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Complexity & Social Simulation

 Are we using the right type of simulation to
represent a system?
 Simple enough to understand and analyze
e Complex enough to represent

 Does complexity of model structure (ground
truth) relate to complexity of behaviors observed
(outputs)?

* Does real-world social complexity give insight
into explaining, predicting, and prescribing
systems?




Measuring Complexity

* Challenges

 Many definitions of complexity —how do we capture what is
important?

« How to avoid the temptation of focusing on easy
measurements (e.g., number of actors represented)

e (Considerations

 Want to capture complexity of the actors, environments,
interactions, and outputs of a simulation

 Adding more actors or links between actors could increase
complexity but not always

 Entropy (Shannon) establishes information content but does
not distinguish uncertainty from randomness

e Available actor/group decisions and/or behaviors if they are
realized in output and affect other decisions and/or behaviors




A Multi-Tiered Complexity Metric

1. System intricacy
e  How complicated is the system?
 (Captures information about variables and the potential for
interaction among variables
2. Information theoretic complexity

What is the information content and uncertainty in the
system?

 Considers the simulation states, and requires simulation
runs to compute
3. Behavioral complexity

* How do interactions and behaviors of actors in the system
affect complexity?

 Inspired by efforts in the social sciences to quantify
complexity of real social systems




Tier 1: System Intricacy

How complicated is the system?

Metric: Cyclomatic Complexity

* (Captures the interconnectedness of a graph

e (Calculated using ground truth (graphical representation of
the causal structure driving the simulation)

M=E—-N+2P

M = cyclomatic complexity
N = nodes in the graph
E = edges in the graph

P = connected components




Tier 2: Information Theoretic Complexity

Information content & uncertainty

Metric: Forecast complexity

 Measure of the minimum amount of information
needed for optimal prediction

 Part of the time-series, X, is used to predict the rest,
X%, suchthat X = (X~,X™), for (model) f in M (set
of models)

C = ?1Einr/11H(f(X‘))




Tier 3: Behavioral Complexity

Actor interactions & behaviors

Metric: Number of Differentiated Relationships

 Used in the social sciences to measure complexity of
animal groups

e Generalizable across simulations, since it allows for the
definition of relationship to be tailored to the simulation




Example: The PV World Model

* Created by Sandia staff as part of an internal
complex systems class

 Agent based structure
— Agents represent households deciding whether or
not to adopt PV solar
 How will the diffusion of rooftop solar be
affected by attitudes, social networks,
installation costs and adoption incentives?




PV World Model: Ground Truth
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PV World: Cyclomatic Complexity

System Intricacy
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PV World Model — 3 Instances
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PV World: Forecasting Complexity

Information Theoretic Complexity

e (Calculated forecast complexity using a compression

i _ Instance 1: <1000 adopters
el 2 | Instance 2: 1000—2000
/’ - \\ | Instance 3: >2000
; 500H B Y b \\\ |
Zt\x” . “w\,\;\\’ cemne
Number of adopters Forecast complexity

The overall forecast complexity is the weighted (by number
of runs per instance) average forecast complexity over these

1.16 1.81 1.44 ,
1.00 1.00 1.00 Instances.
1.83 5.61 4.93
Forecast complexity = 1.52




Example Time-series — Instance 2

Sample Autocorrelations
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Example Time-series — Uniform random
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PV World Model — Auto-regressive Model
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PV World: Differentiated Relationships

Behavioral Complexity

function

Only relationship in the model:
neighbors’ attitudes affect
actor attitude.

Behavioral complexity = 1




Next Steps

e Align multi-tiered complexity metric to
simulation dimensions
e With or without ground truth

* With or without assumption of social/group
interactions (including hierarchical group
formation)

e Accounting for feedback loops in ground
truth

iive Scence & Technalog B




Thank You

Questions?







Extended Abstract

Measuring complexity in real-world systems and in computational models of these systems is an ongoing area of research. This research concerns modeled
social systems of multiple actors interacting in complex scenarios over lengthy periods of time. Existing theoretical measures such as Kolmogorov
complexity or algorithmicinformation complexity (AIC) are mathematically precise, but they cannot be computed directly as it is extremely difficult to
determine the minimal representation (such as an algorithm or code) for any system/model output data. In this research, we explore the suitability of a
multi-tiered approach to measure complexity, incorporating three interacting but complementary aspects of complexity: (1) system intricacy, (2)
information theoretic complexity, and (3) behavioral complexity.

System intricacy is intimately tied to the structures, processes and parameters that determine system dynamics, which makes general measures difficult to
identify. One approach is to consider the underlying software implementation and evaluate its complexity. Measures that relate to the parameters and
structure of the system are the most relevant as they address the system rather than the implementation. System intricacy measures are based on formal
descriptions of the causal structure of the system. Metrics include (but are not limited to): number of actors, number of characteristics of actors, number of
potential behaviors per actor, number of types of actors, number of interactions between variablesin the causal structure; and assuming a graph
representation of the causal structure: the number of spanning trees of the graph, cyclomatic complexity, space of locations in which the actors move, and
the number of parameters external to the actor that influence actor behavior.

Information theoretic complexity measures information content as well as uncertainty in information content. These measures are data driven and focus on
the empirical data that is the output of the simulation. Information theoretic measures of complexity have been studied in the research community
including (but not limited to): entropy or information content, mutual information, forecasting complexity, Kullback-Leibler divergence, and normalized
compression distance. Each of these are included in the information theoretic tier of complexity metrics.

The social sciences have investigated the concept of “social complexity”, which is sometimes associated with understanding how a society is governed.
Several measures have been proposed to capture this concept, but they often count the existence of specific constructs from the real world, such as the
authority of leaders, territorial control, tax extraction, etc. The primary focus of the behavioral complexity metric tier is behaviors and interactions of
actors. We leverage definitions from relevant social science literature, including (but not limited to): the number of differentiated relationships; the number
of interactions an actor has with other actors; the number of behaviors an actor executes in their lifetime; the number of unique behaviors an actor
executes in their lifetime; and the range of change in an actor’s characteristics throughout its lifetime. Actors interact with other actors by sending
messages, modifying a joint shared state (such as an environment), or executing joint behavior. We extract the interactions between actors and create a
social network where the nodes represent actors and the edges represent significant interaction.

We demonstrate our multi-tiered complexity metric using output from a simple agent-based adoption model as well as other simple (non-complex) and
degenerate (i.e., noise-only) time-series.




PV World Model — Forecast Complexity
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Example Time-series — Instance 1

Sample Autocorrelations
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Example Time-series — Instance 2
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Example Time-series — Instance 3
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Example Time-series — Uniform random
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Example Time-series — Sigmoid
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Example Time-series — Linear
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Measuring Flexibility

* Definition: Ability to manage and manipulate simulation
complexity

* Significance: Complexity should be tunable

* Considerations and Potential Metrics
— Using complexity metrics
— Flexibility metrics:
* Percentage of simulation parameters that significantly increase the

complexity of the simulation

— Significance computed through p-value testing, using a t-test, on multiple runs
of the simulation, each with a fixed parameter set

— Measures the number of parameters involved in complexity of model

* Range of potential complexity

— Calculated by varying the parameters identified as significantly increasing the
complexity of the simulation.

— Facilitates ranking based on the size of ranges of complexity.




PV World Model: Flexibility
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Ground Truth for Simulations

* Ground truth: graphical representation of the
causal structure driving the simulation

e Relationships in the ground truth should be
represented as simply as possible

* Perfectly correlated simulation variables —
merged into the same node




Terminology

Actors: entities in the simulations

— Characteristics: not updated by the simulation
— States: updated by the simulation

Behaviors: potential actions that actors can take

Parameters: variables that can influence the
simulation.

Simulation variables: data and information
about the simulation
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