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Motivation

• State of the art semiconductor processes have
created high performance and low power
consumption technologies

• There is a drive to use these technologies for
commercial space, defense, and infrastructure

o Need to understand radiation effects in
leading technology nodes
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Total lonizing Dose (TID) Degradation Mechanisms

• Gate degradation from interface
traps and positive charge trapping in
oxide bulk
o Mobility (I.inp) degradation

o Threshold voltage (Vth) shifts

o Drive current (lds,oh) drifts

• Leakage current (ix-ds,off) from charge
trapping in shallow trench isolation
(and buried oxide in S01)

Drai

Source

Potential parasitic

leakage path

Trapped charge in

the STI due to TID

Doping in this "neck" region

determines sensitivity

Chatterjee, IEEE TNS, 2013.
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TID vs Technology Scaling
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• Scaling trends of off-state leakage
vs technology node

• PDSOI exhibits very low leakage for
45- and 32-nm at 1 Mrad

• Migration to FinFETs resulted in a
dramatic increase in post-irradiation
leakage (early look)

• FDSOI shows leakage comparable to
older technologies



A Tale of Two Commercial Processes
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• Typically comes about when they
fix a leakage problem

• Radiation-induced leakage is
observed above 1 Mrad(Si02)

• Impossible to say if TID resilience
remains a permanent feature of the
technology going forward

Two snapshots of GF 14-nm
FinFET technology show very
different TID results J
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Device Geometry effects
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■ Interesting device width dependence in many fingered transistors

• Acceptable leakage currents become unacceptable — depending

on device Vth and geometry

• Actual leakage path is still under investigation — field oxide

perimeter is a likely suspect
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Understanding Isolation Oxides in FinFETs
Sandia
National
Laboratoits

■ Flowable oxides sometimes used for
dielectric fill step for good coverage of high
aspect ratio profile between channels

■ A flowable oxide alone would have a poor
quality interface and present electrical
problems — and TID problems

■ Treating the sub-fin / isolation oxide
interface more like the gate means different
materials than were used in any previous
process technology and higher quality
interface



Return of the SOI FinFETs?
Dielectric-isolated fin profile
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• No commercial source (IBM tech)

• Latchup a non-issue

• TID can be addressed through RHBP

• Possibly a high DRU threshold
o Good: Reduced charge collection volume
o Bad: Increased parasitics and floating body
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TID Response of BOTS-FinFETs
Quasi-SOI Technology - Experimental
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Electrically isolated FinFET on bulk eliminates
latch up structures and reduces SEU cross section
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• Dielectrically isolated devices
remove latchup and dose rate
upset structures limiting current
technology

• Initial results show promise for
T1D — the expected Achilles heel of
this technology

I

First demonstrated by IBM, GF, and
Samsung publication in VLSI 2014



Transistor Length Dependence
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• Device length leads to interesting trends for
threshold voltage and leakage current

• Parasitic leakage current does not scale as W/L like
normal FET -> alternative leakage path and parasitic
transistor definition
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Threshold Voltage Influenced by Buried Oxide Trapped Charge
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• Devices irradiated in the off-state
(Vd = 800 mV, Vg= Vs = 0 V) exhibit
substantially stronger AVth than
devices irradiated in the on-state
(Vg = 800 mV, Vd = Vs = 0 V)

• TCAD simulations show electric
field penetration of the "BOX" for
the off-state irradiation

• Leads to greater charge yield and
larger impact on device Vth and

lleak(sat)



Saturation Response — Long vs Short Channel Devices
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• Irradiation condition has more impact on post-irradiation drive current
than channel length with the worst case AVth in the off-state

• Leakage is highest in the off-state as well — geometry dependence r‘j 1/Lg



Parametric Extraction BOTS-FinFET
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• Dependence on the effective
channel length

o Interesting transistor geometry
effects

o Current analysis is limited by
available geometries

• Response to TID behaves more
like reports of TID FDSOI than
bulk devices
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TID Response IBM 22-nm PDSOI
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• PDSOI has traditionally shown

the most promise for radiation

hardness

• First, and only, public look at IBM
22-nm PDSOI shows very good
linear response, saturation shows
more shift

• High VdS /-V characteristics show
front-back gate coupling l n v eLr: iyoenr

Buried Oxide

Floating
Body

Floating body voltage influences
the inversion layer - not fully depeleted

PDSOI



Worst Case — Linear Device Operation
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• Devices are shown to have a worst case leakage (Idoff) and drive (Ian) for
the off-state irradiation condition

• Neither drive current or leakage are significantly effected at 1 Mrad(Si02)



Parameter Extraction
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• Devices show excellent post-
irradiation leakage current

• Observed Vth is small r‘j 10-20 mV
consistent with observed
changes in I dsat

• Post-irradiation leakage only
significant in saturation mode —
linear mode experiences only a
small AVth



Saturation Response — Sidewall and Backgate Coupling
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• Drive current in saturation is again minimally effected at 1Mrad(Si02)

• Leakage current does increase up to 240% in the off-state condition

• Leakage only shown to be significant under high drain bias implying coupling of the
sidewall and/or backgate in the transfer curve



Conclusions

• Logic and 10 devices for planar 22-nm PDSOI

technology show order of magnitude

reduction of TID-induced leakage over the

previous two generations of this technology

• Reduction in TID-induced leakage in bulk 14-

nm FinFET from GF making it comparable in

post-irradiation performance to 45- and 32-

nm PDSOI technologies

• Design width and length dependences

observed in bulk and quasi-SOl transistors —

leakage paths still under investigation

• Results from an experimental quasi-S01

FinFET technology also show promise for

reliable operation in radiation environments
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