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Introduction

What are we doing?
• Measuring the equation of state (EOS) of liquid iron at high pressures by studying

samples at previously unexplored off-Hugoniot isentropes

Why?
• Expanding the region of measured EOS values allows for the refinement of broader

EOS models which are used in many high energy density applications
• Iron is the primary constituent of rocky planet cores
• Measurements are taken at conditions very close to the Earth's core which not only

improve the models, but do so with minimal extrapolations for this critical application
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Figure 1: Estimation of our

ramp path in P-T space

(purple), along with several

relevant references; Hugoniot1
(red), iron melt curve2 (black),

Earth geotherm3 (orange),

and two other previously

measured isentropes4 (blue).

Experiment

Sandia National Laboratories Z Machine
• Pulsed power facility capable of delivering

26 MAmps to the load

Load Hardware
• Samples are paired across the

panels with differing thicknesses
• Parallel counter-propagating current

drives the panels apart symmetrically
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Shock-Ramp Drive
• The Z machine's pulse shaping capability is utilized to drive the panel such that it

impacts the sample at a steady velocity, leading to an initial shock state, and then

subsequently drives the pressure higher through a quasi-isentropic compression
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Figure 2: Simulated panel

velocity assuming no sample
present. The nominal impact
time, should a sample be
present, is indicated (dashed
line).
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1 Analysis

Backward Integration
• The Lagrangian hydrodynamic equations are backward

integrated to obtain the drive profile along with a guess

of the equation of state:
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Forward Propagation
• The drive state can then be propagated forward to the

sample interface to obtain the in-situ particle velocity (the

particle velocity that would have been present at that

location had there not been a release interface)

Lagrangian Sound Speed and EOS
• A sound speed can then be directly calculated from

Ax/At measurements and an EOS formed from the

sound speed:
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Iterate
• The process is then repeated with this new EOS,

iterating until the EOS reaches convergence
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Drive Conditions

Results

Equation of State Solution
• The derived Pressure-Density is shown to the left (blue), compared to

the extracted values from the iron 92141 EOS table from Los Alamos

National Laboratory (black).

Conclusions
We have performed shock-ramp experiments on Sandia National

Laboratories' Z Machine to evaluate the equation of state of liquid iron

along an elevated isentrope near Earth core pressure and temperature
conditions. The results agree well with current EOS tables, validating their

use at and near these conditions.
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