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, | Motivation
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Scientific computing relies on strong server-class processors , ol
- Wide availability of GPUs, many-core processors, and special- ' % ‘
purpose accelerators and functional units

- Majority of calculations still take place on commodity server-class processors
- Many applications still have large regions of serial code
> Necessitates the need for powerful cores

Two classes of computing platforms for U.S. Department of Energy
- Advanced Technology Systems (ATS)

- Capacity Technology Systems (CTS)
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; | Contributions

Evaluate the impact of the significant hardware changes on Intel’s leading
Skylake-based server platform using microbenchmarks

- Memory bandwidth ‘
- Cache bandwidth |

> Floating point performance

Project the impact that these changes will have on real applications of interest to
the scientific community using a selection of mini-applications |

- Memory bandwidth

> Indirect memory accesses from cache and main memory
> Throughput

> Vectorization and SMT




. | Skylake Microarchitecture
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Skylake Microarchitecture

Core and cache subsystem redesigned to support

Out-of-Order Window 192

In-Flight Mem. Ops, LD+ST  72+42

Scheduler Entries 60

Allocation Queue 56

Registers, INT+FP 168+168

L1 BW, LD+ST (B/cyc) 64+32

L2 Unified TLB Aty -
> Masks

> Three vector ports (0,1,5)
° 1x 512b
o 2x 256b that can be merged

224
72+56
o7

64
180+168
128+64

2k+2M: 1536
1G: 16

e

greater locality and reduce L3 contention
Double L1 bandwidth

Native support for large pages

, ‘ pop Cache

Hop

Branch Prediction Unit ——e Queue

Allocate/Rename/Retire

V‘JHI’

In order

Scheduler

loadData2 |

Load Data 3

TMB L2% 32KB L'I D$

I

Intel, 2017




. | Evaluation E.I

Results averaged over 10 runs with random nodes chosen for each trial

Two Intel-based platforms

- Shepard (Haswell) - Blake (Skylake)
> Dual-socket Xeon E5-2697v3 > Dual-socket Xeon Platinum 8160
- 2 3GHz - 2.1GHz
> 16 cores with dual SMT o 24 cores with dual SMT
> 32KiB L1/256KiB L2/40MiB distributed L3 > 32KiB L1/1MiB L2/33MiB distributed L3
- 128GB 2133MT/s DDR4 - 192GB 2666MT/s DDR4
ICC 18.1.0
> GCC 4.9.3 compatibility
- MKL 18.1

- OpenMPI 2.1.2




Results — Memory Bandwidth
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Vectorization improves memory bandwidth regardless of architecture

UPI links on SKX improve remote socket bandwidth (2.2x higher)



s | Results — Cache Bandwidth (Small Array)

Measured Bandwidth (GB/s)
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L1 bandwidth is lower on SKX
> Can be partially attributed to lower clock frequency

L2 bandwidth is lower for reads and slightly higher for writes
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o | Results — Cache Bandwidth (Large Array)
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Moving to a macro view, the larger L2 size on SKX clearly improves the
bandwidth for a much greater range of array sizes

Some variation in Haswell despite setting core affinity



0 | Results — Floating Point Arithmetic
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Doubling of vector size does result in doubling of FLOP rate I

o 184GF/s at 16 SKX cores vs. 392FG/s at 13 HSW cores |

Additional cores do not affect the FLOP rate, most likely due to thermal throttling



i1 | Mini-Applications and Benchmarks

GEOEMTRIC  +

High Performance Conjugate Gradient (HPCG) | e . —>

’

LULESH
> Hydrodynamics over unstructured meshes

XSBench
> Monte Carlo transport




» | Results — HPCG

Skylake (AVX512) | Skylake (NoVec) Haswell (AVX2) Haswell (NoVec)

DDOT 20.05 30.50 9.87 11.41
WAXBY 16.70 16.88 9.53 9.35
SpMV 18.56 17.95 10.22 10.20
Multi-Grid 18.29 17.94 10.01 9.89
Solve (Total) 18.33 18.04 10.03 QRo5

HPCG kernels are considered to be memory bandwidth-bound

> Would expect ~50% performance improvement due to additional memory channels
but see ~80%

Additional performance gains can be attributed to general processor
enhancements

- Larger OoO window, scheduler, and additional entries in the store queue

Vectorization makes almost no difference in default implementation




3 | Results — LULESH
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Only 4-8% difference in vectorized/non-vectorized code
SMT on SKX good from 1-16 threads (1-12% improvement)
SMT on HSW always underperforms



.+ | Results — XSBench
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SMT improves performances on both SKX (~20%) and HSW (~16%)
> Able to hide memory latencies with additional lookups

Vectorization improves performance on SKX by 22% and HSW by 24%
- Scatter/gather instructions help here where accesses aren’t necessarily in the cache



s | Results — SW4Lite
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Vectorization improves performance significantly on both systems

> 39-45% fast on SKX and 45-47% faster on HSW

SMT hinders performance on both systems
> 11% slower on SKX and 30% slower on HSW
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s | Conclusions E.I

Skylake’s redesigned core architecture provides a host of improvements

- Redesigned cache and 6 memory channels
- STREAM shows nearly 2x improvement over previous generation - 223.8GB/s vs 112.6GB/s
- HPCG shows a 0.8x improvement
o LULESH shows a gain of 1.6x

> Wider vector units
- DGEMM had a 2x performance improvement over previous generation
- SWA4Lite isn’t quite as impressive but still shows a 0.83x improvement

> 2D mesh
- XSBench shows a 1.85x improvement on Skylake over Haswell

The changes made in the core while minimizing power increases are impressive
and HPC workloads should benefit greatly from them
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