMPERATURE = O.

End

Begin TEMPERATURE BOUNDARY CONDITION xp1

add surface surface_2

TEMPERATURE = 1.

End

Begin VOLUME HEATING sm

add volume block_1

VALUE = -1.

End

Begin VOLUME HEATING sp

add volume block_2

VALUE = 1.

End

begin contact definition resl

contact surface surf_1 contains surface_3

contact surface surf_2 contains surface_4

begin interaction inter_1

surfaces = surf_1 surf_2

end interaction inter_1

begin enforcement enf_1

conductance coefficient= {1.0/R}

Enforcement for Energy = gap_conductance

end enforcement

end contact definition resl

Output Number of Nodes

Evaluate Postprocessor 12

Evaluate Postprocessor linf

197



end

end

end

Evaluate Postprocessor hl

Begin Results Output Label diffusion output

database Name = 2blocks_res_hf111.e

At Step 1, Increment = 1

Title Calore Two Blocks

Nodal Variables = solution->temperature as T

Element Variables = 12_err linf_err hl_err

End

12.3.2. 3D Curved Contact 4.2

12.3.2.1. Hex8-Hex8 Case

12.3.2.2. Tet4-Tet4 Case

12.3.2.3. Hex8-Tet4 Case

12.3.3. Steady Hex8 Contact

#N={N=5}

BEGIN SIERRA myJob

BEGIN ARIA MATERIAL Kryptonite

Density = Constant rho=1

Thermal Conductivity = constant k=1

Specific Heat = Constant cp=1

heat conduction = basic

END ARIA MATERIAL Kryptonite

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SDLVER

BEGIN SUPERLU SOLVER

END

END TPETRA EQUATION SOLVER

{else}

Begin Trilinos Equation Solver Direct_Solver

Solution Method = amesos-superlu

End
{endif}

{if(useTpetra)}

BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER

BEGIN GMRES SOLVER

BEGIN JACOBI PRECONDITIONER

END

MAXIMUM ITERATIONS = 1000

RESIDUAL SCALING = NONE

CONVERGENCE TOLERANCE = 1.000000e-15

END

END TPETRA EQUATION SOLVER

{else}

Begin Trilinos Equation Solver Iterative_Solver

Solution Method = GMRES

Preconditioning Method = Jacobi

Maximum Iterations = 1000

Residual Norm Scaling = None
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Residual Norm Tolerance = 1.0e-15

End
{endif}

BEGIN FINITE ELEMENT MODEL cube

database name = cube_contact_h{N}_hex8.e

coordinate system is cartesian

decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1

material Kryptonite

END PARAMETERS FOR BLOCK block_1

BEGIN PARAMETERS FOR BLOCK block_2

material Kryptonite

END PARAMETERS FOR BLOCK block_2

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln

Load From File ./exact.so Using Function registerExactSoln

End

Begin User Function exact_soln_dot

Load From File ./exact.so Using Function registerExactSolnDot

End

Begin User Function exact_src

Load From File ./exact.so Using Function registerExactSrc

End

Begin User Function flux_surface_3

Load From File ./exact.so Using Function registerFlux_Surface_3

End

Begin User Function flux_surface_5

Load From File ./exact.so Using Function registerFlux_Surface_5

End

Begin User Function flux_surface_1

Load From File ./exact.so Using Function registerFlux_Surface_1

End

Begin User Function flux_surface_2

Load From File ./exact.so Using Function registerFlux_Surface_2

End

Begin Norm Postprocessor 12

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms L2

store in 12_error

End

Begin Norm Postprocessor hl

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms H1

store in hi_error

End

Begin Norm Postprocessor linf

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms Llnfinity

store in linf_error

End
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Begin Postprocessor Output Control pp_out

Comment Character Is %

Write To File errors_h{N}.dat

Floating Point Precision Is 3

Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description

Use System Main

Begin System Main

Begin Sequential The_Time_Block

Advance myRegion

End

Simulation Start Time = 0

Simulation Termination Time = 1

End

End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton

Maximum Nonlinear Iterations = 10

Nonlinear Residual Tolerance = 1.Oe-12

Nonlinear Correction Tolerance = 1.Oe-12

Nonlinear Relaxation Factor = 1.0

use dof averaged nonlinear residual

use finite element model cube

Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q1 with DIFF SRC

EQ ENERGY for TEMPERATURE on block_2 using Q1 with DIFF SRC

# surface_4: x=0

# surface_6: x=1

# surface_3: y=0

# surface_5: y=1

# surface_1: z=1

# surface_2: z=0

# const Temp BC (x)

BC const dirichlet at surface_4 Temperature = 1.0

BC const dirichlet at surface_6 Temperature = 1.0

# const flux BC (y)

BC FLUX for Energy on surface_3 = constant flux = 3

BC FLUX for Energy on surface_5 = constant flux = 5

BC FLUX for Energy on surface_3 = Encore_Function Name=flux_surface_3

BC FLUX for Energy on surface_5 = Encore_Function Name=flux_surface_5

# convective flux BC with const Temp and H (z)

BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1

BC Flux for Energy on surface_2 = Nat_Conv T_Ref=2 H=2

BC FLUX for Energy on surface_1 = Encore_Function Name=flux_surface_1

BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

# const source term

Source For ENERGY on block_1 = Constant value=1

Source For ENERGY on block_2 = Constant value=1

Source For ENERGY on block_1 = Encore_Function Name=exact_src

Source For ENERGY on block_2 = Encore_Function Name=exact_src
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begin contact definition mpcl

contact surface surf_1 contains surface_7

contact surface surf_2 contains surface_8

output rule = summary

begin interaction inter_1

surfaces = surf_l surf_2

normal tolerance = 0.01

end

begin enforcement enf_1

Enforcement for Energy = Tied_Temperature

end

end

Output Number of Nodes

Evaluate Postprocessor 12

Evaluate Postprocessor hl

Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output

database Name = thermal_steady_hex8_tied_contact_h{N}.e

at step 1, increment = 1

# time interval is 1.0

title Aria cube test

nodal variables = nonlinear_solution->TEMPERATURE as T

element variables = 12_error h2_error linf_error

END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion

END PROCEDURE myAriaProcedure

END SIERRA myJob

12.3.4. Steady Hex20 Contact

BEGIN SIERRA myJob

load user plugin file ./exact.so

begin definition for function kxx

type = piecewise linear

begin values

0.0 0.5

1.0 2.0

2.0 8.0

end values

end

begin definition for function kyy

type = piecewise linear

begin values

0.0 0.2

1.0 1.2

2.0 2.1

20.0 20.2

end values

end

begin definition for function kzz

type = piecewise linear

begin values

0.0 1.0



1.0 2.0

2.0 3.0

20.0 21.0

end values

scale by 2.0

end

BEGIN ARIA MATERIAL Kryptonite

Density = Constant rho=1

tensor thermal conductivity = user_function X = temperature name_xx = kxx name_yy = kyy name_zz = kzz

Specific Heat = Constant cp=1

heat conduction = Generalized

END ARIA MATERIAL Kryptonite

{if(useTpetra)}

BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN SUPERLU SOLVER

END

END TPETRA EQUATION SOLVER

{else}

Begin Trilinos Equation Solver Direct_Solver

Solution Method = amesos-superlu

End
{endif}

{if(useTpetra)}

BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER

BEGIN GMRES SOLVER

BEGIN JACOBI PRECONDITIONER

END

MAXIMUM ITERATIONS = 1000

RESIDUAL SCALING = NONE

CONVERGENCE TOLERANCE = 1.000000e-14

END

END TPETRA EQUATION SOLVER

{else}

Begin Trilinos Equation Solver Iterative_Solver

Solution Method = GMRES

Preconditioning Method = Jacobi

Maximum Iterations = 1000

Residual Norm Scaling = None

Residual Norm Tolerance = 1.Oe-14

End

{endif}

BEGIN FINITE ELEMENT MODEL cube

database name = cube_contact_h{N}_hex20.g

coordinate system is cartesian

decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1

material Kryptonite

END PARAMETERS FOR BLOCK block_1

BEGIN PARAMETERS FOR BLOCK block_2

material Kryptonite

END PARAMETERS FOR BLOCK block_2

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln

Load From File ./exact.so Using Function registerExactSoln

End

Begin User Function exact_src

Load From File ./exact.so Using Function registerExactSrc

End

202



Begin User Function flux_surface_3

Load From File ./exact.so Using Function registerFlux_Surface_3

End

Begin User Function flux_surface_5

Load From File ./exact.so Using Function registerFlux_Surface_5

End

Begin User Function flux_surface_1

Load From File ./exact.so Using Function registerFlux_Surface_1

End

Begin User Function flux_surface_2

Load From File ./exact.so Using Function registerFlux_Surface_2

End

Begin Norm Postprocessor 12

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms L2

End

Begin Norm Postprocessor hl

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms H1

End

Begin Norm Postprocessor linf

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms Llnfinity

End

Begin Postprocessor Output Control pp_out

Comment Character Is %

Write To File errors_thermal_steady_hex20_hINI.dat

Floating Point Precision Is 3

Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description

Use System Main

Begin System Main

Begin Sequential The_Time_Block

Advance myRegion

End

Simulation Start Time = 0

Simulation Termination Time = 1

End

End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton

Maximum Nonlinear Iterations = 10

Nonlinear Residual Tolerance = 1.Oe-12

Nonlinear Correction Tolerance = 1.Oe-12

Nonlinear Relaxation Factor = 1.0

use dof averaged nonlinear residual

use finite element model cube

Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q2S with DIFF SRC

EQ ENERGY for TEMPERATURE on block_2 using Q2S with DIFF SRC
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# surface_4: x=0

# surface_6: x=1

# surface_3: y=0

# surface_5: y=1

# surface_1: z=1

# surface_2: z=0

# const Temp BC (x)
BC const dirichlet at surface_4 Temperature = 1.0

BC const dirichlet at surface_6 Temperature = 1.0

# const flux BC (y)

BC FLUX for Energy on surface_3 = constant flux = 3

BC FLUX for Energy on surface_5 = constant flux = 5

BC FLUX for Energy on surface_3 = Encore_Function Name=flux_surface_3

BC FLUX for Energy on surface_5 = Encore_Function Name=flux_surface_5

# convective flux BC with const Temp and H (z)

BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1

BC Flux for Energy on surface_2 = Nat_Conv T_Ref=2 H=2

BC FLUX for Energy on surface_1 = Encore_Function Name=flux_surface_1

BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

# const source term

Source For ENERGY on block_l = Constant value=1

Source For ENERGY on block_1 = Encore_Function Name=exact_src

Source For ENERGY on block_2 = Constant value=1

Source For ENERGY on block_2 = Encore_Function Name=exact_src

begin contact definition mpcl

contact surface surf_1 contains surface_7

contact surface surf_2 contains surface_8

begin interaction inter_1

surfaces = surf_1 surf_2

end

begin enforcement enf_1

Enforcement for Energy = Tied_Temperature

end

end

Output Number of Nodes

Evaluate Postprocessor 12

Evaluate Postprocessor hl

Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output

database Name = thermal_steady_hex20_tied_contact_h{N}.e

at step 1, increment = 1

# time interval is 1.0

title Aria cube test

nodal variables = nonlinear_solution->TEMPERATURE as T

END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion

END PROCEDURE myAriaProcedure
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END SIERRA myJob

12.3.5. Steady Hex27 Contact

BEGIN SIERRA myJob

load user plugin file ./exact.so

begin definition for function kxx

type = piecewise linear

begin values

0.0 0.5

1.0 2.0

2.0 8.0

end values

end

begin definition for function kyy

type = piecewise linear

begin values

0.0 0.2

1.0 1.2

2.0 2.1

20.0 20.2

end values

end

begin definition for function kzz

type = piecewise linear

begin values

0.0 1.0

1.0 2.0

2.0 3.0

20.0 21.0

end values

scale by 2.0

end

BEGIN ARIA MATERIAL Kryptonite

Density = Constant rho=1

tensor thermal conductivity = user_function X = temperature name_xx = kxx name_yy = kyy name_zz = kzz

Specific Heat = Constant cp=1

heat conduction = Generalized

END ARIA MATERIAL Kryptonite

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN SUPERLU SOLVER

END

END TPETRA EQUATION SOLVER

{else}
Begin Trilinos Equation Solver Direct_Solver

Solution Method = amesos-superlu

End
{endif}

{if(useTpetra)}

BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER

BEGIN GMRES SOLVER

BEGIN JACOBI PRECONDITIONER

END

MAXIMUM ITERATIONS = 1000

RESIDUAL SCALING = NONE

CONVERGENCE TOLERANCE = 1.000000e-14

END

END TPETRA EQUATION SOLVER
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{else}

Begin Trilinos Equation Solver Iterative_Solver

Solution Method = GMRES

Preconditioning Method = Jacobi

Maximum Iterations = 1000

Residual Norm Scaling = None

Residual Norm Tolerance = 1.Oe-14

End
{endif}

BEGIN FINITE ELEMENT MODEL cube

database name = cube_contact_h{N}_hex27.g

coordinate system is cartesian

decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1

material Kryptonite

END PARAMETERS FOR BLOCK block_1

BEGIN PARAMETERS FOR BLOCK block_2

material Kryptonite

END PARAMETERS FOR BLOCK block_2

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln

Load From File ./exact.so Using Function registerExactSoln

End

Begin User Function exact_src

Load From File ./exact.so Using Function registerExactSrc

End

Begin User Function flux_surface_3

Load From File ./exact.so Using Function registerFlux_Surface_3

End

Begin User Function flux_surface_5

Load From File ./exact.so Using Function registerFlux_Surface_5

End

Begin User Function flux_surface_1

Load From File ./exact.so Using Function registerFlux_Surface_1

End

Begin User Function flux_surface_2

Load From File ./exact.so Using Function registerFlux_Surface_2

End

Begin Norm Postprocessor 12

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms L2

End

Begin Norm Postprocessor hl

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms H1

End

Begin Norm Postprocessor linf

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms Llnfinity

End

Begin Postprocessor Output Control pp_out
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Comment Character Is %

Write To File errors_thermal_steady_hex27_11011.dat

Floating Point Precision Is 3

Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description

Use System Main

Begin System Main

Begin Sequential The_Time_Block

Advance myRegion

End

Simulation Start Time = 0

Simulation Termination Time = 1

End

End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton

Maximum Nonlinear Iterations = 10

Nonlinear Residual Tolerance = 1.Oe-12

Nonlinear Correction Tolerance = 1.0e-12

Nonlinear Relaxation Factor = 1.0

use dof averaged nonlinear residual

use finite element model cube

Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q2 with DIFF SRC

EQ ENERGY for TEMPERATURE on block_2 using Q2 with DIFF SRC

# surface_4: x=0

# surface_6: x=1

# surface_3: y=0

# surface_5: y=1

# surface_1: z=1

# surface_2: z=0

# const Temp BC (x)

BC const dirichlet at surface_4 Temperature = 1.0

BC const dirichlet at surface_6 Temperature = 1.0

# const flux BC (y)
BC FLUX for Energy on surface_3 = constant flux = 3

BC FLUX for Energy on surface_5 = constant flux = 5

BC FLUX for Energy on surface_3 = Encore_Function Name=flux_surface_3

BC FLUX for Energy on surface_5 = Encore_Function Name=flux_surface_5

# convective flux BC with const Temp and H (z)

BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1

BC Flux for Energy on surface_2 = Nat_Conv T_Ref=2 H=2

BC FLUX for Energy on surface_1 = Encore_Function Name=flux_surface_1

BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

# const source term

Source For ENERGY on block_1 = Constant value=1

Source For ENERGY on block_1 = Encore_Function Name=exact_src

Source For ENERGY on block_2 = Constant value=1
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Source For ENERGY on block_2 = Encore_Function Name=exact_src

begin contact definition mpcl

contact surface surf_1 contains surface_7

contact surface surf_2 contains surface_8

begin interaction inter_1

surfaces = surf_1 surf_2

end

begin enforcement enf_1

Enforcement for Energy = Tied_Temperature

end

end

Output Number of Nodes

Evaluate Postprocessor 12

Evaluate Postprocessor hl

Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output

database Name = thermal_steady_hex27_tied_contact_h{N}.e

at step 1, increment = 1

# time interval is 1.0

title Aria cube test

nodal variables = nonlinear_solution->TEMPERATURE as T

END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion

END PROCEDURE myAriaProcedure

END SIERRA myJob

12.3.6. Steady Tet4 Contact

#N={N=5}

BEGIN SIERRA myJob

BEGIN ARIA MATERIAL Kryptonite

Density = Constant rho=1

Thermal Conductivity = constant k=1

Specific Heat = Constant cp=1

heat conduction = basic

END ARIA MATERIAL Kryptonite

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN SUPERLU SOLVER

END

END TPETRA EQUATION SOLVER

{else}
Begin Trilinos Equation Solver Direct_Solver

Solution Method = amesos-superlu

End

{endif}

{if(useTpetra)}

BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER

BEGIN GMRES SOLVER

BEGIN JACOBI PRECONDITIONER

END

MAXIMUM ITERATIONS = 1000

RESIDUAL SCALING = NONE

CONVERGENCE TOLERANCE = 1.000000e-15
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END

END TPETRA EQUATION SOLVER

{else}

Begin Trilinos Equation Solver Iterative_Solver

Solution Method = GMRES

Preconditioning Method = Jacobi

Maximum Iterations = 1000

Residual Norm Scaling = None

Residual Norm Tolerance = 1.Oe-15

End
{endif}

BEGIN FINITE ELEMENT MODEL cube

database name = cube_contact_h{N}_tet4.e

coordinate system is cartesian

decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1

material Kryptonite

END PARAMETERS FOR BLOCK block_1

BEGIN PARAMETERS FOR BLOCK block_2

material Kryptonite

END PARAMETERS FOR BLOCK block_2

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln

Load From File ./exact.so Using Function registerExactSoln

End

Begin User Function exact_soln_dot

Load From File ./exact.so Using Function registerExactSolnDot

End

Begin User Function exact_src

Load From File ./exact.so Using Function registerExactSrc

End

Begin User Function flux_surface_3

Load From File ./exact.so Using Function registerFlux_Surface_3

End

Begin User Function flux_surface_5

Load From File ./exact.so Using Function registerFlux_Surface_5

End

Begin User Function flux_surface_1

Load From File ./exact.so Using Function registerFlux_Surface_1

End

Begin User Function flux_surface_2

Load From File ./exact.so Using Function registerFlux_Surface_2

End

Begin Norm Postprocessor 12

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms L2

Store In 12_error

End

Begin Norm Postprocessor hl

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms H1

Store In hl_error

End
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Begin Norm Postprocessor linf

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms Llnfinity

Store In linf_error

End

Begin Postprocessor Output Control pp_out

Comment Character Is %

Write To File errors_hfNI.dat

Floating Point Precision Is 3

Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description

Use System Main

Begin System Main

Begin Sequential The_Time_Block

Advance myRegion

End

Simulation Start Time = 0

Simulation Termination Time = 1

End

End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton

Maximum Nonlinear Iterations = 10

Nonlinear Residual Tolerance = 1.Oe-12

Nonlinear Correction Tolerance = 1.0e-12

Nonlinear Relaxation Factor = 1.0

use dof averaged nonlinear residual

use finite element model cube

Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q1 with DIFF SRC

EQ ENERGY for TEMPERATURE on block_2 using Q1 with DIFF SRC

# surface_4: x=0

# surface_6: x=1

# surface_3: y=0

# surface_5: y=1

# surface_1: z=1

# surface_2: z=0

# const Temp BC (x)
BC const dirichlet at surface_4 Temperature = 1.0

BC const dirichlet at surface_6 Temperature = 1.0

# const flux BC (y)
BC FLUX for Energy on surface_3 = constant flux = 3

BC FLUX for Energy on surface_5 = constant flux = 5

BC FLUX for Energy on surface_3 = Encore_Function Name=flux_surface_3

BC FLUX for Energy on surface_5 = Encore_Function Name=flux_surface_5

# convective flux BC with const Temp and H (z)
BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1

BC Flux for Energy on surface_2 = Nat_Conv T_Ref=2 H=2

BC FLUX for Energy on surface_1 = Encore_Function Name=flux_surface_1



BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

# const source term

Source For ENERGY on block_1 = Constant value=1

Source For ENERGY on block_2 = Constant value=1

Source For ENERGY on block_1 = Encore_Function Name=exact_src

Source For ENERGY on block_2 = Encore_Function Name=exact_src

begin contact definition mpcl

contact surface surf_1 contains surface_7

contact surface surf_2 contains surface_8

begin interaction inter_1

surfaces = surf_1 surf_2

end

begin enforcement enf_1

Enforcement for Energy = Tied_Temperature

end

end

Output Number of Nodes

Evaluate Postprocessor 12

Evaluate Postprocessor hl

Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output

database Name = thermal_steady_tet4_tied_contact_h{N}.e

at step 1, increment = 1

# time interval is 1.0

title Aria cube test

nodal variables = nonlinear_solution->TEMPERATURE as T

element variables = 12_error hl_error linf_error

END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion

END PROCEDURE myAriaProcedure

END SIERRA myJob

12.3.7. Steady Tet4Tet10 Contact

#N={N=5}

BEGIN SIERRA myJob

BEGIN ARIA MATERIAL Kryptonite

Density = Constant rho=1

Thermal Conductivity = constant k=1

Specific Heat = Constant cp=1

heat conduction = basic

END ARIA MATERIAL Kryptonite

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN SUPERLU SOLVER

END

END TPETRA EQUATION SOLVER

{else}
Begin Trilinos Equation Solver Direct_Solver

Solution Method = amesos-superlu

End
{endif}

{if(useTpetra)}



BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER

BEGIN GMRES SOLVER

BEGIN JACOBI PRECONDITIONER

END

MAXIMUM ITERATIONS = 1000

RESIDUAL SCALING = NONE

CONVERGENCE TOLERANCE = 1.000000e-15

END

END TPETRA EQUATION SOLVER

{else}

Begin Trilinos Equation Solver Iterative_Solver

Solution Method = GMRES

Preconditioning Method = Jacobi

Maximum Iterations = 1000

Residual Norm Scaling = None

Residual Norm Tolerance = 1.Oe-15

End
{endif}

BEGIN FINITE ELEMENT MODEL cube

database name = cube_contact_h{N}_tetl0.e

coordinate system is cartesian

decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1

material Kryptonite

END PARAMETERS FOR BLOCK block_1

BEGIN PARAMETERS FOR BLOCK block_2

material Kryptonite

END PARAMETERS FOR BLOCK block_2

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln

Load From File ./exact.so Using Function registerExactSoln

End

Begin User Function exact_soln_dot

Load From File ./exact.so Using Function registerExactSolnDot

End

Begin User Function exact_src

Load From File ./exact.so Using Function registerExactSrc

End

Begin User Function flux_surface_3

Load From File ./exact.so Using Function registerFlux_Surface_3

End

Begin User Function flux_surface_5

Load From File ./exact.so Using Function registerFlux_Surface_5

End

Begin User Function flux_surface_1

Load From File ./exact.so Using Function registerFlux_Surface_1

End

Begin User Function flux_surface_2

Load From File ./exact.so Using Function registerFlux_Surface_2

End

Begin Norm Postprocessor 12

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms L2

Store In 12_error

End
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Begin Norm Postprocessor hl

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms H1

Store In hi...error

End

Begin Norm Postprocessor linf

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms Llnfinity

Store In linf_error

End

Begin Postprocessor Output Control pp_out

Comment Character Is %

Write To File errors_h{N}.dat

Floating Point Precision Is 3

Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description

Use System Main

Begin System Main

Begin Sequential The_Time_Block

Advance myRegion

End

Simulation Start Time = 0

Simulation Termination Time = 1

End

End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton

Maximum Nonlinear Iterations = 10

Nonlinear Residual Tolerance = 1.Oe-12

Nonlinear Correction Tolerance = 1.0e-12

Nonlinear Relaxation Factor = 1.0

use dof averaged nonlinear residual

use finite element model cube

Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q1 with DIFF SRC

EQ ENERGY for TEMPERATURE on block_2 using Q1 with DIFF SRC

# surface_4: x=0

# surface_6: x=1

# surface_3: y=0

# surface_5: y=1

# surface_1: z=1

# surface_2: z=0

# const Temp BC (x)
BC const dirichlet at surface_4 Temperature = 1.0

BC const dirichlet at surface_6 Temperature = 1.0

# const flux BC (y)
BC FLUX for Energy on surface_3 = constant flux = 3

BC FLUX for Energy on surface_5 = constant flux = 5

BC FLUX for Energy on surface_3 = Encore_Function Name=flux_surface_3
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BC FLUX for Energy on surface_5 = Encore_Function Name=flux_surface_5

# convective flux BC with const Temp and H (z)

BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1

BC Flux for Energy on surface_2 = Nat_Conv T_Ref=2 H=2

BC FLUX for Energy on surface_1 = Encore_Function Name=flux_surface_1

BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

# const source term

Source For ENERGY on block_1 = Constant value=1

Source For ENERGY on block_2 = Constant value=1

Source For ENERGY on block_1 = Encore_Function Name=exact_src

Source For ENERGY on block_2 = Encore_Function Name=exact_src

begin contact definition mpcl

contact surface surf_1 contains surface_7

contact surface surf_2 contains surface_8

begin interaction inter_1

surfaces = surf_1 surf_2

end

begin enforcement enf_1

Enforcement for Energy = Tied_Temperature

end

end

Output Number of Nodes

Evaluate Postprocessor 12

Evaluate Postprocessor hl

Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output

database Name = thermal_steady_tet4_tied_contact_h{N}.e

at step 1, increment = 1

# time interval is 1.0

title Aria cube test

nodal variables = nonlinear_solution->TEMPERATURE as T

element variables = 12_error hl_error linf_error

END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion

END PROCEDURE myAriaProcedure

END SIERRA myJob

12.3.8. Steady Tet10 Contact

#N={N=5}

BEGIN SIERRA myJob

BEGIN ARIA MATERIAL Kryptonite

Density = Constant rho=1

Thermal Conductivity = constant k=1

Specific Heat = Constant cp=1

heat conduction = basic

END ARIA MATERIAL Kryptonite

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN SUPERLU SOLVER

END

END TPETRA EQUATION SOLVER
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{else}

Begin Trilinos Equation Solver Direct_Solver

Solution Method = amesos-superlu

End
{endif}

fif(useTpetra)}

BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER

BEGIN GMRES SOLVER

BEGIN JACOBI PRECONDITIONER

END

MAXIMUM ITERATIONS = 1000

RESIDUAL SCALING = NONE

CONVERGENCE TOLERANCE = 1.000000e-15

END

END TPETRA EQUATION SOLVER

{else}

Begin Trilinos Equation Solver Iterative_Solver

Solution Method = GMRES

Preconditioning Method = Jacobi

Maximum Iterations = 1000

Residual Norm Scaling = None

Residual Norm Tolerance = 1.Oe-15

End

fendifl

BEGIN FINITE ELEMENT MODEL cube

database name = cube_contact_h{N}_tet10.e

coordinate system is cartesian

decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1

material Kryptonite

END PARAMETERS FOR BLOCK block_1

BEGIN PARAMETERS FOR BLOCK block_2

material Kryptonite

END PARAMETERS FOR BLOCK block_2

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln

Load From File ./exact.so Using Function registerExactSoln

End

Begin User Function exact_soln_dot

Load From File ./exact.so Using Function registerExactSolnDot

End

Begin User Function exact_src

Load From File ./exact.so Using Function registerExactSrc

End

Begin User Function flux_surface_3

Load From File ./exact.so Using Function registerFlux_Surface_3

End

Begin User Function flux_surface_5

Load From File ./exact.so Using Function registerFlux_Surface_5

End

Begin User Function flux_surface_1

Load From File ./exact.so Using Function registerFlux_Surface_1

End

Begin User Function flux_surface_2

Load From File ./exact.so Using Function registerFlux_Surface_2

End
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Begin Norm Postprocessor 12

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms L2

Store In 12_error

End

Begin Norm Postprocessor hl

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms H1

Store In hi_error

End

Begin Norm Postprocessor linf

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms Llnfinity

Store In linf_error

End

Begin Postprocessor Output Control pp_out

Comment Character Is %

Write To File errors_h{N}.dat

Floating Point Precision Is 3

Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description

Use System Main

Begin System Main

Begin Sequential The_Time_Block

Advance myRegion

End

Simulation Start Time = 0

Simulation Termination Time = 1

End

End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton

Maximum Nonlinear Iterations = 10

Nonlinear Residual Tolerance = 1.Oe-12

Nonlinear Correction Tolerance = 1.0e-12

Nonlinear Relaxation Factor = 1.0

use dof averaged nonlinear residual

use finite element model cube

Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q2 with DIFF SRC

EQ ENERGY for TEMPERATURE on block_2 using Q2 with DIFF SRC

# surface_4: x=0

# surface_6: x=1

# surface_3: y=0

# surface_5: y=1

# surface_1: z=1

# surface_2: z=0

# const Temp BC (x)

BC const dirichlet at surface_4 Temperature = 1.0
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BC const dirichlet at surface_6 Temperature = 1.0

# const flux BC (y)

BC FLUX for Energy on surface_3 = constant flux = 3

BC FLUX for Energy on surface_5 = constant flux = 5

BC FLUX for Energy on surface_3 = Encore_Function Name=flux_surface_3

BC FLUX for Energy on surface_5 = Encore_Function Name=flux_surface_5

# convective flux BC with const Temp and H (z)

BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1

BC Flux for Energy on surface_2 = Nat_Conv T_Ref=2 H=2

BC FLUX for Energy on surface_1 = Encore_Function Name=flux_surface_1

BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

# const source term

Source For ENERGY on block_1 = Constant value=1

Source For ENERGY on block_2 = Constant value=1

Source For ENERGY on block_1 = Encore_Function Name=exact_src

Source For ENERGY on block_2 = Encore_Function Name=exact_src

begin contact definition mpcl

contact surface surf_1 contains surface_7

contact surface surf_2 contains surface_8

begin interaction inter_1

surfaces = surf_1 surf_2

end

begin enforcement enf_1

Enforcement for Energy = Tied_Temperature

end

end

Output Number of Nodes

Evaluate Postprocessor 12

Evaluate Postprocessor hl

Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output

database Name = thermal_steady_tet10_tied_contact_h{N}.e

at step 1, increment = 1

# time interval is 1.0

title Aria cube test

nodal variables = nonlinear_solution->TEMPERATURE as T

element variables = 12_error hl_error linf_error

END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion

END PROCEDURE myAriaProcedure

END SIERRA myJob

12.3.9. Steady Tet10 Dash Contact

#N={N=4}

BEGIN SIERRA myJob

BEGIN ARIA MATERIAL Kryptonite

Density = Constant rho=1

Thermal Conductivity = constant k=1

Specific Heat = Constant cp=1

heat conduction = basic
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END ARIA MATERIAL Kryptonite

{if(useTpetra)}

BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN SUPERLU SOLVER

END

END TPETRA EQUATION SOLVER

{else}

Begin Trilinos Equation Solver Direct_Solver

Solution Method = amesos-superlu

End

{endif}

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER

BEGIN GMRES SOLVER

BEGIN JACOBI PRECONDITIONER

END

MAXIMUM ITERATIONS = 1000

RESIDUAL SCALING = NONE

CONVERGENCE TOLERANCE = 1.000000e-15

END

END TPETRA EQUATION SOLVER

{else}

Begin Trilinos Equation Solver Iterative_Solver

Solution Method = GMRES

Preconditioning Method = Jacobi

Maximum Iterations = 1000

Residual Norm Scaling = None

Residual Norm Tolerance = 1.Oe-15

End
{endif}

BEGIN FINITE ELEMENT MODEL cube

database name = cube_contact_h{N}_tet10.e

coordinate system is cartesian

decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1

material Kryptonite

END PARAMETERS FOR BLOCK block_1

BEGIN PARAMETERS FOR BLOCK block_2

material Kryptonite

END PARAMETERS FOR BLOCK block_2

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln

Load From File ./exact.so Using Function registerExactSoln

End

Begin User Function exact_soln_dot

Load From File ./exact.so Using Function registerExactSolnDot

End

Begin User Function exact_src

Load From File ./exact.so Using Function registerExactSrc

End

Begin User Function flux_surface_3

Load From File ./exact.so Using Function registerFlux_Surface_3

End

Begin User Function flux_surface_5

Load From File ./exact.so Using Function registerFlux_Surface_5

End

218



Begin User Function flux_surface_1

Load From File ./exact.so Using Function registerFlux_Surface_1

End

Begin User Function flux_surface_2

Load From File ./exact.so Using Function registerFlux_Surface_2

End

Begin Norm Postprocessor 12

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms L2

Store In 12_error

End

Begin Norm Postprocessor hl

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms H1

Store In hi_error

End

Begin Norm Postprocessor linf

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms Llnfinity

Store In linf_error

End

Begin Postprocessor Output Control pp_out

Comment Character Is %

Write To File errors_h{N}.dat

Floating Point Precision Is 3

Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description

Use System Main

Begin System Main

Begin Sequential The_Time_Block

Advance myRegion

End

Simulation Start Time = 0

Simulation Termination Time = 1

End

End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton

Maximum Nonlinear Iterations = 10

Nonlinear Residual Tolerance = 1.Oe-12

Nonlinear Correction Tolerance = 1.0e-12

Nonlinear Relaxation Factor = 1.0

use dof averaged nonlinear residual

use finite element model cube

Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q2 with DIFF SRC

EQ ENERGY for TEMPERATURE on block_2 using Q2 with DIFF SRC

# surface_4: x=0

# surface_6: x=1

# surface_3: y=0
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# surface_5: y=1

# surface_1: z=1

# surface_2: z=0

# const Temp BC (x)

BC const dirichlet at surface_4 Temperature = 1.0

BC const dirichlet at surface_6 Temperature = 1.0

# const flux BC (y)

BC FLUX for Energy on surface_3 = constant flux = 3

BC FLUX for Energy on surface_5 = constant flux = 5

BC FLUX for Energy on surface_3 = Encore_Function Name=flux_surface_3

BC FLUX for Energy on surface_5 = Encore_Function Name=flux_surface_5

# convective flux BC with const Temp and H (z)

BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1

BC Flux for Energy on surface_2 = Nat_Conv T_Ref=2 H=2

BC FLUX for Energy on surface_1 = Encore_Function Name=flux_surface_1

BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

# const source term

Source For ENERGY on block_1 = Constant value=1

Source For ENERGY on block_2 = Constant value=1

Source For ENERGY on block_1 = Encore_Function Name=exact_src

Source For ENERGY on block_2 = Encore_Function Name=exact_src

begin contact definition mpcl

skin all blocks = on

search = dash

begin interaction defaults

general contact = on

end interaction defaults

begin dash options

interaction definition scheme = explicit

search length scaling = 0.75

end dash options

begin enforcement enf_1

Enforcement for Energy = Dash_Tied

end

end

Output Number of Nodes

Evaluate Postprocessor 12

Evaluate Postprocessor hl

Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output

database Name = thermal_steady_tet10_tied_dash_contact_h{N}.e

at step 1, increment = 1

# time interval is 1.0

title Aria cube test

nodal variables = nonlinear_solution->TEMPERATURE as T

element variables = 12_error hl_error linf_error

END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion

END PROCEDURE myAriaProcedure
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END SIERRA myJob

12.3.10. Transient Tet4Tet10 Contact

#N={N=5}

BEGIN SIERRA myJob

BEGIN ARIA MATERIAL Kryptonite

Density = Constant rho=1

Thermal Conductivity = constant k=1

Specific Heat = Constant cp=1

heat conduction = basic

END ARIA MATERIAL Kryptonite

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN SUPERLU SOLVER

END

END TPETRA EQUATION SOLVER

{else}
Begin Trilinos Equation Solver Direct_Solver

Solution Method amesos-superlu

End
{endif}

{if(useTpetra)}

BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER

BEGIN GMRES SOLVER

BEGIN JACOBI PRECONDITIONER

END

MAXIMUM ITERATIONS = 1000

RESIDUAL SCALING = NONE

CONVERGENCE TOLERANCE = 1.000000e-15

END

END TPETRA EQUATION SOLVER

{else}
Begin Trilinos Equation Solver Iterative_Solver

Solution Method = GMRES

Preconditioning Method = Jacobi

Maximum Iterations = 1000

Residual Norm Scaling = None

Residual Norm Tolerance = 1.Oe-15

End
{endif}

BEGIN FINITE ELEMENT MODEL cube

database name = cube_contact_h{N}_tet10.e

coordinate system is cartesian

decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1

material Kryptonite

END PARAMETERS FOR BLOCK block_1

BEGIN PARAMETERS FOR BLOCK block_2

material Kryptonite

END PARAMETERS FOR BLOCK block_2

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln

Load From File ./exact_transient.so Using Function registerExactSoln

End

Begin User Function exact_soln_dot



Load From File ./exact_transient.so Using Function registerExactSolnDot

End

Begin User Function exact_src

Load From File ./exact_transient.so Using Function registerExactSrc

End

Begin User Function flux_surface_3

Load From File ./exact_transient.so Using Function registerFlux_Surface_3

End

Begin User Function flux_surface_5

Load From File ./exact_transient.so Using Function registerFlux_Surface_5

End

Begin User Function flux_surface_1

Load From File ./exact_transient.so Using Function registerFlux_Surface_1

End

Begin User Function flux_surface_2

Load From File ./exact_transient.so Using Function registerFlux_Surface_2

End

Begin Norm Postprocessor 12

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms L2

End

Begin Norm Postprocessor 12_dot

Use Function exact_soln_dot

Subtract Function time_derivative_at_time->TEMPERATURE

Compute Norms L2

End

Begin Norm Postprocessor hi

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms H1

End

Begin Norm Postprocessor linf

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms Llnfinity

End

Begin Postprocessor Output Control pp_out

Comment Character Is %

Write To File errors_h{N}.dat

Floating Point Precision Is 3

Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description

Use System Main

Begin System Main

Begin Transient The_Time_Block

Advance myRegion

End

Simulation Start Time = 0

Simulation Termination Time = 3

End

Begin Parameters For Transient The_Time_Block

Begin Parameters For Aria Region myRegion

Initial Time Step Size = {0.5/2**N}
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Time Integration Method = Second_Order

Time Step Variation = fixed

End

End

End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton

Maximum Nonlinear Iterations = 10

Nonlinear Residual Tolerance = 1.0e-12

Nonlinear Correction Tolerance = 1.Oe-12

Nonlinear Relaxation Factor = 1.0

use dof averaged nonlinear residual

use finite element model cube

Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q1 with MASS DIFF SRC

EQ ENERGY for TEMPERATURE on block_2 using Q1 with MASS DIFF SRC

IC const on block_1 temperature = 1.0

IC const on block_2 temperature = 1.0

# surface_4: x=0

# surface_6: x=1

# surface_3: y=0

# surface_5: y=1

# surface_1: z=1

# surface_2: z=0

# const Temp BC (x)
BC const dirichlet at surface_4 Temperature = 1.0

BC const dirichlet at surface_6 Temperature = 1.0

# const flux BC (y)
BC FLUX for Energy on surface_3 = constant flux = 3

BC FLUX for Energy on surface_5 = constant flux = 5

BC FLUX for Energy on surface_3 = Encore_Function Name=flux_surface_3

BC FLUX for Energy on surface_5 = Encore_Function Name=flux_surface_5

# convective flux BC with const Temp and H (z)

BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1

BC Flux for Energy on surface_2 = Nat_Conv T_Ref=2 H=2

BC FLUX for Energy on surface_1 = Encore_Function Name=flux_surface_1

BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

# const source term

Source For ENERGY on block_1 = Constant value=1

Source For ENERGY on block_2 = Constant value=1

Source For ENERGY on block_1 = Encore_Function Name=exact_src

Source For ENERGY on block_2 = Encore_Function Name=exact_src

begin contact definition mpcl

contact surface surf_1 contains surface_7

contact surface surf_2 contains surface_8

begin interaction inter_1

surfaces = surf_1 surf_2

end

begin enforcement enf_1

Enforcement for Energy = Tied_Temperature

end
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end

Output Number of Nodes

Evaluate Postprocessor 12

Evaluate Postprocessor 12_dot

Evaluate Postprocessor hl

Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output

database Name = thermal_transient_tet10_tied_contact_h{N}.e

at step 0, increment = {2**N}

title Aria cube test

nodal variables = solution->TEMPERATURE as T

nodal variables = time_derivative_at_time->TEMPERATURE as TDOT

END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion

END PROCEDURE myAriaProcedure

END SIERRA myJob

12.3.11. Transient Tet10 Contact

#N={N=5}

BEGIN SIERRA myJob

BEGIN ARIA MATERIAL Kryptonite

Density = Constant rho=1

Thermal Conductivity = constant k=1

Specific Heat = Constant cp=1

heat conduction = basic

END ARIA MATERIAL Kryptonite

{if(useTpetra)}

BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN SUPERLU SOLVER

END

END TPETRA EQUATION SOLVER

{else}
Begin Trilinos Equation Solver Direct_Solver

Solution Method = amesos-superlu

End
{endif}

{if(useTpetra)}

BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER

BEGIN GMRES SOLVER

BEGIN JACOBI PRECONDITIONER

END

MAXIMUM ITERATIONS = 1000

RESIDUAL SCALING = NONE

CONVERGENCE TOLERANCE = 1.000000e-15

END

END TPETRA EQUATION SOLVER

{else}

Begin Trilinos Equation Solver Iterative_Solver

Solution Method = GMRES

Preconditioning Method = Jacobi

Maximum Iterations = 1000

Residual Norm Scaling = None

Residual Norm Tolerance = 1.Oe-15

End
{endif}
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BEGIN FINITE ELEMENT MODEL cube

database name = cube_contact_h{N}_tet10.e

coordinate system is cartesian

decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1

material Kryptonite

END PARAMETERS FOR BLOCK block_1

BEGIN PARAMETERS FOR BLOCK block_2

material Kryptonite

END PARAMETERS FOR BLOCK block_2

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln

Load From File ./exact_transient.so Using Function registerExactSoln

End

Begin User Function exact_soln_dot

Load From File ./exact_transient.so Using Function registerExactSolnDot

End

Begin User Function exact_src

Load From File ./exact_transient.so Using Function registerExactSrc

End

Begin User Function flux_surface_3

Load From File ./exact_transient.so Using Function registerFlux_Surface_3

End

Begin User Function flux_surface_5

Load From File ./exact_transient.so Using Function registerFlux_Surface_5

End

Begin User Function flux_surface_1

Load From File ./exact_transient.so Using Function registerFlux_Surface_1

End

Begin User Function flux_surface_2

Load From File ./exact_transient.so Using Function registerFlux_Surface_2

End

Begin Norm Postprocessor 12

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms L2

End

Begin Norm Postprocessor 12_dot

Use Function exact_soln_dot

Subtract Function time_derivative_at_time->TEMPERATURE

Compute Norms L2

End

Begin Norm Postprocessor hl

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms H1

End

Begin Norm Postprocessor linf

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms Llnfinity

End

Begin Postprocessor Output Control pp_out
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Comment Character Is %

Write To File errors_h{N}.dat

Floating Point Precision Is 3

Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description

Use System Main

Begin System Main

Begin Transient The_Time_Block

Advance myRegion

End

Simulation Start Time = 0

Simulation Termination Time = 3

End

Begin Parameters For Transient The_Time_Block

Begin Parameters For Aria Region myRegion

Initial Time Step Size = {0.5/2**N}

Time Integration Method = Second_Order

Time Step Variation = fixed

End

End

End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton

Maximum Nonlinear Iterations = 10

Nonlinear Residual Tolerance = 1.Oe-12

Nonlinear Correction Tolerance = 1.Oe-12

Nonlinear Relaxation Factor = 1.0

use dof averaged nonlinear residual

use finite element model cube

Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q2 with MASS DIFF SRC

EQ ENERGY for TEMPERATURE on block_2 using Q2 with MASS DIFF SRC

IC const on block_1 temperature = 1.0

IC const on block_2 temperature = 1.0

# surface_4: x=0

# surface_6: x=1

# surface_3: y=0

# surface_5: y=1

# surface_1: z=1

# surface_2: z=0

# const Temp BC (x)

BC const dirichlet at surface_4 Temperature = 1.0

BC const dirichlet at surface_6 Temperature = 1.0

# const flux BC (y)

BC FLUX for Energy on surface_3 = constant flux = 3

BC FLUX for Energy on surface_5 = constant flux = 5

BC FLUX for Energy on surface_3 = Encore_Function Name=flux_surface_3

BC FLUX for Energy on surface_5 = Encore_Function Name=flux_surface_5

# convective flux BC with const Temp and H (z)

BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1

BC Flux for Energy on surface_2 = Nat_Conv T_Ref=2 H=2
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BC FLUX for Energy on surface_1 = Encore_Function Name=flux_surface_l

BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

# const source term

Source For ENERGY on block_1 = Constant value=1

Source For ENERGY on block_2 = Constant value=1

Source For ENERGY on block_1 = Encore_Function Name=exact_src

Source For ENERGY on block_2 = Encore_Function Name=exact_src

begin contact definition mpcl

contact surface surf_1 contains surface_7

contact surface surf_2 contains surface_8

begin interaction inter_1

surfaces = surf_1 surf_2

end

begin enforcement enf_1

Enforcement for Energy = Tied_Temperature

end

end

Output Number of Nodes

Evaluate Postprocessor 12

Evaluate Postprocessor 12_dot

Evaluate Postprocessor hl

Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output

database Name = thermal_transient_tet10_tied_contact_h{N}.e

at step 0, increment = {2**N}

title Aria cube test

nodal variables = solution->TEMPERATURE as T

nodal variables = time_derivative_at_time->TEMPERATURE as TDOT

END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion

END PROCEDURE myAriaProcedure

END SIERRA myJob



12.4. ELEMENT DEATH

12.4.1. CDFEM Element Death (Heat Flux)

12.4.1.1. Tri3

BEGIN SIERRA Aria

Title \$
1-d standard conduction problem, Carslaw and Jaeger P. 292\$

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER SOLVE_TEMPERATURE

BEGIN CG SOLVER

BEGIN JACOBI PRECONDITIONER

END

MAXIMUM ITERATIONS = 10000

RESIDUAL SCALING = RO

CONVERGENCE TOLERANCE = 1.000000e-14

END

END TPETRA EQUATION SOLVER

{else}

BEGIN Aztec EQUATION SOLVER solve_temperature

Solution Method = cg

Preconditioning Method = JACOBI

Maximum Iterations = 10000

Residual Norm Tolerance = le-14

Residual norm scaling = RO

END
{endif}

Begin Global Constants

Stefan Boltzmann Constant = 5.67e-8 # W/m-2-K-4

Ideal Gas Constant = 8.314 # J/mol-K

End

BEGIN ARIA MATERIAL solid

DENSITY = constant rho = 1.

Thermal Conductivity = constant k = 1.

Specific Heat = Constant cp = 1.0

Heat Conduction = basic

END ARIA MATERIAL solid

BEGIN FINITE ELEMENT MODEL VERIFY_DEATH

DATABASE NAME = input{N}_tri3.e

decomposition method = rcb

COORDINATE SYSTEM = CARTESIAN

DATABASE TYPE = EXODUSII

USE MATERIAL solid FOR block_1

USE MATERIAL solid FOR block_1_dead

END FINITE ELEMENT MODEL VERIFY_DEATH

Begin String Function exact_soln

Value Is "ln(sqrt(x*x+y*y))*(1/ln(2-0)"

Gradient Is "(x/(x*x+y*y))*(1/ln(2-t))" "(y/(x*x+y*y))*(1/ln(2-t))"
End

Begin String Function exact_src

Value Is "ln(sqrt(x*x+y*y))*(-1/(ln(2-t)*ln(2-t)))*(1/(2-t))*(-1)"

End

# exact flux computed at interface (r=2-t)

Begin String Function exact_flux

Value Is "-1/((2-t)*ln(2-t))"

End
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# exact interface position (radial)

Begin String Function exact_interface

Value Is "2-t"

End

# radius function - evaluate r(x,y)

Begin String Function radius

Value Is "sqrt(x*x+y*y)"

End

Begin Norm Postprocessor 12

Volumes block_1

Use Function exact_soln

Subtract Function solution->TEMPERATURE

Compute Norms L2

Store In 12_err

End

Begin Norm Postprocessor hl

Volumes block_1

Use Function exact_soln

Subtract Function solution->TEMPERATURE

Compute Norms H1

Store In hl_err

End

Begin Norm Postprocessor linf

Volumes block_1

Use Function exact_soln

Subtract Function solution->TEMPERATURE

Compute Norms Llnfinity

Store In linf_err

End

Begin Norm Postprocessor 12_interface

Surfaces surface_1 surface_block_1_death_by_temp

Use Function exact_interface

Subtract Function radius

Compute Norms L2

End

Begin Norm Postprocessor linf_interface

Surfaces surface_1 surface_block_1_death_by_temp

Use Function exact_interface

Subtract Function radius

Compute Norms Nodal Llnfinity

Store In linf_interface_err

End

Begin Postprocessor Output Control pp_out

Comment Character Is %

Write To File errors{N}.dat

Floating Point Precision Is 6

Floating Point Format Is Fixed

End

Begin Procedure myProcedure

Begin Solution Control Description

Use System Main

Begin System Main

Simulation Start Time = 0.0

Simulation Termination Time = 0.9

Begin transient MySolveBlock

Advance myRegion

End

End

begin parameters for transient MySolveBlock
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start time = 0.0

begin parameters for aria region myRegion

initial time step size = {0.1*(0.5**(N-1))1

Predictor-Corrector Tolerance = {0.05*(0.5**(N-1))1
Maximum Time Step Size = {0.2*(0.5**(N-1))}

Time Integration Method = bdf2

time step variation = adaptive

end

end

End

Begin Aria Region myRegion

Use Finite Element Model VERIFY_DEATH

Begin CDFEM Death death_by_temp

add volume block_1

Criterion is solution->Temperature > 1.0

End

Use Linear Solver solve_temperature

nonlinear solution strategy = newton

maximum nonlinear iterations = 2

nonlinear correction tolerance = 1.0e-12

nonlinear residual tolerance = 1.Oe-12

nonlinear relaxation factor = 1.0

use dof averaged nonlinear residual

eq energy for temperature on all_blocks using q1 with lumped_mass diff src

IC Encore function on block_1 Temperature = exact_soln

BC Dirichlet for Temperature on surface_2 = encore_function name=exact_soln

SOURCE for Energy on block_1 = encore_function name=exact_src

BC Flux for Energy on surface_1 = encore_function name=exact_flux

BC Flux for Energy on surface_block_1_death_by_temp = encore_function name=exact_flux

Output Number of Nodes

Evaluate Postprocessor 12

Evaluate Postprocessor hl

Evaluate Postprocessor linf

Evaluate Postprocessor 12_interface

Evaluate Postprocessor linf_interface

Begin Results Output Label diffusion output

database name = output{N}.e

at Step 0, Interval = {2**N}

Nodal Variables = solution->temperature as TEMP

Nodal Variables = linf_interface_err

Element Variables = 12_err hl_err linf_err

End Results Output Label diffusion output

End Aria Region myRegion

End Procedure myProcedure

END SIERRA ARIA



12.4.1.2. Tet4

BEGIN SIERRA Aria

Title \$

1-d standard conduction problem, Carslaw and Jaeger P. 292\$

{if(useTpetra)}

BEGIN TPETRA EQUATION SOLVER SOLVE_TEMPERATURE

BEGIN CG SOLVER

BEGIN JACOBI PRECONDITIONER

END

MAXIMUM ITERATIONS = 10000

RESIDUAL SCALING = RO

CONVERGENCE TOLERANCE = 1.000000e-14

END

END TPETRA EQUATION SOLVER

{else}

BEGIN Aztec EQUATION SOLVER solve_temperature

Solution Method = cg

Preconditioning Method = JACOBI

Maximum Iterations = 10000

Residual Norm Tolerance = le-14

Residual norm scaling = RO

END
{endif}

Begin Global Constants

Stefan Boltzmann Constant = 5.67e-8 # W/m-2-K-4

Ideal Gas Constant = 8.314 # J/mol-K

End

BEGIN ARIA MATERIAL solid

DENSITY = constant rho = 1.

Thermal Conductivity = constant k = 1.

Specific Heat = Constant cp = 1.0

Heat Conduction = basic

END ARIA MATERIAL solid

BEGIN FINITE ELEMENT MODEL VERIFY_DEATH

DATABASE NAME = input{N}_tet4.e

decomposition method = rcb

COORDINATE SYSTEM = CARTESIAN

DATABASE TYPE = EXODUSII

USE MATERIAL solid FOR block_1

USE MATERIAL solid FOR block_1_dead

END FINITE ELEMENT MODEL VERIFY_DEATH

Begin String Function exact_soln

Value Is "(1+t)/sqrt(x*x+y*y+z*z)"

Gradient Is "(1+t)*(-1/(x*x+y*y+z*z))*(x/sqrt(x*x+y*y+z*z))" "(1+t)*(-1/(x*x+y*y+z*z))*(y/sqrt(x*x+y*y+z*z))" "(1+t)*(-1/(x*x-1

End

Begin String Function exact_src

Value Is "1/sqrt(x*x+y*y+z*z)"

End

# exact flux computed at interface (r=2-t)

Begin String Function exact_flux

Value Is "-1/(1+t)"

###Value Is "-(1+t)" ### for verification of case with no element death

End

# exact interface position (radial)

Begin String Function exact_interface

Value Is "l+t"

End
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# radius function - evaluate r(x,y)

Begin String Function radius

Value Is "sqrt(x*x+y*y+z*z)"

End

Begin Norm Postprocessor 12

Volumes block_1

Use Function exact_soln

Subtract Function solution->TEMPERATURE

Compute Norms L2

Store In 12_err

End

Begin Norm Postprocessor hi

Volumes block_1

Use Function exact_soln

Subtract Function solution->TEMPERATURE

Compute Norms H1

Store In hi_err

End

Begin Norm Postprocessor linf

Volumes block_1

Use Function exact_soln

Subtract Function solution->TEMPERATURE

Compute Norms Llnfinity

Store In linf_err

End

Begin Norm Postprocessor 12_interface

Surfaces surface_1 surface_block_1_death_by_temp

Use Function exact_interface

Subtract Function radius

Compute Norms L2

End

Begin Norm Postprocessor linf_interface

Surfaces surface_1 surface_block_1_death_by_temp

Use Function exact_interface

Subtract Function radius

Compute Norms Nodal Llnfinity

Store In linf_interface_err

End

Begin Postprocessor Output Control pp_out

Comment Character Is %

Write To File errors{N}.dat

Floating Point Precision Is 6

Floating Point Format Is Fixed

End

Begin Procedure myProcedure

Begin Solution Control Description

Use System Main

Begin System Main

Simulation Start Time = 0.0

Simulation Termination Time = 0.75

Begin transient MySolveBlock

Advance myRegion

End

End

begin parameters for transient MySolveBlock

start time = 0.0

begin parameters for aria region myRegion

initial time step size = {0.1*(0.5**(N-1))}

Predictor-Corrector Tolerance = {0.05*(0.5**(N-1))}
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Maximum Time Step Size = {0.2*(0.5**(N-1))1

Time Integration Method = bdf2

time step variation = adaptive

end

end

End

Begin Aria Region myRegion

Use Finite Element Model VERIFY_DEATH

Begin CDFEM Death death_by_temp

add volume block_1

Criterion is solution->Temperature > 1.0

End

Use Linear Solver solve_temperature

nonlinear solution strategy = newton

maximum nonlinear iterations = 2

nonlinear correction tolerance = 1.Oe-12

nonlinear residual tolerance = 1.Oe-12

nonlinear relaxation factor = 1.0

use dof averaged nonlinear residual

eq energy for temperature on all_blocks using ql with lumped_mass diff src

IC Encore function on block_1 Temperature = exact_soln

BC Dirichlet for Temperature on surface_2 = encore_function name=exact_soln

SOURCE for Energy on block_1 = encore_function name=exact_src

BC Flux for Energy on surface_1 = encore_function name=exact_flux

BC Flux for Energy on surface_block_i_death_by_temp = encore_function name=exact_flux

Output Number of Nodes

Evaluate Postprocessor 12

Evaluate Postprocessor hl

Evaluate Postprocessor linf

Evaluate Postprocessor 12_interface

Evaluate Postprocessor linf_interface

Begin Results Output Label diffusion output

database name = output{N}.e

at Step 0, Interval = {2**N}

Nodal Variables = solution->temperature as TEMP

Nodal Variables = linf_interface_err

Element Variables = 12_err hl_err linf_err

End Results Output Label diffusion output

End Aria Region myRegion

End Procedure myProcedure

END SIERRA ARIA

12.4.2. 3D Spherical Shell Enclosure



12.5. TIME INTEGRATION

12.5.1. Adaptive Time Integration

12.5.1.1. First Order Fixed

BEGIN SIERRA rnyJob

BEGIN ARIA MATERIAL Kryptonite

Density = Polynomial Variable=Temperature Order=1 CO=1 C1=0.1

Thermal Conductivity = Polynomial Variable=Temperature Order=1 CO=1 C1=0.1

Specific Heat = Constant cp=1

heat conduction = basic

END ARIA MATERIAL Kryptonite

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN SUPERLU SOLVER

END

END TPETRA EQUATION SOLVER

{else}
Begin Trilinos Equation Solver Direct_Solver

Solution Method = amesos-superlu

End
{endif}

BEGIN FINITE ELEMENT MODEL cube

database name = square_h{N}_tri3.e

coordinate system is cartesian

BEGIN PARAMETERS FOR BLOCK block_1

material Kryptonite

END PARAMETERS FOR BLOCK block_l

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln

Load From File ./somefunc.so Using Function registerExactSoln

End

Begin User Function exact_soln_dot

Load From File ./somefunc.so Using Function registerExactSolnDot

End

Begin User Function exact_src

Load From File ./somefunc.so Using Function registerExactSrc

End

Begin Norm Postprocessor 12

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms L2

End

Begin Norm Postprocessor 12_dot

Use Function exact_soln_dot

Subtract Function time_derivative_at_time->TEMPERATURE

Compute Norms L2

End

Begin Norm Postprocessor hl

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms H1

End
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Begin Norm Postprocessor linf

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms Llnfinity

End

Begin Postprocessor Output Control pp_out

Comment Character Is %

Write To File errors_lst_ord_fixed_h{N}.dat

Floating Point Precision Is 4

Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description

Use System Main

Begin System Main

Begin Transient The_Time_Block

Advance myRegion

End

Simulation Start Time = 0

Simulation Termination Time = 1

End

Begin Parameters For Transient The_Time_Block

Begin Parameters For Aria Region myRegion

Initial Time Step Size = {0.1/2**N}

Time Integration Method = First_Order

Time Step Variation = fixed

End

End

End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton

Maximum Nonlinear Iterations = 10

Nonlinear Residual Tolerance = 1.Oe-12

Nonlinear Correction Tolerance = 1.Oe-12

Nonlinear Relaxation Factor = 1.0

use dof averaged nonlinear residual

use finite element model cube

Use Linear Solver Direct_Solver

IC Encore Function on block_1 temperature = exact_soln

BC dirichlet for Temperature at surface_1 = Encore_Function Name=exact_soln

BC dirichlet for Temperature at surface_2 = Encore_Function Name=exact_soln

BC dirichlet for Temperature at surface_3 = Encore_Function Name=exact_soln

BC dirichlet for Temperature at surface_4 = Encore_Function Name=exact_soln

EQ ENERGY for TEMPERATURE on block_1 using Q1 with MASS DIFF SRC

Source For ENERGY on block_1 = Encore_Scalar_Function Name=exact_src

Output Number of TimeSteps

Evaluate Postprocessor 12

Evaluate Postprocessor 12_dot

Evaluate Postprocessor hl

Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output

database Name = aria_lst_ord_fixed_h{N}.e

at step 0, increment = 1

# time interval is 1.0

title Aria cube test
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nodal variables = nonlinear_solution->TEMPERATURE as T

nodal variables = time_derivative_at_time->TEMPERATURE as TDOT

END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion

END PROCEDURE myAriaProcedure

END SIERRA myJob

12.5.1.2. First Order Adaptive

BEGIN SIERRA myJob

BEGIN ARIA MATERIAL Kryptonite

Density = Polynomial Variable=Temperature Order=1 CO=1 C1=0.1

Thermal Conductivity = Polynomial Variable=Temperature Order=1 CO=1 C1=0.1

Specific Heat = Constant cp=1

heat conduction = basic

END ARIA MATERIAL Kryptonite

fif(useTpetra)}

BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN SUPERLU SOLVER

END

END TPETRA EQUATION SOLVER

{else}

Begin Trilinos Equation Solver Direct_Solver

Solution Method = amesos-superlu

End
{endif}

BEGIN FINITE ELEMENT MODEL cube

database name = square_h{N}_tri3.e

coordinate system is cartesian

BEGIN PARAMETERS FOR BLOCK block_1

material Kryptonite

END PARAMETERS FOR BLOCK block_l

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln

Load From File ./somefunc.so Using Function registerExactSoln

End

Begin User Function exact_soln_dot

Load From File ./somefunc.so Using Function registerExactSolnDot

End

Begin User Function exact_src

Load From File ./somefunc.so Using Function registerExactSrc

End

Begin Norm Postprocessor 12

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms L2

End

Begin Norm Postprocessor 12_dot

Use Function exact_soln_dot

Subtract Function time_derivative_at_time->TEMPERATURE

Compute Norms L2

End

Begin Norm Postprocessor hi
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Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms H1

End

Begin Norm Postprocessor linf

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms Llnfinity

End

Begin Postprocessor Output Control pp_out

Comment Character Is %

Write To File errors_lst_ord_adapt_h{N}.dat

Floating Point Precision Is 4

Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description

Use System Main

Begin System Main

Begin Transient The_Time_Block

Advance myRegion

End

Simulation Start Time = 0

Simulation Termination Time = 1

End

Begin Parameters For Transient The_Time_Block

Begin Parameters For Aria Region myRegion

Initial Time Step Size = {0.1/2**N}

Predictor-Corrector Tolerance = {le-1/4**N}

Maximum Time Step Size = {0.5/2**N}

Time Integration Method = First_Order

Time Step Variation = adaptive

End

End

End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton

Maximum Nonlinear Iterations = 10

Nonlinear Residual Tolerance = 1.0e-12

Nonlinear Correction Tolerance = 1.Oe-12

Nonlinear Relaxation Factor = 1.0

use dof averaged nonlinear residual

use finite element model cube

Use Linear Solver Direct_Solver

IC Encore Function on block_l temperature

BC dirichlet for Temperature

BC dirichlet for Temperature

BC dirichlet for Temperature

BC dirichlet for Temperature

= exact_soln

at surface_1 = Encore_Function Name=exact_soln

at surface_2 = Encore_Function Name=exact_soln

at surface_3 = Encore_Function Name=exact_soln

at surface_4 = Encore_Function Name=exact_soln

EQ ENERGY for TEMPERATURE on block_1 using Q1 with MASS DIFF SRC

Source For ENERGY on block_1 = Encore_Scalar_Function Name=exact_src

Output Number of TimeSteps

Evaluate Postprocessor 12

Evaluate Postprocessor 12_dot

Evaluate Postprocessor hl
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Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output

database Name = aria_lst_ord_adapt_h{N}.e

at step 0, increment = 1

# time interval is 1.0

title Aria cube test

nodal variables = nonlinear_solution->TEMPERATURE as T

nodal variables = time_derivative_at_time->TEMPERATURE as TDOT

END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion

END PROCEDURE myAriaProcedure

END SIERRA myJob

12.5.1.3. Second Order Fixed

BEGIN SIERRA myJob

BEGIN ARIA MATERIAL Kryptonite

Density = Polynomial Variable=Temperature Order=1 C0=1 C1=0.1

Thermal Conductivity = Polynomial Variable=Temperature Order=1 C0=1 C1=0.1

Specific Heat = Constant cp=1

heat conduction = basic

END ARIA MATERIAL Kryptonite

load user plugin file ./somefunc.so

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN SUPERLU SOLVER

END

END TPETRA EQUATION SOLVER

{else}

Begin Trilinos Equation Solver Direct_Solver

Solution Method = amesos-superlu

End
{endif}

BEGIN FINITE ELEMENT MODEL cube

database name = square_h{N}_tri3.e

coordinate system is cartesian

BEGIN PARAMETERS FOR BLOCK block_1

material Kryptonite

END PARAMETERS FOR BLOCK block_l

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln

Load From File ./somefunc.so Using Function registerExactSoln

End

Begin User Function exact_soln_dot

Load From File ./somefunc.so Using Function registerExactSolnDot

End

Begin User Function exact_src

Load From File ./somefunc.so Using Function registerExactSrc

End

Begin Norm Postprocessor 12

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms L2
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End

Begin Norm Postprocessor 12_dot

Use Function exact_soln_dot

Subtract Function time_derivative_at_time->TEMPERATURE

Compute Norms L2

End

Begin Norm Postprocessor hl

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms H1

End

Begin Norm Postprocessor linf

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms Llnfinity

End

Begin Postprocessor Output Control pp_out

Comment Character Is %

Write To File errors_2nd_ord_fixed_h{N}.dat

Floating Point Precision Is 4

Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description

Use System Main

Begin System Main

Begin Transient The_Time_Block

Advance myRegion

End

Simulation Start Time = 0

Simulation Termination Time = 1

End

Begin Parameters For Transient The_Time_Block

Begin Parameters For Aria Region myRegion

Initial Time Step Size = {0.1/2**N}

Time Integration Method = Second_Order

Time Step Variation = fixed

End

End

End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton

Maximum Nonlinear Iterations = 10

Nonlinear Residual Tolerance = 1.Oe-12

Nonlinear Correction Tolerance = 1.Oe-12

Nonlinear Relaxation Factor = 1.0

use dof averaged nonlinear residual

use finite element model cube

Use Linear Solver Direct_Solver

IC Encore Function on block_1 temperature =

BC dirichlet for Temperature at surface_1 =

BC dirichlet for Temperature at surface_2 =

BC dirichlet for Temperature at surface_3 =

BC dirichlet for Temperature at surface_4 =

EQ ENERGY for TEMPERATURE on block_1 using Q1 with

exact_soln

Encore_Function Name=exact_soln

Encore_Function Name=exact_soln

Encore_Function Name=exact_soln

Encore_Function Name=exact_soln

MASS DIFF SRC
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Source For ENERGY on block_1 = Encore_Scalar_Function Name=exact_src

Output Number of TimeSteps

Evaluate Postprocessor 12

Evaluate Postprocessor 12_dot

Evaluate Postprocessor hl

Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output

database Name = aria_2nd_ord_fixed_h{N}.e

at step 0, increment = 1

# time interval is 1.0

title Aria cube test

nodal variables = nonlinear_solution->TEMPERATURE as T

nodal variables = time_derivative_at_time->TEMPERATURE as TDOT

END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion

END PROCEDURE myAriaProcedure

END SIERRA myJob

12.5.1.4. Second Order Adaptive

BEGIN SIERRA myJob

BEGIN ARIA MATERIAL Kryptonite

Density = Polynomial Variable=Temperature Order=1 C0=1 C1=0.1

Thermal Conductivity = Polynomial Variable=Temperature Order=1 C0=1 C1=0.1

Specific Heat = Constant cp=1

heat conduction = basic

END ARIA MATERIAL Kryptonite

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN SUPERLU SOLVER

END

END TPETRA EQUATION SOLVER

{else}

Begin Trilinos Equation Solver Direct_Solver

Solution Method = amesos-superlu

End
{endif}

BEGIN FINITE ELEMENT MODEL cube

database name = square_h{N}_tri3.e

coordinate system is cartesian

BEGIN PARAMETERS FOR BLOCK block_1

material Kryptonite

END PARAMETERS FOR BLOCK block_1

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln

Load From File ./somefunc.so Using Function registerExactSoln

End

Begin User Function exact_soln_dot

Load From File ./somefunc.so Using Function registerExactSolnDot

End

Begin User Function exact_src

Load From File ./somefunc.so Using Function registerExactSrc

End
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Begin Norm Postprocessor 12

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms L2

End

Begin Norm Postprocessor 12_dot

Use Function exact_soln_dot

Subtract Function time_derivative_at_time->TEMPERATURE

Compute Norms L2

End

Begin Norm Postprocessor hl

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms H1

End

Begin Norm Postprocessor linf

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms Llnfinity

End

Begin Postprocessor Output Control pp_out

Comment Character Is %

Write To File errors_2nd_ord_adapt_h{N}.dat

Floating Point Precision Is 4

Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description

Use System Main

Begin System Main

Begin Transient The_Time_Block

Advance myRegion

End

Simulation Start Time = 0

Simulation Termination Time = 1

End

Begin Parameters For Transient The_Time_Block

Begin Parameters For Aria Region myRegion

Initial Time Step Size = {0.1/2**N}

Predictor-Corrector Tolerance = {le-1/4**N}

Maximum Time Step Size = {0.5/2**N}

Time Integration Method = Second_Order

Time Step Variation = adaptive

End

End

End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton

Maximum Nonlinear Iterations = 10

Nonlinear Residual Tolerance = 1.0e-12

Nonlinear Correction Tolerance = 1.Oe-12

Nonlinear Relaxation Factor = 1.0

use dof averaged nonlinear residual

use finite element model cube

Use Linear Solver Direct_Solver

IC Encore Function on block_l temperature = exact_soln
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BC dirichlet for Temperature at surface_1 = Encore_Function Name=exact_soln

BC dirichlet for Temperature at surface_2 = Encore_Function Name=exact_soln

BC dirichlet for Temperature at surface_3 = Encore_Function Name=exact_soln

BC dirichlet for Temperature at surface_4 = Encore_Function Name=exact_soln

EQ ENERGY for TEMPERATURE on block_1 using Q1 with MASS DIFF SRC

Source For ENERGY on block_1 = Encore_Scalar_Function Name=exact_src

Output Number of TimeSteps

Evaluate Postprocessor 12

Evaluate Postprocessor 12_dot

Evaluate Postprocessor hl

Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output

database Name = aria_2nd_ord_adapt_h{N}.e

at step 0, increment = 1

# time interval is 1.0

title Aria cube test

nodal variables = nonlinear_solution->TEMPERATURE as T

nodal variables = time_derivative_at_time->TEMPERATURE as TDOT

END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion

END PROCEDURE myAriaProcedure

END SIERRA myJob

12.5.1.5. BDF2 Fixed

BEGIN SIERRA myJob

BEGIN ARIA MATERIAL Kryptonite

Density = Polynomial Variable=Temperature Order=1 C0=1 C1=0.1

Thermal Conductivity = Polynomial Variable=Temperature Order=1 C0=1 C1=0.1

Specific Heat = Constant cp=1

heat conduction = basic

END ARIA MATERIAL Kryptonite

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN SUPERLU SOLVER

END

END TPETRA EQUATION SOLVER

{else}

Begin Trilinos Equation Solver Direct_Solver

Solution Method = amesos-superlu

End
{endif}

BEGIN FINITE ELEMENT MODEL cube

database name = square_h{N}_tri3.e

coordinate system is cartesian

BEGIN PARAMETERS FOR BLOCK block_1

material Kryptonite

END PARAMETERS FOR BLOCK block_1

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln

Load From File ./somefunc.so Using Function registerExactSoln

End
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Begin User Function exact_soln_dot

Load From File ./somefunc.so Using Function registerExactSolnDot

End

Begin User Function exact_src

Load From File ./somefunc.so Using Function registerExactSrc

End

Begin Norm Postprocessor 12

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms L2

End

Begin Norm Postprocessor 12_dot

Use Function exact_soln_dot

Subtract Function time_derivative_at_time->TEMPERATURE

Compute Norms L2

End

Begin Norm Postprocessor hl

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms H1

End

Begin Norm Postprocessor linf

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms Llnfinity

End

Begin Postprocessor Output Control pp_out

Comment Character Is %

Write To File errors_bdf2_fixed_h{N}.dat

Floating Point Precision Is 4

Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description

Use System Main

Begin System Main

Begin Transient The_Time_Block

Advance myRegion

End

Simulation Start Time = 0

Simulation Termination Time = 1

End

Begin Parameters For Transient The_Time_Block

Begin Parameters For Aria Region myRegion

Initial Time Step Size = {0.1/2**N}

Time Integration Method = BDF2

Time Step Variation = fixed

End

End

End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton

Maximum Nonlinear Iterations = 10

Nonlinear Residual Tolerance = 1.0e-12

Nonlinear Correction Tolerance = 1.Oe-12

Nonlinear Relaxation Factor = 1.0

use dof averaged nonlinear residual
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use finite element model cube

Use Linear Solver Direct_Solver

IC Encore Function on block_1 temperature = exact_soln

BC dirichlet for Temperature at surface_1 = Encore_Function Name=exact_soln

BC dirichlet for Temperature at surface_2 = Encore_Function Name=exact_soln

BC dirichlet for Temperature at surface_3 = Encore_Function Name=exact_soln

BC dirichlet for Temperature at surface_4 = Encore_Function Name=exact_soln

EQ ENERGY for TEMPERATURE on block_1 using Q1 with MASS DIFF SRC

Source For ENERGY on block_1 = Encore_Scalar_Function Name=exact_src

Output Number of TimeSteps

Evaluate Postprocessor 12

Evaluate Postprocessor 12_dot

Evaluate Postprocessor hl

Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output

database Name = aria_bdf2_fixed_h{N}.e

at step 0, increment = 1

# time interval is 1.0

title Aria cube test

nodal variables = nonlinear_solution->TEMPERATURE as T

nodal variables = time_derivative_at_time->TEMPERATURE as TDOT

END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion

END PROCEDURE myAriaProcedure

END SIERRA myJob

12.5.1.6. BDF2 Adaptive

BEGIN SIERRA myJob

BEGIN ARIA MATERIAL Kryptonite

Density = Polynomial Variable=Temperature Order=1 C0=1 C1=0.1

Thermal Conductivity = Polynomial Variable=Temperature Order=1 C0=1 C1=0.1

Specific Heat = Constant cp=1

heat conduction = basic

END ARIA MATERIAL Kryptonite

{if(useTpetra)}

BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN SUPERLU SOLVER

END

END TPETRA EQUATION SOLVER

{else}

Begin Trilinos Equation Solver Direct_Solver

Solution Method = amesos-superlu

End

{endif}

BEGIN FINITE ELEMENT MODEL cube

database name = square_h{N}_tri3.e

coordinate system is cartesian

BEGIN PARAMETERS FOR BLOCK block_1

material Kryptonite

END PARAMETERS FOR BLOCK block_1

END FINITE ELEMENT MODEL cube
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Begin User Function exact_soln

Load From File ./somefunc.so Using Function registerExactSoln

End

Begin User Function exact_soln_dot

Load From File ./somefunc.so Using Function registerExactSolnDot

End

Begin User Function exact_src

Load From File ./somefunc.so Using Function registerExactSrc

End

Begin Norm Postprocessor 12

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms L2

End

Begin Norm Postprocessor 12_dot

Use Function exact_soln_dot

Subtract Function time_derivative_at_time->TEMPERATURE

Compute Norms L2

End

Begin Norm Postprocessor hl

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms H1

End

Begin Norm Postprocessor linf

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms Llnfinity

End

Begin Postprocessor Output Control pp_out

Comment Character Is %

Write To File errors_bdf2_adapt_h{N}.dat

Floating Point Precision Is 4

Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description

Use System Main

Begin System Main

Begin Transient The_Time_Block

Advance myRegion

End

Simulation Start Time = 0

Simulation Termination Time = 1

End

Begin Parameters For Transient The_Time_Block

Begin Parameters For Aria Region myRegion

Initial Time Step Size = {0.1/2**N}

Predictor-Corrector Tolerance = {le-1/4**N}

Maximum Time Step Size = {0.5/2**N}

Time Integration Method = BDF2

Time Step Variation = adaptive

End

End

End

BEGIN ARIA REGION myRegion
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Nonlinear Solution Strategy = Newton

Maximum Nonlinear Iterations = 10

Nonlinear Residual Tolerance = 1.Oe-12

Nonlinear Correction Tolerance = 1.0e-12

Nonlinear Relaxation Factor = 1.0

use dof averaged nonlinear residual

use finite element model cube

Use Linear Solver Direct_Solver

IC Encore Function on block_1 temperature = exact_soln

BC dirichlet for Temperature at surface_1 = Encore_Function Name=exact_soln

BC dirichlet for Temperature at surface_2 = Encore_Function Name=exact_soln

BC dirichlet for Temperature at surface_3 = Encore_Function Name=exact_soln

BC dirichlet for Temperature at surface_4 = Encore_Function Name=exact_soln

EQ ENERGY for TEMPERATURE on block_1 using Q1 with MASS DIFF SRC

Source For ENERGY on block_1 = Encore_Scalar_Function Name=exact_src

Output Number of TimeSteps

Evaluate Postprocessor 12

Evaluate Postprocessor 12_dot

Evaluate Postprocessor hl

Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output

database Name = aria_bdf2_adapt_h{N}.e

at step 0, increment = 1

# time interval is 1.0

title Aria cube test

nodal variables = nonlinear_solution->TEMPERATURE as T

nodal variables = time_derivative_at_time->TEMPERATURE as TDOT

END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion

END PROCEDURE myAriaProcedure

END SIERRA myJob



12.6. ENCLOSURE RADIATION

12.6.1. 2D Cylindrical Shell Enclosure

BEGIN SIERRA Aria

Title Verification for two concentric spheres with radiation gap between them

Begin Global Constants

Stefan Boltzmann constant = 5.6704E-8

End Global Constants

Begin Aria Material inner

Heat conduction = Basic

Density = constant rho = 1.0

Specific heat = constant cp = 1.0

Thermal conductivity = constant k = 2.0

End Aria Material inner

Begin Aria Material outer

Heat conduction = Basic

Density = constant rho = 1.0

Specific heat = constant cp = 1.0

Thermal conductivity = constant k = 0.35

End Aria Material outer

Begin User Function exact_soln

Load From File ./exact.so Using Function registerExactSoln

End

Begin Norm Postprocessor 12

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms L2

End

Begin Norm Postprocessor hl

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms H1

End

Begin Norm Postprocessor linf

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms Llnfinity

End

Begin Postprocessor Output Control pp_out

Comment Character Is %

Write To File errors{N}.dat

Floating Point Precision Is 3

Floating Point Format Is Scientific

End

Begin Finite Element Model VERIFY_RAD_GAP

Database name = input{N}.g

Coordinate System = Cartesian

Database Type = EXODUSII

Begin Parameters for Block block_1

Material inner

End

Begin Parameters for Block block_2

Material outer

End

End Finite Element Model VERIFY_RAD_GAP
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{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER SOLVE_TEMPERATURE

BEGIN CG SOLVER

BEGIN JACOBI PRECONDITIONER

END

MAXIMUM ITERATIONS = 1000

RESIDUAL SCALING = RHS

CONVERGENCE TOLERANCE = 1.000000e-14

END

END TPETRA EQUATION SOLVER

{else}

BEGIN Aztec Equation Solver solve_temperature

Solution Method = cg

Preconditioning Method = jacobi

Maximum Iterations = 1000

Residual Norm Tolerance = 1.Oe-14

Residual Norm Scaling = RHS

END
{endif}

Begin Procedure myProcedure

Begin Solution Control Description

Use System Main

Begin System Main

Begin Sequential Steady

Advance myRegion

End

End

End

Begin Aria Region myRegion

Use Finite Element Model VERIFY_RAD_GAP

Use Linear Solver solve_temperature

Nonlinear Solution Strategy = Newton

maximum nonlinear iterations = 1000

nonlinear residual tolerance = 1.Oe-10

nonlinear relaxation factor = 1.0

EQ energy for Temperature for all_volumes using Q1 with Diff

IC const for all_volumes Temperature = 300.0

BC const Dirichlet at surface_1 Temperature = 300.0

BC const Dirichlet at surface_4 Temperature = 1300.0

Output Number of Nodes

Evaluate Postprocessor 12

Evaluate Postprocessor linf

Evaluate Postprocessor hl

begin enclosure definition sph_shell

add surface surface_2

add surface surface_3

blocking surfaces

use viewfactor calculation vf_calc

use viewfactor smoothing vf_smooth

use radiosity solver rad_solver

enclosure id = 1

emissivity = 0.50 on surface_2

emissivity = 0.80 on surface_3

end enclosure definition sph_shell

begin viewfactor calculation vf_calc

bsp tree max depth = 0 and min list length = 25

compute rule

geometric tolerance

= hemicube

= 1.0E-6
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hemicube max subdivides = 5

hemicube min separation = 5.0

hemicube resolution = 500

check rowsum with tolerance = .001

output rule = verbose

end viewfactor calculation vf_calc

begin viewfactor smoothing vf_smooth

convergence tolerance = 1.0E-10

method = least-squares

weight power = 2

maximum iterations = 150

reciprocity rule = average

output rule = verbose

end viewfactor smoothing vf_smooth

begin radiosity solver rad_solver

coupling = mason

solver = chaparral gmres

convergence tolerance = 1.0E-8

maximum iterations = 800

output rule = verbose

end radiosity solver rad_solver

Begin Results Output Label diffusion output

database name = output{N}.e

at Step 0, increment = 1

Nodal Variables = solution->temperature as TEMP

End Results Output Label diffusion output

End Aria Region myRegion

End Procedure myProcedure

END SIERRA Aria

12.6.2. 2D Annular Enclosure

BEGIN SIERRA Aria

Title Verification for two concentric spheres with radiation gap between them

Begin Global Constants

Stefan Boltzmann constant = 5.6704E-8

End Global Constants

Begin Aria Material inner

Heat conduction = Basic

Thermal conductivity = constant k = 1.0

End Aria Material inner

Begin User Function exact_soln

Load From File ./exact.so Using Function registerExactSoln

End

Begin User Function exact_src

Load From File ./exact.so Using Function registerExactSrc

End

Begin User Function flux_surface_1

Load From File ./exact.so Using Function registerExactFlux

End

Begin User Function exact_radiosity

Load From File ./exact.so Using Function registerExactRadiosity

End
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Begin User Function exact_irradiance

Load From File ./exact.so Using Function registerExactlrradiance

End

Begin Field Function radiosity

Use Edge Field radiosity As Value

End

Begin Field Function irradiance

Use Edge Field irradiance As Value

End

Begin Field Function rad_flux

Use Edge Field rad_flux As Value

End

Begin Norm Postprocessor 12

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms L2

Store In 12_err

End

Begin Norm Postprocessor hl

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms H1

Store In hl_err

End

Begin Norm Postprocessor linf

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms Llnfinity

Store In linf_err

End

Begin Norm Postprocessor 12_radiosity

Surfaces surface_1

Use Function exact_radiosity

Subtract Function radiosity

Compute Norms L2

Store In 12_radiosity_err

End

Begin Norm Postprocessor 12_irradiance

Surfaces surface_1

Use Function exact_irradiance

Subtract Function irradiance

Compute Norms L2

Store In 12_irradiance_err

End

Begin Norm Postprocessor 12_heatflux

Surfaces surface_1

Use Function flux_surface_1

Subtract Function rad_flux

Compute Norms L2

Store In 12_heatflux_err

End

Begin Postprocessor Output Control pp_out

Comment Character Is %

Write To File errors{N}.dat

Floating Point Precision Is 3

Floating Point Format Is Scientific

End

250



Begin Finite Element Model VERIFY_RAD_GAP

Database name = annulus_crack_h{N}_tri3.e

Coordinate System = Cartesian

decomposition method = rcb

Database Type = EXODUSII

Begin Parameters for Block block_1

Material inner

End

End Finite Element Model VERIFY_RAD_GAP

{if(useTpetra)}

BEGIN TPETRA EQUATION SOLVER SOLVE_TEMPERATURE

BEGIN BICGSTAB SOLVER

BEGIN JACOBI PRECONDITIONER

END

MAXIMUM ITERATIONS = 1000

RESIDUAL SCALING = RHS

CONVERGENCE TOLERANCE = 1.000000e-14

END

END TPETRA EQUATION SOLVER

{else}

BEGIN Aztec Equation Solver solve_temperature

Solution Method = bicgstab

Preconditioning Method = jacobi

Maximum Iterations = 1000

Residual Norm Tolerance = 1.Oe-14

Residual Norm Scaling = RHS

END
{endif}

Begin Procedure myProcedure

Begin Solution Control Description

Use System Main

Begin System Main

Begin Sequential Steady

Advance myRegion

End

End

End

Begin Aria Region myRegion

Use Finite Element Model VERIFY_RAD_GAP

Use Linear Solver solve_temperature

Nonlinear Solution Strategy = Newton

maximum nonlinear iterations = 1000

nonlinear residual tolerance = 1.0e-10

nonlinear correction tolerance = 1.0e-10

nonlinear relaxation factor = 1.0

EQ energy for Temperature for all_volumes using Q1 with Diff Src

IC const for all_volumes Temperature = 600.0

Source For ENERGY on block_l = Encore_Function Name=exact_src

BC dirichlet for Temperature at surface_2 = Encore_Function Name=exact_soln

BC dirichlet for Temperature at surface_3 = Encore_Function Name=exact_soln

BC dirichlet for Temperature at surface_4 = Encore_Function Name=exact_soln

Output Number of Nodes

Evaluate Postprocessor 12

Evaluate Postprocessor hl

Evaluate Postprocessor linf
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Evaluate Postprocessor 12_radiosity

Evaluate Postprocessor 12_irradiance

#Evaluate Postprocessor 12_heatflux

Interpolate Function Value of exact_soln Into Nodal Field Tex

Interpolate Function Value of exact_src Into Nodal Field Src

Begin Results Output Label diffusion output

database name = output{N}.e

at Step 1, increment = 1

Nodal Variables = solution->temperature as TEMP

Nodal Variables = Tex linf_err Src

Element Variables = 12_err hl_err TGrad linf_err

edge variables =

edge variables =

edge variables =

edge variables =

edge variables =

edge variables =

End Results Output

radiosity as J

rad_flux as q

irradiance as I

12_radiosity_err

12_irradiance_err

12_heatflux_err

Label diffusion output

# TODO: remove this boundary condition

# # DEBUG

# BC dirichlet for Temperature at surface_1 = Encore_Function Name=exact_soln

# TODO: remove this boundary condition

# # DEBUG

• BC FLUX for Energy on surface_1 = Encore_Function Name=flux_surface_1

# TODO: un-comment the enclosure BC

begin enclosure definition sph_shell

add surface surface_1

nonblocking surfaces

use viewfactor calculation vf_calc_pairwise #vf_calc_hemicube #

use viewfactor smoothing vf_smooth

use radiosity solver rad_solver

emissivity = 0.9 on surface_1

Database Name is enc{N}.vf in pnetcdf format

disable parallel redistribution

end

begin viewfactor calculation vf

compute rule

geometric tolerance

hemicube max subdivides

hemicube min separation

hemicube resolution

output rule

end

_calc_hemicube

hemicube
{0.5*0.5**N}

{2*(2**N)}

5.0

{100*(2**N)}

verbose

begin viewfactor calculation vf_calc_pairwise

compute rule

geometric tolerance

output rule

Pairwise Monte Carlo

Pairwise Monte Carlo

Pairwise Monte Carlo

Sample

Toli =

To12 =

= pairwise

= {0.5*0.5**N}

= verbose

Rule = Halton

le-5

le-5

Pairwise Number Of Visibility Samples = 1

Pairwise Visibility Sample Rule = Uniform

end

begin viewfactor

convergence tolerance

method

weight power

maximum iterations

reciprocity rule

smoothing vf_smooth

= 1.0E-10

= least-squares

= 2

= {150*(2**N)}

= average
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output rule = verbose

end viewfactor smoothing vf_smooth

begin radiosity solver rad_solver

coupling

solver

convergence tolerance

maximum iterations

output rule

end radiosity solver rad_

End Aria Region myRegion

End Procedure myProcedure

END SIERRA Aria

= mason

= chaparral gmres

= 1.0E-11

= {150*(2**N)}

= none

solver

12.6.3. 3D Spherical Shell Enclosure

12.6.4. 3D Spherical Shell Partial Enclosure

BEGIN SIERRA Aria

Title Verification for two concentric spheres with radiation gap between them

load user plugin file ./exact.so

Begin Global Constants

Stefan Boltzmann constant = 5.6704E-8

End Global Constants

Begin Aria Material inner

Heat conduction = Basic

Density = constant rho = 1.0

Specific heat = constant cp = 1.0

Thermal conductivity = constant k

emissivity = constant e = 0.50

End Aria Material inner

Begin Aria Material outer

Heat conduction = Basic

Density = constant rho = 1.0

Specific heat = constant cp = 1.0

Thermal conductivity = constant k

emissivity = constant e = 0.80

End Aria Material outer

= 2.0

= 0.35

Begin User Function exact_soln

Load From File ./exact.so Using Function registerExactSoln

End

Begin Norm Postprocessor 12

Use Function exact_soln

Volumes block_1 block_2

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms L2

Store In 12_err

End

Begin Norm Postprocessor hl

Use Function exact_soln

Volumes block_1 block_2

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms H1
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Store In hl_err

End

Begin Norm Postprocessor linf

Use Function exact_soln

Volumes block_1 block_2

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms Llnfinity

Store In linf_err

End

Begin Postprocessor Output Control pp_out

Comment Character Is %

Write To File errors{N}.dat

Floating Point Precision Is 3

Floating Point Format Is Scientific

End

BEGIN Field Function numerical_solution

USE NODAL FIELD solution->TEMPERATURE

END Field Function numerical_solution

BEGIN Difference Function temp_error

Difference is exact_soln - numerical_solution

END Difference Function temp_error

Begin Finite Element Model VERIFY_RAD_GAP

Database name = sphere_cutout_h{N}.g

Coordinate System = Cartesian

Database Type = EXODUSII

Begin Parameters for Block block_1

Material inner

End

Begin Parameters for Block block_2

Material outer

End

End Finite Element Model VERIFY_RAD_GAP

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER SOLVE_TEMPERATURE

BEGIN CG SOLVER

BEGIN JACOBI PRECONDITIONER

END

MAXIMUM ITERATIONS = 1000

RESIDUAL SCALING = RHS

CONVERGENCE TOLERANCE = 1.000000e-10

END

END TPETRA EQUATION SOLVER

{else}

BEGIN Aztec Equation Solver solve_temperature

Solution Method = cg

Preconditioning Method = jacobi

Maximum Iterations = 1000

Residual Norm Tolerance = 1.Oe-10

Residual Norm Scaling = RHS

END
{endif}

Begin Procedure myProcedure

Begin Solution Control Description

Use System Main

Begin System Main

Begin Sequential Steady

Advance myRegion

End

End

End
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Begin Aria Region myRegion

Use Finite Element Model VERIFY_RAD_GAP

Use Linear Solver solve_temperature

Nonlinear Solution Strategy = Newton

maximum nonlinear iterations = 1000

nonlinear residual tolerance = 1.Oe-8

nonlinear correction tolerance = 1.0e-8

nonlinear relaxation factor = 1.0

EQ energy for Temperature for all_volumes using Q1 with Diff

IC const for all_volumes Temperature = 300.0

BC const Dirichlet at surface_1 Temperature = 300.0

BC const Dirichlet at surface_4 Temperature = 1300.0

BC Dirichlet for Temperature on surface_5 = encore_function name=exact_soln

Output Number of Nodes

Evaluate Postprocessor 12

Evaluate Postprocessor linf

Evaluate Postprocessor hl

interpolate function value of exact_soln into nodal field analytic_temp on volumes block_1 block_2

Interpolate Function Value of temp_error into nodal field temp_error on volumes block_l block_2

begin enclosure definition sph_shell

add surface surface_2

add surface surface_3

blocking surfaces

use viewfactor calculation vf_calc

use viewfactor smoothing vf_smooth

use radiosity solver rad_solver

emissivity = 0.50 on surface_2

emissivity = 0.80 on surface_3

Partial Enclosure Emissivity = 0.8

Partial Enclosure Area = {2.0*PI*0.03*(0.03-0.025)}
Partial Enclosure Temperature = 1035.02

end enclosure definition sph_shell

begin viewfactor calculation vf_calc

bsp tree max depth = 0 and min list length = 25

compute rule = hemicube

geometric tolerance = 1.0E-10

hemicube max subdivides = 5

hemicube min separation = 5.0

hemicube resolution = 500

check rowsum with tolerance = .001

output rule = verbose

end viewfactor calculation vf_calc

begin viewfactor smoothing vf_smooth

method = none

end viewfactor smoothing vf_smooth

begin radiosity solver rad_solver

coupling = mason

solver = chaparral gmres

convergence tolerance = 1.0E-9

maximum iterations = 80

output rule = summary

end radiosity solver rad_solver

Begin Results Output Label diffusion output

database name = output{N}.e

at Step 0, increment = 1

Nodal Variables = solution->temperature as T
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nodal variables = analytic_temp

nodal variables = temp_error

element variables = hl_err 12_err linf_err

End Results Output Label diffusion output

End Aria Region myRegion

End Procedure myProcedure

END SIERRA Aria

12.6.5. Fully 2D Enclosure Radiation

BEGIN SIERRA Aria

Title Verification for two concentric spheres with radiation gap between them

Begin Global Constants

Stefan Boltzmann constant = 5.6704E-8

End Global Constants

Begin Aria Material inner

Heat conduction = Basic

Thermal conductivity = constant k = 1.0

End Aria Material inner

Begin User Function exact_soln

Load From File ./exact.so Using Function registerExactSoln

End

Begin User Function exact_src

Load From File ./exact.so Using Function registerExactSrc

End

Begin User Function flux_surface_1

Load From File ./exact.so Using Function registerExactFlux

End

Begin User Function exact_radiosity

Load From File ./exact.so Using Function registerExactRadiosity

End

Begin User Function exact_irradiance

Load From File ./exact.so Using Function registerExactlrradiance

End

Begin Field Function radiosity

Use Edge Field radiosity As Value

End

Begin Field Function irradiance

Use Edge Field irradiance As Value

End

Begin Field Function rad_flux

Use Edge Field rad_flux As Value

End

Begin Norm Postprocessor 12

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms L2

Store In 12_err

End

Begin Norm Postprocessor hi
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Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms H1

Store In hl_err

End

Begin Norm Postprocessor linf

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms Llnfinity

Store In linf_err

End

Begin Norm Postprocessor 12_radiosity

Surfaces surface_1

Use Function exact_radiosity

Subtract Function radiosity

Compute Norms L2

Store In 12_radiosity_err

End

Begin Norm Postprocessor 12_irradiance

Surfaces surface_1

Use Function exact_irradiance

Subtract Function irradiance

Compute Norms L2

Store In 12_irradiance_err

End

Begin Norm Postprocessor 12_heatflux

Surfaces surface_1

Use Function flux_surface_1

Subtract Function rad_flux

Compute Norms L2

Store In 12_heatflux_err

End

Begin Postprocessor Output Control pp_out

Comment Character Is %

Write To File errors{N}.dat

Floating Point Precision Is 3

Floating Point Format Is Scientific

End

Begin Finite Element Model VERIFY_RAD_GAP

Database name = annulus_crack_h{N}_tri3.e

Coordinate System = Cartesian

decomposition method = rcb

Database Type = EXODUSII

Begin Parameters for Block block_1

Material inner

End

End Finite Element Model VERIFY_RAD_CAP

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER SOLVE_TEMPERATURE

BEGIN BICGSTAB SOLVER

BEGIN JACOBI PRECONDITIONER

END

MAXIMUM ITERATIONS = 1000

RESIDUAL SCALING = RHS

CONVERGENCE TOLERANCE = 1.000000e-14

END

END TPETRA EQUATION SOLVER

{else}

BEGIN Aztec Equation Solver solve_temperature

Solution Method = bicgstab

Preconditioning Method = jacobi
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Maximum Iterations = 1000

Residual Norm Tolerance = 1.Oe-14

Residual Norm Scaling = RHS

END
{endif}

Begin Procedure myProcedure

Begin Solution Control Description

Use System Main

Begin System Main

Begin Sequential Steady

Advance myRegion

End

End

End

Begin Aria Region myRegion

Use Finite Element Model VERIFY_RAD_GAP

Use Linear Solver solve_temperature

Nonlinear Solution Strategy = Newton

maximum nonlinear iterations = 1000

nonlinear residual tolerance = 1.0e-10

nonlinear correction tolerance = 1.0e-10

nonlinear relaxation factor = 1.0

EQ energy for Temperature for all_volumes using Q1 with Diff Src

IC const for all_volumes Temperature = 600.0

Source For ENERGY on block_1 = Encore_Function Name=exact_src

BC dirichlet for Temperature at surface_2 = Encore_Function Name=exact_soln

BC dirichlet for Temperature at surface_3 = Encore_Function Name=exact_soln

BC dirichlet for Temperature at surface_4 = Encore_Function Name=exact_soln

Output Number of Nodes

Evaluate Postprocessor 12

Evaluate Postprocessor hl

Evaluate Postprocessor linf

Evaluate Postprocessor 12_radiosity

Evaluate Postprocessor 12_irradiance

#Evaluate Postprocessor 12_heatflux

Interpolate Function Value of exact_soln Into Nodal Field Tex

Interpolate Function Value of exact_src Into Nodal Field Src

Begin Results Output Label diffusion output

database name = output{N}.e

at Step 1, increment = 1

Nodal Variables = solution->temperature as TEMP

Nodal Variables = Tex linf_err Src

Element Variables = 12_err hl_err TGrad linf_err

edge variables =

edge variables =

edge variables =

edge variables =

edge variables =

edge variables =

End Results Output

radiosity as J

rad_flux as q

irradiance as I

12_radiosity_err

12_irradiance_err

12_heatflux_err

Label diffusion output

# TODO: remove this boundary condition

# # DEBUG

# BC dirichlet for Temperature at surface_1 = Encore_Function Name=exact_soln
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# TODO: remove this boundary condition

# # DEBUG

• BC FLUX for Energy on surface_1 = Encore_Function Name=flux_surface_1

# TODO: un-comment the enclosure BC

begin enclosure definition sph_shell

add surface surface_1

nonblocking surfaces

use viewfactor calculation vf_calc_pairwise #vf_calc_hemicube #

use viewfactor smoothing vf_smooth

use radiosity solver rad_solver

emissivity = 0.9 on surface_1

Database Name is enc{N}.vf in pnetcdf format

disable parallel redistribution

end

begin viewfactor calculation vf_calc_hemicube

compute rule = hemicube

geometric tolerance = {0.5*0.5**N}

hemicube max subdivides = {2*(2**N)}

hemicube min separation = 5.0

hemicube resolution = {100*(2**N)}

output rule = verbose

end

begin viewfactor calculation vf_calc_pairwise

compute rule = pairwise

geometric tolerance = {0.5*0.5**N}

output rule = verbose

Pairwise Monte Carlo Sample Rule = Halton

Pairwise Monte Carlo Toll = le-5

Pairwise Monte Carlo To12 = le-5

Pairwise Number Of Visibility Samples = 1

Pairwise Visibility Sample Rule = Uniform

end

begin viewfactor smoothing vf_smooth

convergence tolerance = 1.0E-10

method = least-squares

weight power = 2

maximum iterations = {150*(2**N)}

reciprocity rule = average

output rule = verbose

end viewfactor smoothing vf_smooth

begin radiosity solver rad_solver

coupling = mason

solver = chaparral gmres

convergence tolerance = 1.0E-11

maximum iterations = {150*(2**N)}

output rule = none

end radiosity solver rad_solver

End Aria Region myRegion

End Procedure myProcedure

END SIERRA Aria



12.7. CHEMISTRY

12.7.1. First Order Reaction (Uniform Temperature)

12.7.2. First Order Reaction (Spatially Varying Temperature)

BEGIN SIERRA Aria

Title Verification Problem for Coupled Chemistry Diffusion

load user plugin file ./Exact_solution.so

Begin Field Function species

Use Quadrature Field species

Integration Order Is 2

Dimension Is 2

End

Begin User Function ufuncAB

Load From File ./Exact_solution.so Using Function registerExactSolnAB

End

Begin User Function ufuncT

Load From File ./Exact_solution.so Using Function registerExactSolnT

End

Begin User Function exact_src

Load From File ./Exact_solution.so Using Function registerExactSrc

End

Begin Postprocessor Output Control pp_out

Comment Character is %

Write To File errors{N}.dat

End

BEGIN Aria MATERIAL hmx

density = constant rho = 1

specific heat = constant cp = 1

heat conduction = basic

thermal conductivity = constant k = 1

begin parameters for chemeq model hmx

number of reactions = 1

species names are A B

species phases are Condensed GAS

Condensed Fraction = 0.0

Steric Coefficients are 0.0

Log Preexponential Factors are 5

Activation Energies are 1000.0

Energy Releases are 0 # insure temperature stays const

Concentration Exponents for A are 1.0

Concentration Exponents for B are 0.0

Stoichiometric coefficients for A are -1.0

Stoichiometric coefficients for B are 1.0

end parameters for chemeq model hmx

end Aria MATERIAL hmx

BEGIN GLOBAL CONSTANTS
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Ideal Gas Constant = 1.9872 #CGS_cal

END GLOBAL CONSTANTS

BEGIN FINITE ELEMENT MODEL block

Database Name = input{N}.g

decomposition method = rcb

Use material hmx for block_l

END FINITE ELEMENT MODEL block

{if(useTpetra)}

BEGIN TPETRA EQUATION SOLVER SOLVE_TEMPERATURE

BEGIN CG SOLVER

BEGIN JACOBI PRECONDITIONER

END

MAXIMUM ITERATIONS = 1000

RESIDUAL SCALING = NONE

CONVERGENCE TOLERANCE = 1.000000e-12

END

END TPETRA EQUATION SOLVER

{else}

BEGIN AZTEC EQUATION SOLVER solve_temperature

solution method = cg

preconditioning method = jacobi

maximum iterations = 1000

residual norm scaling = NONE

residual norm tolerance = 1.0E-12

END AZTEC EQUATION SOLVER solve_temperature
{endif}

BEGIN procedure myProcedure

begin solution control description

Use System Main

Begin System Main

Simulation Start Time = 0.0

Simulation Termination Time = 0.04

Begin Transient time_block

advance myregion

End Transient time_block

End System Main

BEGIN parameters for transient time_block

start time = 0.0

termination time = 0.04

BEGIN PARAMETERS FOR Aria REGION myRegion

time step variation = fixed

time integration method = second_order

initial time step size = {0.01*0.5**(N-1)}

END PARAMETERS FOR Aria REGION myRegion

END parameters for transient time_block

end solution control description

begin aria region myRegion

Output Number Of Nodes

Compute Difference L2

Compute Difference L2

Of ufuncAB species

Of ufuncT solution->temperature

Interpolate Function Value of ufuncAB Into Element Field AEX

EQ energy for temperature on all_blocks using Q1 with diff mass src

Source for Energy on block_1 = chemeq_heating MODEL = hmx

Source For ENERGY on block_1 = Encore_Function Name=exact_src
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BC const dirichlet at surface_1 Temperature = 400.0

IC Encore Function on block_1 temperature = ufuncT

maximum nonlinear iterations = 10

nonlinear residual tolerance = 1.0E-10

nonlinear correction tolerance = 1.0E-10

Nonlinear Relaxation Factor = 1.

BEGIN CHEMEQ SOLVER FOR hmx

ODE SOLVER = CVODE ADAMS 12 FUNCTIONAL

Absolute Tolerance = le-14

Relative Tolerance = le-10

Chemistry step multiplier = 100 # default

Epsilon Min = 0.0001 # default

Epsilon Max = 10.0 # default

Minimum Chemistry Timestep = 1.0E-15 # default

Percentage Asymptotics = 0.0 # default

Asymptotic tolerance = 100.0 # default

Minimum Concentration for A = 1.0E-12 # default

Activation Temperature = 100.0

Deactivation Temperature = 500.0 Continue

species A = 1.0

species B = 0.0

END CHEMEQ SOLVER FOR hmx

BEGIN RESULTS OUTPUT LABEL diffusion output

database Name = output{N}.e

At Step 0, Increment = {2**(N)}

Timestep Adjustment Interval = 1

Title Aria Chem/Diffusion Verification

Nodal Variables = solution->temperature as T

Element Variables = A B AEX species

END RESULTS OUTPUT LABEL diffusion output

USE FINITE ELEMENT MODEL block

usE LINEAR SOLVER solve_temperature

END Aria REGION myRegion

END procedure myProcedure

END SIERRA Aria

12.7.3. First Order Reaction

BEGIN SIERRA Aria

Title Verification Problem for Coupled Chemistry Diffusion

load user plugin file ./Exact_solution.so

Begin Field Function species

Use Quadrature Field species

Integration Order Is 2

Dimension Is 2

End

Begin User Function ufuncAB

Load From File ./Exact_solution.so Using Function registerExactSolnAB

End

Begin User Function ufuncT

Load From File ./Exact_solution.so Using Function registerExactSolnT

End
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Begin User Function energySrc

Load From File ./Exact_solution.so Using Function registerEnergySrc

End

Begin Norm Postprocessor L2_AB

Use Function ufuncAB

Subtract Function species

Compute Norms L2

End

Begin Norm Postprocessor L2_T

Use Function ufuncT

Subtract Function solution->temperature

Compute Norms L2

End

Begin Norm Postprocessor LInf_T

Use Function ufuncT

Subtract Function solution->temperature

Compute Norms Llnfinity

End

Begin Norm Postprocessor H1_T

Use Function ufuncT

Subtract Function solution->temperature

Compute Norms H1

End

Begin Postprocessor Output Control pp_out

Comment Character is %

Write To File error{N}.txt

End

BEGIN Aria MATERIAL hmx

density = constant rho = 1

specific heat = constant cp = 1

heat conduction = basic

thermal conductivity = constant k = 1

begin parameters for chemeq model hmx

number of reactions = 1

species names are A B

species phases are Condensed GAS

Condensed Fraction = 0.0

Steric Coefficients are 0.0

Log Preexponential Factors are 5

Activation Energies are 1000.0

Energy Releases are -20.0

Concentration Exponents for A are 1.0

Concentration Exponents for B are 0.0

Stoichiometric coefficients for A are -1.0

Stoichiometric coefficients for B are 1.0

end parameters for chemeq model hmx

end Aria MATERIAL hmx

BEGIN GLOBAL CONSTANTS

Ideal Gas Constant = 1.9872 #CGS_cal

END GLOBAL CONSTANTS

BEGIN FINITE ELEMENT MODEL block
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Database Name = grid{N}x.exo $ exodusii

decomposition method = rib

Use material hmx for block_l

END FINITE ELEMENT MODEL block

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER SOLVE_TEMPERATURE

BEGIN CG SOLVER

BEGIN JACOBI PRECONDITIONER

END

MAXIMUM ITERATIONS = 1000

RESIDUAL SCALING = NONE

CONVERGENCE TOLERANCE = 1.000000e-06

END

END TPETRA EQUATION SOLVER

{else}

BEGIN AZTEC EQUATION SOLVER solve_temperature

solution method = cg

preconditioning method = jacobi

maximum iterations = 1000

residual norm scaling = NONE

residual norm tolerance = 1.0E-6

END AZTEC EQUATION SOLVER solve_temperature
{endif}

BEGIN procedure myProcedure

begin solution control description

Use System Main

Begin System Main

Simulation Start Time = 0.0

Simulation Termination Time = 0.04

Begin Transient time_block

advance myregion

End Transient time_block

End System Main

BEGIN parameters for transient time_block

start time = 0.0

termination time = 0.04

BEGIN PARAMETERS FOR Aria REGION myRegion

time step variation = fixed

time integration method = second_order

initial time step size = {0.001*0.5**(N-1)}
END PARAMETERS FOR Aria REGION myRegion

END parameters for transient time_block

end solution control description

begin aria region myRegion

Output Number Of Elements

Evaluate Postprocessor L2_AB

Evaluate Postprocessor L2_T

Evaluate Postprocessor LInf_T

Evaluate Postprocessor H1_T

EQ energy for temperature on all_blocks using Q1 with diff mass src

Source for Energy on all_blocks = chemeq_heating MODEL = hmx

use data block region_data

maximum nonlinear iterations = 10
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nonlinear residual tolerance = 1.0E-10

nonlinear correction tolerance = 1.0E-10

Nonlinear Relaxation Factor = 1.

BEGIN CHEMEQ SOLVER FOR hmx

• Chemistry step multiplier = 10.0

• Epsilon Min = 0.0001

• Epsilon Max = 10.0

• Minimum Chemistry Timestep = 1.0E-15

• Percentage Asymptotics = 0.0

• Asymptotic tolerance = 100.0

ODE SOLVER = CVODE ADAMS 12 FUNCTIONAL

Absolute Tolerance = le-12

Relative Tolerance = le-9

Minimum Concentration for A = 1.0E-08

Activation Temperature = 0.0

species A = 1.0

species B = 0.0

END CHEMEQ SOLVER FOR hmx

BEGIN RESULTS OUTPUT LABEL diffusion output

database Name = output{N}.e

At Step 0, Increment = {2**(N-1)}
Timestep Adjustment Interval = 1

Title Aria Chem/Diffusion Verification

Nodal Variables = solution->temperature as T

Element Variables = A B species

END RESULTS OUTPUT LABEL diffusion output

IC Encore Function on block_1 temperature = ufuncT

BC dirichlet for Temperature at surface_1 = Encore_Function Name=ufuncT

Source For ENERGY on block_1 = Encore_Function Name=energySrc

USE FINITE ELEMENT MODEL block

usE LINEAR SOLVER solve_temperature

END Aria REGION myRegion

END procedure myProcedure

END SIERRA Aria

12.7.4. DAE and Pressure Test

BEGIN SIERRA Aria

Title Verification Problem for Coupled Chemistry Diffusion

load user plugin file ./Exact_solution.so

Begin Field Function species

Use Quadrature Field species

Integration Order Is 2

Dimension Is 1

End

Begin User Function ufuncA

Load From File ./Exact_solution.so Using Function registerExactSolnA

End

Begin Norm Postprocessor L2_A

Use Function ufuncA

Subtract Function species

Compute Norms L2
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End

Begin Postprocessor Output Control pp_out

Comment Character is %

Write To File error.txt

End

BEGIN Aria MATERIAL hmx

density = constant rho = 1

specific heat = constant cp = 1

heat conduction = basic

thermal conductivity = constant k = 1

pressure = constant value=3

begin parameters for chemeq model hmx

number of reactions = 1

species names are A

species phases are Condensed

Condensed Fraction = 0.0

Steric Coefficients are 0.0

Log Preexponential Factors are {log(5)}

Activation Energies are 10.0

Energy Releases are 0.0

Concentration Exponents for A are 0.0

Stoichiometric coefficients for A are -1.0

# Pressure dependence

Reference pressure = 2.

Pressure exponents are 2.

Pressure = From_Material_Definition

#Distributed activation energy

Activation energy st devs are 1.

extent of reaction based on A

end parameters for chemeq model hmx

end Aria MATERIAL hmx

BEGIN GLOBAL CONSTANTS

Ideal Gas Constant = 1.

END GLOBAL CONSTANTS

BEGIN FINITE ELEMENT MODEL block

Database Name = lblock.g

decomposition method = rib

Use material hmx for block_1

END FINITE ELEMENT MODEL block

{if(useTpetra)}

BEGIN TPETRA EQUATION SOLVER SOLVE_TEMPERATURE

BEGIN CG SOLVER

BEGIN JACOBI PRECONDITIONER

END

MAXIMUM ITERATIONS = 1000

RESIDUAL SCALING = NONE

CONVERGENCE TOLERANCE = 1.000000e-12

END

END TPETRA EQUATION SOLVER

{else}

BEGIN AZTEC EQUATION SOLVER solve_temperature

solution method = cg

preconditioning method = jacobi
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maximum iterations = 1000

residual norm scaling = NONE

residual norm tolerance = 1.0E-12

END AZTEC EQUATION SOLVER solve_temperature

{endif}

BEGIN procedure myProcedure

begin solution control description

Use System Main

Begin System Main

Simulation Start Time = 0.0

Simulation Termination Time = 2.0

Begin Transient time_block

advance myregion

End Transient time_block

End System Main

BEGIN parameters for transient time_block

start time = 0.0

termination time = 2.0

BEGIN PARAMETERS FOR Aria REGION myRegion

time step variation = fixed

time integration method = second_order

initial time step size = {0.01*0.5}

END PARAMETERS FOR Aria REGION myRegion

END parameters for transient time_block

end solution control description

begin aria region myRegion

Evaluate Postprocessor L2_A

EQ energy for temperature on all_blocks using Q1 with diff mass src

Source for Energy on all_blocks = chemeq_heating MODEL = hmx

IC for temperature on all_blocks = constant value=3

maximum nonlinear iterations = 10

nonlinear residual tolerance = 1.0E-10

nonlinear correction tolerance = 1.0E-10

Nonlinear Relaxation Factor = 1.

BEGIN CHEMEQ SOLVER FOR hmx

ODE SOLVER = CVODE ADAMS 12 FUNCTIONAL

Absolute Tolerance = le-12

Relative Tolerance = le-10

Activation Temperature = 0.0

species A = 1.0

END CHEMEQ SOLVER FOR hmx

Begin Postprocessor Group exact_soln

Interpolate function value of ufuncA into nodal field exact_A

End

BEGIN RESULTS OUTPUT LABEL diffusion output

database Name = output.e

At Step 0, Increment = 1

Timestep Adjustment Interval = 1

Title Aria Chem/Diffusion Verification

Nodal Variables = solution->temperature as T

Nodal Variables = exact_A

Element Variables = A

END RESULTS OUTPUT LABEL diffusion output

USE FINITE ELEMENT MODEL block
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usE LINEAR SOLVER solve_temperature

END Aria REGION myRegion

END procedure myProcedure

END SIERRA Aria

12.7.5. PMDI Plugin Test

fECHO(OPP)1

{include("params_nom")}
{ECHO(OFF)}

{include("params")}

BEGIN SIERRA aria

Title PMDI_Plugin_Verification

load user plugin file pmdi_multspecies.so

{if(useTpetra)}

BEGIN TPETRA EQUATION SOLVER SOLVE_TEMPERATURE

BEGIN CG SOLVER

BEGIN JACOBI PRECONDITIONER

END

MAXIMUM ITERATIONS = 10000

RESIDUAL SCALING = NONE

CONVERGENCE TOLERANCE = 1.000000e-08

END

END TPETRA EQUATION SOLVER

{else}
BEGIN TRILINOS EQUATION SOLVER solve_temperature

solution method = CG

preconditioning method = jacobi

maximum iterations = 10000

residual norm tolerance = 1e-08

residual norm scaling = NONE

END TRILINOS EQUATION SOLVER solve_temperature
{endif}

BEGIN GLOBAL CONSTANTS

Stefan Boltzmann Constant = 5.67e-8 # W/m-2-K-4

ideal gas constant = 8314. # J/kgmol-K

END GLOBAL CONSTANTS

begin data block pmdi_data

real data_real = (\# Variable
{to} \# to
{vexOTvex} \# vex/Tvex
{po} \# po
{rbo*uden_pmdi} \# rbo
{rco} \# rco
{kb_1} \# kb,

{kb_2} \# kb,
{t_1} \# t,
{t_2} \# t,
{rad_coef} \#
{ukb} \#
{ukrad} \#
{ukeff_pmdi} \#

{upress} )
end data block pmdi_data

definition, units

Initial gas temperature, K- necessary to calculate pressure for first timestep

Excess volume/temp excess volume, m-3/K

Initial pressure, PA

Initial bulk density, kg/m-3

Initial condensed density, kg/m-3

effectve cond. for Keff, W/mK (for2Olb: 0.0486 0.706) radiation coefficient- 16/3/(a +sig s)

W/mK

K

K

BEGIN ARIA MATERIAL pmdifoam

use data block pmdi_data

Emissivity = constant e = {0.8*uemis_pmdi}

density = constant rho = {rbo*uden_pmdi} #

z68



specific heat = constant cp = 1

tensor thermal conductivity = calore_user_sub name = ktdirpu type = element_tensor # W/m-K

Heat Conduction = generalized

BEGIN PARAMETERS FOR CHEMEQ MODEL reaction_model

number of reactions is 3

species names are FOAMA FOAMB FOAMC CHAR CO2 LMWO HMWO

species phases are Condensed Condensed Condensed Condensed Gas Condensed Condensed

condensed fraction is O. # Not used

steric coefficients are 0. 0. O. # Not used

log preexponential factors are O. O. O. # Set these to 0 to prevent any reactions for the purpose of verification

activation energies are {179441062.*uEl_pmdi} {179441062.*uEl_pmdi} {179441062.*uEl_pmdi} # J/kmol (e/R=21583 KENDATA)

energy release units are per unit mass

energy releases are 0 0 0 # J/Kg no energy for first cut

# Rxn-->1 2

concentration

concentration

concentration

concentration

concentration

concentration

concentration

stoichiometric

stoichiometric

stoichiometric

stoichiometric

stoichiometric

stoichiometric

stoichiometric

# Mechanism

exponents for FOAMA ARE

exponents for FOAMB ARE

exponents for FOAMC ARE

exponents for CHAR ARE

exponents for CO2 ARE

exponents for LMWO ARE

exponents for HMWO ARE

1. O.

O. 1.

O. O.

O. O.

O. O.

0. 0.

O. O.

coefficients for FOAMA ARE -1.0

coefficients for FOAMB ARE 0.0

coefficients for FOAMC ARE 0.0

coefficients for CHAR ARE 0.0

coefficients for CO2 ARE +0.56

coefficients for LMWO ARE +0.44

coefficients for HMWO ARE +0.0

aux variable names are sf, phi, keff, frxn, krad

aux variable subroutine is calcauxvar

END PARAMETERS FOR CHEMEQ MODEL reaction_model

END ARIA MATERIAL pmdifoam

BEGIN FINITE ELEMENT MODEL FoamInCan

database name is lblock.g

Use Material pmdifoam for block_1

END FINITE ELEMENT MODEL FoamInCan

BEGIN PROCEDURE myProcedure

begin solution control description

use system main

begin system main

simulation start time = 0.0

simulation termination time = 1.0

begin transient solution_block_1

advance myRegion

end transient solution_block_1

end system main

begin parameters for transient solution_block_1

start time = 0.0

begin parameters for aria region myRegion

time step variation = fixed

initial time step size = 0.1

end parameters for aria region myRegion

end

end solution control description

A -> CO2 --> 0.45 PMDIRPU
B-> HMWO --> 0.15 PMDIRPU

C-> HMWO --> 0.4 PMDIRPU

20% CHAR FORMATION

0.0 0.0 # dA/dt = r1

-1.0 0.0

0.0 -1.0

0.0 0.5

0.0

0.0

+1.0

_>

->
_>

0.252 CO2 + 0.198 LMWO

0.15 HMWO

0.2 HMW0+0.2 char

0.0 # dB/dt = 0.252/0.45 rl

0.0 # dC/dt = 0.198/0.45 rl

+0.5 # dD/dt = r2 + r3

#, p, krad, kbulk

BEGIN ARIA REGION myRegion

use finite element model FoamInCan Model Coordinates are model_coordinates

use linear solver solve_temperature
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nonlinear solution strategy = newton

maximum nonlinear iterations = 10

nonlinear residual tolerance = 1.0e-8

nonlinear relaxation factor = 1.0

use dof averaged nonlinear residual

BEGIN CHEMEQ SOLVER FOR reaction_model

ODE SOLVER = CVODE ADAMS 12 FUNCTIONAL

absolute tolerance = le-12

relative tolerance = le-9

aux variable names are sf, phi, rbulk, keff

aux variable sf = 1.0 # initial solid fraction value

aux variable phi = {phi} # initial gas volume fraction

aux variable keff = O. # initial effective thermal conductivity

aux variable frxn = 1.0 # initial bulk density

aux variable krad = 0.0 # radcond

species FOAMA = {1./7.}

species FOAMB = {1./7.}

species FOAMC = {1./7.}

species CHAR = {1./7.}

species CO2 = {1./7.}

species LMWO = {1./7.}

species HMWO = {1./7.}

minimum concentration for FOAMA le-12

minimum concentration for FOAMB le-12

minimum concentration for FOAMC le-12

chemistry step multiplier = 1E5

END CHEMEQ SOLVER FOR reaction_model

EQ ENERGY for TEMPERATURE on block_1 using Q1 with mass src

Source for energy on block_1 = chemeq_heating model=reaction_model

IC for temperature on block_1 = constant value={2*to}

# User variable definition

Define Global Scalar gmasco2 as real operation sum initial value 0.0

Define Global Scalar gmasn2 as real operation sum initial value 0.0

Define Global Scalar gmaslowmw as real operation sum initial value 0.0

Define Global Scalar gmashighmw as real operation sum initial value 0.0

Define Global Scalar itv as real operation sum initial value 0.0

Define Global Scalar gvtot as real operation sum initial value 0

Define Global Scalar p as real operation min initial value 101325.0

Define Global Scalar psig as real operation min initial value 0.0

Define Global Scalar padmix as real operation min initial value 101325.0

Define Global Scalar psigadmix as real operation min initial value 0.0

Define Global Scalar mcvT as real operation sum initial value 0.0

Define Global Scalar mcv as real operation min initial value 0.0

Define Global Scalar gvol as real operation sum initial value 0.0

Define Global Scalar psigl as real operation min initial value 0.0

Define Global Scalar psigadmixl as real operation min initial value 0.0

Define Global Scalar poc as real operation max initial value 0.0

Define Global Scalar count as int operation min initial value 0

Define Global Scalar psigxuncert as real operation min initial value 0.0

Define Global Scalar pxuncertsig as real operation min initial value 0.0

Define Global Scalar molesn2 as real operation min initial value 0.0

Define Global Scalar molesco2 as real operation min initial value 0.0

Define Global Scalar moleslowmw as real operation min initial value 0.0

Define Global Scalar moleshighmw as real operation min initial value 0.0

Define Global Scalar molesofv as real operation min initial value 0.0

Define Global Scalar molestotal as real operation min initial value 0.0
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BEGIN RESULTS OUTPUT output_1

Database Name is %B.e

Database Type is EXODUSII

at step 0, increment is 1

nodal variables = solution->temperature as temp

nodal variables = solution->temperatureDot as TDOT

element variables = Density as RHO

element variables = FOAMA FOAMB FOAM C CO2 CHAR LMWO HMWO

element variables = sf, phi, keff, frxn, krad

global variables = p

global variables = psig

END RESULTS OUTPUT output_1

END ARIA REGION myRegion

END PROCEDURE myProcedure

END SIERRA aria
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12.8. MISCELLANEOUS

12.8.1. Thermal Postprocessing

BEGIN SIERRA myJob

BEGIN ARIA MATERIAL Kryptonite

Density = CONSTANT rho = 1

Thermal Conductivity = Constant k = 1

Specific Heat = Constant cp = 1

heat conduction = basic

END

BEGIN ARIA MATERIAL Mathite

Density = CONSTANT rho = 1

Thermal Conductivity = Constant k = 1

Specific Heat = Constant cp = 1

heat conduction = basic

END

Begin Global Constants

Stefan Boltzmann Constant = 5.67e-8

End

Begin Aria Material surf_2_models

BC Reference Temperature = encore_function name = cf_Tref

Heat Transfer Coefficient = constant h=10.0

End

Begin Aria Material surf_3_models

BC Rad Reference Temperature = encore_function name = rf_Tref

Emissivity = Constant E=0.6

Radiation form factor = Constant F=1.0

End

{if(useTpetra)}

BEGIN TPETRA EQUATION SOLVER SOLVE_TEMPERATURE

BEGIN CG SOLVER

BEGIN JACOBI PRECONDITIONER

END

MAXIMUM ITERATIONS = 1000

RESIDUAL SCALING = RO

CONVERGENCE TOLERANCE = 1.000000e-14

END

END TPETRA EQUATION SOLVER

{else}
BEGIN AZTEC EQUATION SOLVER solve_temperature

solution method = cg

preconditioning method = jacobi

maximum iterations = 1000

residual norm scaling = r0

residual norm tolerance = 1.Oe-14

END AZTEC EQUATION SOLVER solve_temperature
{endif}

BEGIN FINITE ELEMENT MODEL cube

database name = cube_two_blocks_hex8_11011.g

coordinate system is cartesian

# [0,1] x [-0.5,0.5] x [-0.5,0.5]
BEGIN PARAMETERS FOR BLOCK block_1

material Kryptonite

END

# [-1,0] x [-0.5,0.5] x [-0.5,0.5]

BEGIN PARAMETERS FOR BLOCK block_2
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material Mathite

END

Use Material surf_2_models for surface_2

Use Material surf_3_models for surface_3

END FINITE ELEMENT MODEL cube

# specify text output for Encore PPs

Begin Postprocessor Output Control pp_out

Write to File encoreinfopil.txt

Enable Small Output Rounding To Zero

Floating Point Precision Is 10

End

Begin Global Function Parameters gfp

Parameter TO = 400 # [K]

Parameter CO = 2.0

Parameter C1 = 3.0

Parameter C2 = 4.0

Parameter C3 = 0.4

Parameter h = 10.0

Parameter eps = 0.6

Parameter sigma = 5.67e-8

End

Begin Field Function ffunc

Use Nodal Field nonlinear_solution->TEMPERATURE

End

# exact solution

Begin User Function ufunc

Load From File ./somefunc.so Using Function registerExactSoln

End

Begin Difference Function dfunc

Difference Is ufunc - ffunc

End

Begin User Function src

Integration Order Is 4

Load From File ./somefunc.so Using Function registerSrc

End

Begin User Function cf_Tref

Integration Order Is 4

Load From File ./somefunc.so Using Function registerConvHeatFlux_Tref

End

# exact convective flux

Begin User Function cf_bc_exact

Integration Order Is 4

Load From File ./somefunc.so Using Function registerExactConvHeatFlux

End

Begin User Function rf_Tref

Load From File ./somefunc.so Using Function registerRadFlux_Tref

End

# exact radiative flux

Begin User Function rf_bc_exact

Integration Order Is 4

Load From File ./somefunc.so Using Function registerExactRadFlux

End

Begin Norm Postprocessor 12_error

Use Function ufunc

Subtract Function ffunc
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Compute Norm L2

End

Begin Integrate Function Postprocessor cf_bc_ipo_ex

Use Function cf_bc_exact

Surfaces surface_2

Disable Output

End

Begin Integrate Function Postprocessor rf_bc_ipo_ex

Use Function rf_bc_exact

Surfaces surface_3

Disable Output

End

Begin Average Value Postprocessor cf_bc_ifo_ex

Use Function cf_bc_exact

Surfaces surface_2

Disable Output

End

Begin Average Value Postprocessor rf_bc_ifo_ex

Use Function rf_bc_exact

Surfaces surface_3

Disable Output

End

Begin Integrate Function Postprocessor src_ipo_ex

Use Function src

Volumes block_1 block_2

Disable Output

End

Begin Evaluate Function Postprocessor eval_bl

Use Function ffunc

Evaluate Value

# random interior point in block_2

Location -0.151720462393008 0.146935733548329 -0.393641401879319

parametric search tolerance 1.0e-10

End

Begin Evaluate Function Postprocessor eval_bl_ex

Use Function ufunc

Evaluate Value

# random interior point in block_2

Location -0.151720462393008 0.146935733548329 -0.393641401879319

Disable Output

End

Begin Evaluate Function Postprocessor eval_b1b2

Use Function ffunc

Evaluate Value

# random interior point on block interface (x=0)

Location 0 0.162595269728099 -0.377464159584852

parametric search tolerance 1.0e-10

End

Begin Evaluate Function Postprocessor eval_b1b2_ex

Use Function ufunc

Evaluate Value

# random interior point on block interface (x=0)

Location 0 0.162595269728099 -0.377464159584852

Disable Output

End

Begin Evaluate Function Postprocessor eval_s2

Use Function ffunc

Evaluate Value
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# random interior point on sideset 2 (z=0.5)

Location -0.855758209426849 0.159603369582751 0.5

End

Begin Evaluate Function Postprocessor eval_s2_ex

Use Function ufunc

Evaluate Value

# random interior point on sideset 2 (z=0.5)

Location -0.855758209426849 0.159603369582751 0.5

Disable Output

End

Begin Difference Postprocessor cf_bc_ipo_err

Difference is cf_bc_ipo_ex - cf_bc_ipo

End

Begin Difference Postprocessor rf_bc_ipo_err

Difference is rf_bc_ipo_ex - rf_bc_ipo

End

Begin Difference Postprocessor cf_bc_ifo_err

Difference is cf_bc_ifo_ex - cf_bc_ifo

End

Begin Difference Postprocessor rf_bc_ifo_err

Difference is rf_bc_ifo_ex - rf_bc_ifo

End

Begin Difference Postprocessor src_ipo_err

Difference is src_ipo_ex - src_ipo

End

Begin Difference Postprocessor eval_bl_err

Difference is eval_bi_ex - eval_bl

End

Begin Difference Postprocessor eval_b1b2_err

Difference is eval_b1b2_ex - eval_b1b2

End

Begin Difference Postprocessor eval_s2_err

Difference is eval_s2_ex - eval_s2

End

Begin Tabular Function Output Postprocessor tfo_sset2

Use Functions model_coordinates ffunc ufunc dfunc

Surfaces surface_2

Write To File values_sset2_{N}.dat

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description

Use System Main

Begin System Main

Begin Transient MySolveBlock

Advance myRegion

End

Simulation Max Global Iterations = 1

Simulation Start Time = 0

Simulation Termination Time = 1

End

Begin Parameters for Transient MySolveBlock

End

End

BEGIN ARIA REGION myRegion
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use finite element model cube

use linear solver solve_temperature

nonlinear solution strategy = newton

maximum nonlinear iterations = 10

nonlinear residual tolerance = 1.Oe-16

nonlinear correction tolerance = 1.Oe-12

nonlinear relaxation factor = 1.0

use dof averaged nonlinear residual

EQ ENERGY for TEMPERATURE on all_blocks using Q1 with DIFF SRC

MESH GROUP Dirichlet_Surface = surface_4 surface_5 surface_6 surface_7

BC Dirichlet for Temperature on Dirichlet_Surface = encore_function name=ufunc

BC Flux for Energy on surface_2 = Generalized_Nat_Conv Power_Output=cf_bc_ipo Flux_Output=cf_bc_ifo

BC Flux for Energy on surface_3 = Generalized_Rad Power_Output=rf_bc_ipo Flux_Output=rf_bc_ifo

SOURCE for ENERGY on all_blocks = encore_function name=src Power_Output=src_ipo

Evaluate Postprocessor eval_bl

Evaluate Postprocessor eval_b1b2

Evaluate Postprocessor eval_s2

Evaluate Postprocessor tfo_sset2

Begin Postprocessor Group zzz

Output Number of Nodes

Evaluate Postprocessor 12_error

Evaluate Postprocessor

Evaluate Postprocessor

Evaluate Postprocessor

Evaluate Postprocessor

Evaluate Postprocessor

Evaluate Postprocessor

Evaluate Postprocessor

Evaluate Postprocessor

Evaluate Postprocessor

Evaluate Postprocessor

Evaluate Postprocessor

Evaluate Postprocessor

Evaluate Postprocessor

Evaluate Postprocessor

Evaluate Postprocessor

Evaluate Postprocessor

End

END ARIA REGION myRegion

END PROCEDURE myAriaProcedure

END SIERRA myJob

cf_bc_ipo_ex

cf_bc_ipo_err

rf_bc_ipo_ex

rf_bc_ipo_err

cf_bc_ifo_ex

cf_bc_ifo_err

rf_bc_ifo_ex

rf_bc_ifo_err

src_ipo_ex

src_ipo_err

eval_b1_ex

eval_bi_err

eval_b1b2_ex

eval_b1b2_err

eval_s2_ex

eval_s2_err
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12.8.2. Postprocess Min/Max

BEGIN SIERRA myJob

BEGIN ARIA MATERIAL Kryptonite

Density = constant rho=1

Thermal Conductivity = constant k=1

Specific Heat = Constant cp=1

heat conduction = basic

END ARIA MATERIAL Kryptonite

{if(useTpetra)}

BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN SUPERLU SOLVER

END

END TPETRA EQUATION SOLVER

{else}
Begin Trilinos Equation Solver Direct_Solver

Solution Method = amesos-superlu

End

{endif}

BEGIN FINITE ELEMENT MODEL cube

database name = square_h{N}.e

coordinate system is cartesian

decomposition method = rib

BEGIN PARAMETERS FOR BLOCK block_1

material Kryptonite

END PARAMETERS FOR BLOCK block_1

END FINITE ELEMENT MODEL cube

Begin String Function exact_soln

Value Is "sin(7*x) * sin(8*y)"

Gradient Is "7 * cos(7*x) * sin(8*y)" "8 * sin(7*x) * cos(8*y)"
End

Begin String Function exact_src

Value Is "(49 + 64) * sin(7*x) * sin(8*y)"
End

Begin Field Function ffunc

Use Nodal Field nonlinear_solution->TEMPERATURE

End

Begin Norm Postprocessor 12

Use Function exact_soln

Subtract Function ffunc

Compute Norms L2

End

Begin Norm Postprocessor hi

Use Function exact_soln

Subtract Function ffunc

Compute Norms H1

End

Begin Norm Postprocessor linf

Use Function exact_soln

Subtract Function ffunc

Compute Norms Llnfinity

End

Begin Min Max Postprocessor max_node_bi

Use Function ffunc

Compute Max
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Volumes block_1

End

Begin Min Max Postprocessor min_node_bl

Use Function ffunc

Compute Min

Volumes block_1

End

Begin Min Max Postprocessor max_node_s2

Use Function ffunc

Compute Max

Surfaces surface_2 # x=1

End

Begin Min Max Postprocessor min_node_s2

Use Function ffunc

Compute Min

Surfaces surface_2 # x=1

End

# code used to compute exact errors in Min Max PP

Begin String Function sfunc_max_node_bl_ex

Value Is "1.0"

End

Begin String Function sfunc_min_node_bl_ex

Value Is "-1.0"

End

Begin String Function sfunc_max_node_s2_ex

Value Is "sin(7)"
End

Begin String Function sfunc_min_node_s2_ex

Value Is "-sin(7)"

End

Begin Evaluate Function Postprocessor max_node_bl_ex

Use Function sfunc_max_node_bl_ex

Location 0 0 0

End

Begin Evaluate

Use Function

Location 0 0

End

Begin Evaluate

Use Function

Location 0 0

End

Begin Evaluate

Use Function

Location 0 0

End

Function Postprocessor min_node_bl_ex

sfunc_min_node_bl_ex

0

Function Postprocessor max_node_s2_ex

sfunc_max_node_s2_ex

0

Function Postprocessor min_node_s2_ex

sfunc_min_node_s2_ex

0

Begin Difference

Difference is

End

Begin Difference

Difference is

End

Begin Difference

Difference is

Postprocessor max_node_bl_err

max_node_bl_ex - max_node_bl

Postprocessor min_node_bl_err

min_node_bl - min_node_bl_ex

Postprocessor max_node_s2_err

max node s2 ex - max node s2_ _ _ _ _
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End

Begin Difference Postprocessor min_node_s2_err

Difference is min_node_s2 - min_node_s2_ex

End

# end code used to compute exact errors in Min Max PP

Begin Postprocessor Output Control pp_out

Comment Character Is %

Write To File errors_h{N}.dat

Floating Point Precision Is 8

Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description

Use System Main

Begin System Main

Begin Sequential The_Time_Block

Advance myRegion

End

Simulation Start Time = 0

Simulation Termination Time = 1

End

Begin Parameters For Transient The_Time_Block

End

End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton

Maximum Nonlinear Iterations = 10

Nonlinear Residual Tolerance = 1.0e-12

Nonlinear Correction Tolerance = 1.Oe-12

Nonlinear Relaxation Factor = 1.0

use dof averaged nonlinear residual

use finite element model cube

Use Linear Solver Direct_Solver

BC dirichlet for Temperature at surface_1 = Encore_Function Name=exact_soln

BC dirichlet for Temperature at surface_2 = Encore_Function Name=exact_soln

BC dirichlet for Temperature at surface_3 = Encore_Function Name=exact_soln

BC dirichlet for Temperature at surface_4 = Encore_Function Name=exact_soln

EQ ENERGY for TEMPERATURE on block_1 using Q1 with DIFF SRC

Source For ENERGY on block_1 = Encore_Scalar_Function Name=exact_src

Evaluate Postprocessor max_node_bl

Evaluate Postprocessor min_node_bl

Evaluate Postprocessor max_node_s2

Evaluate Postprocessor min_node_s2

Begin Postprocessor Group zzz

Output Number of Nodes

Evaluate Postprocessor 12

Evaluate Postprocessor hl

Evaluate Postprocessor linf

Evaluate Postprocessor max_node_bl_err

Evaluate Postprocessor min_node_bl_err

Evaluate Postprocessor max_node_s2_err

Evaluate Postprocessor min_node_s2_err

End
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Begin Solution Options

post process normalized temperature on surface_2 as t_s2

post process normalized temperature on block_1 as t_bl

End

BEGIN RESULTS OUTPUT LABEL diffusion output

database Name = aria_h{N}.e

at step 0, increment = 1

# time interval is 1.0

title Aria cube test

nodal variables = nonlinear_solution->TEMPERATURE as T

global variables = t_s2 t_bl

END RESULTS OUTPUT LABEL diffusion output

Begin History Output blah

database Name = aria_h{N}.hist

at time 1 interval is 1

Variable = global t_s2

Variable = global t_bl

End

END ARIA REGION myRegion

END PROCEDURE myAriaProcedure

END SIERRA myJob

12.8.3. Local Coordinates: Cartesian

# Aria input file heat condution in local

# coodinate system

BEGIN SIERRA MyProblem

Begin User Function ufunc

Load From File ./cartesian.so Using Function registerExactSolution

End

Begin Postprocessor Output Control pp_out

Comment Character Is %

Write To File errors{N}.dat

Floating Point Precision Is 3

Floating Point Format Is Scientific

End

load user plugin file ./cartesian.so

load user plugin file ./cartesian.so

load user plugin file ./cartesian.so

begin data block region_data

TO T1 Kxx Kyy Kzz Lx Ly Lz thetal theta2

Real r_data = 400.0 100.0 10.0 1.0 1.0 1.0 1.0 1.0 45.0 22.5

end data block region_data

BEGIN LOCAL COORDINATE SYSTEM CS_Block

TYPE = Cartesian

ORIGIN = 0.000000 0.000000 0.00000

POINT = 0.707106781186548 0.653281482438188 0.270598050073098

VECTOR = 0 -0.382683432365090 0.923879532511287

END

BEGIN ARIA MATERIAL M_Block

DENSITY = CONSTANT rho = 0.1

TENSOR THERMAL CONDUCTIVITY = CONSTANT XX=10.0 YY=1.0 ZZ=1.0

SPECIFIC HEAT = CONSTANT CP = 0.5
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Heat Conduction = Generalized

END ARIA MATERIAL M_Block

{if(useTpetra)}

BEGIN TPETRA EQUATION SOLVER LINEARSOLVER

BEGIN GMRES SOLVER

BEGIN JACOBI PRECONDITIONER

END

MAXIMUM ITERATIONS = 1000

RESIDUAL SCALING = RO

CONVERGENCE TOLERANCE = 1.000000e-12

END

END TPETRA EQUATION SOLVER
{else}

BEGIN AZTEC EQUATION SOLVER LinearSolver

SOLUTION METHOD = gmres

PRECONDITIONING METHOD = jacobi

MAXIMUM ITERATIONS = 1000

RESIDUAL NORM TOLERANCE = 1.Oe-12

RESIDUAL NORM SCALING = r0

END AZTEC EQUATION SOLVER LinearSolver
{endif}

BEGIN FINITE ELEMENT MODEL FE_Block

DATABASE NAME = cartesian{N}.g

coordinate system is cartesian

decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1

MATERIAL M_Block

LOCAL COORDINATE SYSTEM = CS_Block

END PARAMETERS FOR BLOCK block_1

END

BEGIN PROCEDURE MyProcedure

Begin Solution Control Description

Use System Main

Begin System Main

Begin Sequential MyBlock

Advance Region_Block

End

End

End

BEGIN ARIA REGION Region_Block

nonlinear solution strategy = newton

use data block region_data

Output Number of Nodes

Compute Difference L2 Of ufunc solution->temperature Store In 12_error_norm2

Compute Difference Llnfinity Of ufunc solution->temperature Store In linf_error_norm

NONLINEAR RESIDUAL TOLERANCE = 1.Oe-10

NONLINEAR CORRECTION TOLERANCE = 1.Oe-10

MAXIMUM NONLINEAR ITERATIONS = 10

NONLINEAR RELAXATION FACTOR = 1.0

IC for temperature on block_1 = calore_user_sub name = localCoord_ic type=node

BC dirichlet for temperature on surface_1 = calore_user_sub name = localCoord_bc type=node

BC dirichlet for temperature on surface_2 = calore_user_sub name = localCoord_bc type=node

BC dirichlet for temperature on surface_3 = calore_user_sub name = localCoord_bc type=node

BC dirichlet for temperature on surface_4 = calore_user_sub name = localCoord_bc type=node

BC dirichlet for temperature on surface_5 = calore_user_sub name = localCoord_bc type=node

BC dirichlet for temperature on surface_6 = calore_user_sub name = localCoord_bc type=node

IC CONST ON block_1 Temperature = 0.0
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# along z

BC Const Dirichlet

BC Const Dirichlet

# along y

on surface_1 Temperature

on surface_2 Temperature

= 100.0

= 0.0

BC Linear Dirichlet on surface_3 Temperature Coeff = 50. O. -38.37 92.39

BC Linear Dirichlet on surface_5 Temperature Coeff = 50. O. -38.37 92.39

# along x

BC Linear Dirichlet on surface_4 Temperature Coeff = 50. O. -38.37 92.39

BC Linear Dirichlet on surface_6 Temperature Coeff = 50. O. -38.37 92.39

EQ ENERGY FOR TEMPERATURE ON block_1 USING Q1 WITH DIFF #SRC

#SOURCE for Temperature on block_1 =

Begin Volume Heating juan

add volume block_1

element subroutine = localCoord_vhs

End

USE FINITE ELEMENT MODEL FE_Block

BEGIN RESULTS OUTPUT TemperatureOutput

DATABASE NAME = output{N}.e

AT STEP 1, INCREMENT = 1

TITLE Aria Temperature in Local Coordinate System Verification Problem

NODAL VARIABLES = solution->TEMPERATURE AS T

Element Variables = 12_error_norm2 as 12error

Element Variables = linf_error_norm as linf

END RESULTS OUTPUT TemperatureOutput

USE LINEAR SOLVER LinearSolver

END

END

END SIERRA MyProblem

12.8.4. Local Coordinates: Cylindrical

# Aria input file heat condution in local

# coodinate system

BEGIN SIERRA MyProblem

Begin Field Function ffunc

Use Nodal Field solution->temperature

End

Begin User Function ufunc

Load From File ./cylindrical.so Using Function registerExactSolution

End

Begin Definition for Function krr

Type is piecewise linear

Begin Values

0 1.0

400 1.0

End Values

Scale by 10.0

End

Begin Definition for Function ktt

Type is piecewise linear

Begin Values

0 1.0

400 1.0

End Values

Scale by 1.0
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End

Begin Definition for Function kzz

Type is piecewise linear

Begin Values

0 1.0

400 1.0

End Values

End

Begin Postprocessor Output Control pp_out

Comment Character Is %

Write To File errors{N}.dat

Floating Point Precision Is 6

Floating Point Format Is Scientific

End

load user plugin file ./cylindrical.so

begin data block region_data

TO T1 Krr Ktt Kzz Lx Lz thetal theta2

Real r_data = 400.0 100.0 10.0 1.0 1.0 1.0 1.0 45.0 22.5

end data block region_data

BEGIN LOCAL COORDINATE SYSTEM CS_Block

TYPE = Cylindrical

ORIGIN = 0.000000 0.000000 0.00000

POINT = 0.707106781186548 0.653281482438188 0.270598050073098

VECTOR = 0 -0.382683432365090 0.923879532511287

END

BEGIN ARIA MATERIAL M_Block

DENSITY = CONSTANT rho = 0.1

#tensor thermal conductivity = user_function X=Temperature Name_XX=krr Name_YY=ktt Name_ZZ=kzz

TENSOR THERMAL CONDUCTIVITY = CONSTANT XX=10.0 YY=1.0 ZZ=1.0

SPECIFIC HEAT = CONSTANT CP = 0.5

Heat Conduction = Generalized

END ARIA MATERIAL M_Block

{if(useTpetra)}

BEGIN TPETRA EQUATION SOLVER LINEARSOLVER

BEGIN GMRES SOLVER

BEGIN JACOBI PRECONDITIONER

END

MAXIMUM ITERATIONS = 1000

RESIDUAL SCALING = RO

CONVERGENCE TOLERANCE = 1.000000e-12

END

END TPETRA EQUATION SOLVER

{else}
BEGIN AZTEC EQUATION SOLVER LinearSolver

SOLUTION METHOD = gmres

PRECONDITIONING METHOD = jacobi

MAXIMUM ITERATIONS = 1000

RESIDUAL NORM TOLERANCE = 1.Oe-12

RESIDUAL NORM SCALING = r0

END AZTEC EQUATION SOLVER LinearSolver
{endif}

BEGIN FINITE ELEMENT MODEL FE_Block

DATABASE NAME = cylindrical{N}.g

coordinate system is cartesian

decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1

MATERIAL M_Block

LOCAL COORDINATE SYSTEM = CS_Block

END PARAMETERS FOR BLOCK block_1
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END

BEGIN PROCEDURE MyProcedure

Begin Solution Control Description

Use System Main

Begin System Main

Begin Sequential MyBlock

Advance Region_Block

End

End

End

BEGIN ARIA REGION Region_Block

nonlinear solution strategy = newton

use data block region_data

Output Number of Nodes

Compute Difference L2 Of ufunc ffunc Store In 12_error_norm2

Compute Difference Llnfinity Of ufunc ffunc Store In linf_error_norm

NONLINEAR RESIDUAL TOLERANCE = 1.0e-10

NONLINEAR CORRECTION TOLERANCE = 1.0e-10

MAXIMUM NONLINEAR ITERATIONS = 10

NONLINEAR RELAXATION FACTOR = 1.0

BC dirichlet for temperature on surface_1 = calore_user_sub name = localCoord_bc type=node

BC dirichlet for temperature on surface_2 = calore_user_sub name = localCoord_bc type=node

BC dirichlet for temperature on surface_3 = calore_user_sub name = localCoord_bc type=node

EQ ENERGY FOR TEMPERATURE ON block_1 USING Q1 WITH DIFF SRC

Begin Volume Heating juan

add volume block_1

element subroutine = localCoord_vhs

End

Begin Initial Condition BlockName

A11 Volumes

Temperature = 400.0

End

USE FINITE ELEMENT MODEL FE_Block

Interpolate Function Value of ufunc Into Nodal Field Tex

BEGIN RESULTS OUTPUT TemperatureOutput

DATABASE NAME = output{N}.e

AT STEP 1, INCREMENT = 1

TITLE Aria Temperature in Local Coordinate System Verification Problem

NODAL VARIABLES = solution->TEMPERATURE AS T

NODAL VARIABLES = Tex

Element Variables = 12_error_norm2 as 12error

Element Variables = linf_error_norm as linf

END RESULTS OUTPUT TemperatureOutput

USE LINEAR SOLVER LinearSolver

END

END

END SIERRA MyProblem
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