

Self-Consistency of Stark Broadening Predictions in a Multi-Element HED Plasma

T.S. Lane¹, P.M. Kozlowski¹, G.P. Loisel², M.K. Flaugh¹, T.E. Steinberger¹, J. E. Bailey², G. A. Rochau², M.E. Koepke¹

¹*West Virginia University, WV, USA*

²*Sandia National Laboratories, NM, USA*

The interpretation of spectral line shapes for plasma characterization is well established as a diagnostic technique for determining electron/ion density, an essential parameter for predicting radiation dynamics, local thermodynamic equilibrium, and atomic kinetics in laboratory and astrophysical environments. Specifically, Stark broadening is often used to diagnose a plasma's electron density via a tracer element. We are interested in improving or validating Stark broadening models and their ability to predict the plasma density from multiple elements within the same plasma self-consistently. In order to do so, we diagnose transmission spectra through \sim 0.4-um-thick Mg-NaF foil on Sandia's Z facility. This foil is tamped with varying amounts of CH, allowing for electron densities of 1×10^{21} - 1×10^{22} cm⁻³ to be reached. The foil is heated such that He-like charge states were reached for all three elements, allowing for investigation of Multi-element Stark broadening. The amount of broadening found from different elements, and different tamper thicknesses will be discussed further.

Sandia National Laboratories is a multimission laboratory managed and operated by NTESS LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. DOE's NNSA under contract DE-NA0003525.