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Complexity & Social Simulation

• Are we using the right type of simulation to
represent a system?
• Simple enough to understand and analyze

• Complex enough to represent

• Does complexity of model structure (ground
truth) relate to complexity of behaviors observed
(outputs)?

• Does real-world social complexity give insight
into explaining, predicting, and prescribing
systems?
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Measuring Complexity

• Challenges
• Many definitions of complexity — how do we capture what is

important?
• How to avoid the temptation of focusing on easy

measurements (e.g., number of actors represented)

• Considerations
• Want to capture complexity of the actors, environments,

interactions, and outputs of a simulation
• Adding more actors or links between actors could increase

complexity but not always
• Entropy (Shannon) establishes information content but does

not distinguish uncertainty from randomness
• Available actor/group decisions and/or behaviors if they are

realized in output and affect other decisions and/or behaviors
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A Multi-Tiered Complexity Metric

1. System intricacy
• How complicated is the system?
• Captures information about variables and the potential for

interaction among variables

2. Information theoretic complexity
• What is the information content and uncertainty in the

system?
• Considers the simulation states, and requires simulation

runs to compute

3. Behavioral complexity
• How do interactions and behaviors of actors in the system

affect complexity?
• Inspired by efforts in the social sciences to quantify

complexity of real social systems
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Tier 1: System Intricacy

How complicated is the system?

Metric: Cyclomatic Complexity

• Captures the interconnectedness of a graph
• Calculated using ground truth (graphical representation of

the causal structure driving the simulation)

M = E — N + 2P

M = cyclomatic complexity
N = nodes in the graph
E = edges in the graph

P = connected components
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Tier 2: Information Theoretic Complexity

Information content & uncertainty

Metric: Forecast complexity

• Measure of the minimum amount of information
needed for optimal prediction

• Part of the time-series, X-, is used to predict the rest,
X+, such that X (X- ,X+), for (model) f in M (set
of models)

C = min I-1(f (X-))
EM
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Tier 3: Behavioral Complexity

Actor interactions & behaviors

Metric: Number of Differentiated Relationships

• Used in the social sciences to measure complexity of
animal groups

• Generalizable across simulations, since it allows for the
definition of relationship to be tailored to the simulation
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Example: The PV World Model

• Created by Sandia staff as part of an internal
complex systems class

• Agent based structure

Agents represent households deciding whether or
not to adopt PV solar

• How will the diffusion of rooftop solar be
affected by attitudes, social networks,
installation costs and adoption incentives?
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PV World Model: Ground Truth
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PV World: Cyclomatic Complexity
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PV World Model 3 Instances
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PV World: Forecasting Complexity

Information Theoretic Complexity

• Calculated forecast complexity using a compression
a lgorith m
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Sandia
National
Laboratories

Cognitive Science &Tech-m[0g 13



Example Time-series Instance 2
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Example Time-series Uniform random
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PV World Model Auto-regressive Model
(Instance 2)
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PV World: Differentiated Relationships
Behavioral Complexity
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Next Steps

• Align multi-tiered complexity metric to

simulation dimensions

• With or without ground truth

• With or without assumption of social/group
interactions (including hierarchical group
formation)

• Accounting for feedback loops in ground

truth
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Extended Abstract

Measuring complexity in real-world systems and in computational models of these systems is an ongoing area of research. This research concerns modeled
social systems of multiple actors interacting in complex scenarios over lengthy periods of time. Existing theoretical measures such as Kolmogorov
complexity or algorithmic information complexity (AIC) are mathematically precise, but they cannot be computed directly as it is extremely difficult to
determine the minimal representation (such as an algorithm or code) for any system/model output data. In this research, we explore the suitability of a
multi-tiered approach to measure complexity, incorporating three interacting but complementary aspects of complexity: (1) system intricacy, (2)
information theoretic complexity, and (3) behavioral complexity.

System intricacy is intimately tied to the structures, processes and parameters that determine system dynamics, which makes general measures difficult to
identify. One approach is to consider the underlying software implementation and evaluate its complexity. Measures that relate to the parameters and
structure of the system are the most relevant as they address the system rather than the implementation. System intricacy measures are based on formal
descriptions of the causal structure of the system. Metrics include (but are not limited to): number of actors, number of characteristics of actors, number of
potential behaviors per actor, number of types of actors, number of interactions between variables in the causal structure; and assuming a graph
representation of the causal structure: the number of spanning trees of the graph, cyclomatic complexity, space of locations in which the actors move, and
the number of parameters external to the actor that influence actor behavior.

Information theoretic complexity measures information content as well as uncertainty in information content. These measures are data driven and focus on
the empirical data that is the output of the simulation. Information theoretic measures of complexity have been studied in the research community
including (but not limited to): entropy or information content, mutual information, forecasting complexity, Kullback-Leibler divergence, and normalized
compression distance. Each of these are included in the information theoretic tier of complexity metrics.

The social sciences have investigated the concept of "social complexity", which is sometimes associated with understanding how a society is governed.
Several measures have been proposed to capture this concept, but they often count the existence of specific constructs from the real world, such as the
authority of leaders, territorial control, tax extraction, etc. The primary focus of the behavioral complexity metric tier is behaviors and interactions of
actors. We leverage definitions from relevant social science literature, including (but not limited to): the number of differentiated relationships; the number
of interactions an actor has with other actors; the number of behaviors an actor executes in their lifetime; the number of unique behaviors an actor
executes in their lifetime; and the range of change in an actor's characteristics throughout its lifetime. Actors interact with other actors by sending
messages, modifying a joint shared state (such as an environment), or executing joint behavior. We extract the interactions between actors and create a
social network where the nodes represent actors and the edges represent significant interaction.

We demonstrate our multi-tiered complexity metric using output from a simple agent-based adoption model as well as other simple (non-complex) and
degenerate (i.e., noise-only) time-series.
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PV World Model Forecast Complexity
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Forecast Complexity
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Example Time-series Instance 1
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Example Time-series Instance 2
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Example Time-series Instance 3
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Example Time-series Uniform random
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Example Time-series Sigmoid
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Example Time-series Linear
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Measuring Flexibility

• Definition: Ability to manage and manipulate simulation
complexity

• Significance: Complexity should be tunable
• Considerations and Potential Metrics

— Using complexity metrics
— Flexibility metrics:

• Percentage of simulation parameters that significantly increase the
complexity of the simulation

— Significance computed through p-value testing, using a t-test, on multiple runs
of the simulation, each with a fixed parameter set

— Measures the number of parameters involved in complexity of model

• Range of potential complexity
— Calculated by varying the parameters identified as significantly increasing the

complexity of the simulation.
— Facilitates ranking based on the size of ranges of complexity.

Example
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PV World Model: Flexibility

Main Effects Plot for Average Forecast Complexity

name Vtl11.1C IV1111 VoL-OLLILIJUV In Ill el I flUrIlY 'la UV IVIcIlL 1-11101 SL

1.8 -

1.7 -

1.6 -

ea

2 
"s-

1.4-

1.3 -

1 .2 -

64000 106000 O'et 0:6 1C000 aoOoo socioco sockoo sdoo maw riA

Main effects: which input parameters have
significant effects on the mean responses as we
vary the inputs across their respective ranges

Parameter

NumberFriends

Home_Value_Min

wt-attitude

Home_Value_Max

Final_Cost

intent-thresh

P-Value

0.05 1

0.40

0

0.01

0.52

0

0

a = 0.05

Percentage of parameters that
significantly increase complexity

of the simulation = 57%

l Definition

Sandia
National
Laboratories Cogrti ive Science &Technology



Ground Truth for Simulations

• Ground truth: graphical representation of the
causal structure driving the simulation

• Relationships in the ground truth should be
represented as simply as possible

• Perfectly correlated simulation variables —
merged into the same node
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Terminology

Actors: entities in the simulations

Characteristics: not updated by the simulation

States: updated by the simulation

Behaviors: potential actions that actors can take

Parameters: variables that can influence the
simulation.

Simulation variables: data and information
about the simulation
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