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Technology Scaling Trends () i,
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Motivation () e,

Spacer Drain
Source

= State of the art semiconductor processes have 2 e
created high performance and low power T{ =t
consumption technologies ]

X-z plane

"= There is a drive to use these technologies for
commercial space, defense, and infrastructure —_—
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o Need to understand radiation effects in s
leading technology nodes {
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Total lonizing Dose (TID) Degradation Mechanisms

= Gate degradation from interface

traps and positive charge trapping in Source
oxide bulk

o Mobility (p, ,) degradation
o Threshold voltage (V) shifts
o Drive current (ly .,) drifts

F Potential parasitic
" leakage path

+\ Trapped charge in
the STl due to TID

= Leakage current (I ) from charge BRI e i e e
trapping in shallow trench isolation
(and buried oxide in SOI)

determines sensitivity

Chatterjee, IEEE TNS, 2013.




TID vs Technology Scaling () i,

! N Pamalwepm:d—; = Scaling trends of off-state leakage
2 (Palkut, Proc. IEEE SOLID cOnf’ rmr vs technology node
; 100 kil i = PDSOI exhibits very low leakage for
%U ket 45- and 32-nm at 1 Mrad
%g i | af““"e‘”“re | = Migration to FinFETs resulted in a
EQ I I I dramatic increase in post-irradiation
=) leakage (early look)
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A Tale of Two Commercial Processes () e
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Device Geometry effects s
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= |nteresting device width dependence in many fingered transistors

= Acceptable leakage currents become unacceptable — depending
on device V,, and geometry

= Actual leakage path is still under investigation — field oxide
perimeter is a likely suspect

e e S Es




Understanding Isolation Oxides in FinFETs ="

= Flowable oxides sometimes used for
dielectric fill step for good coverage of high
aspect ratio profile between channels

= A flowable oxide alone would have a poor
qguality interface and present electrical
problems —and TID problems

= Treating the sub-fin / isolation oxide
interface more like the gate means different
materials than were used in any previous
process technology and higher quality
interface

Si Substrate *t.




Return of the SOI FinFETs? () i

Dielectric-isolated fin profile

10° 10°
10“‘1: 10™4
10° 4 10° 4
= 10°% § 10° 4
% 107 + — Prerad é 1074 — Prerad
g . - = - 100 krad(SiOy) 3 === 100 krad(SiO,)
3 "1 —-—- 300 krad £ 10.91: --—- 300 krad
L T A 1 Mrad A R A 1 Mrad
0 10" 107
¥ : ON bias during irradiation 1™ : ) PG bias during irradiation
] V, =085V, V=V, =V, =0V 1 Vo=Vs=085V, V=V, =0V
1074 07y p
10'13: T L 1 = 1 ¥ 1 . T * 1 i I * T 10.13. d i ! i L g I i y i y " ’ i .
02 00 02 04 06 08 10 12 02 00 02 04 06 08 10 1.2
Gate Voltage (V) Gate Voltage (V)
10° 4
= No commercial source (IBM tech) L
10° 4
H < 10°4
= Latchup a non-issue
E ! —— Prerad
o 10° 4 - - 100 krad(SiO9)
= TID can be addressed through RHBP ¢ ... __ 300k
a 1 Mrad
. . 10-10}
= Possibly a high DRU threshold OFF s g racaton
. 10—12_! o~ Y Ve~ Vs T Vg T
o Good: Reduced charge collection volume oo
02 00 02 04 06 08 1.0 1.2
o Bad: Increased parasitics and floating body Gate Voltage (V)



TID Response of BOTS-FinFETs

Quasi-SOI Technology - Experimental
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Electrically isolated FinFET on bulk eliminates
latch up structures and reduces SEU cross section

D

= Dielectrically isolated devices
remove latchup and dose rate
upset structures limiting current
technology

" |nitial results show promise for
TID — the expected Achilles heel of
this technology

First demonstrated by IBM, GF, and
Samsung publication in VLSI 2014




Transistor Length Dependence
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= Device length leads to interesting trends for
threshold voltage and leakage current

= Parasitic leakage current does not scale as W/L like
normal FET -> alternative leakage path and parasitic
transistor definition




Threshold Voltage Influenced by Buried Oxide Trapped Charge ="
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Devices irradiated in the off-state
(V4 =800 mV, V, =V, =0V) exhibit
substantially stronger AV, than
devices irradiated in the on-state
(V, =800 mV, Vy=V,=0V)

TCAD simulations show electric
field penetration of the “BOX” for
the off-state irradiation

Leads to greater charge yield and
larger impact on device V,, and
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Saturation Response — Long vs Short Channel Devices
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" |rradiation condition has more impact on post-irradiation drive current
than channel length with the worst case AV, in the off-state

= Leakage is highest in the off-state as well — geometry dependence ~ 1/L,




Parametric Extraction — BOTS-FInFET
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TID Response —IBM 22-nm PDSOI
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PDSOI has traditionally shown
the most promise for radiation
hardness

First, and only, public look at IBM
22-nm PDSOI shows very good
linear response, saturation shows
more shift

High V4 I-V characteristics show

Inversion Gate

front-back gate coupling "iae Onice

| Floating
Body

Silicon Substrate

Floating body voltage influences
the inversion layer - not fully depeleted

PDSOI




Worst Case — Linear Device Operation () i
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= Devices are shown to have a worst case leakage (l,.+) and drive (1) for
the off-state irradiation condition

= Neither drive current or leakage are significantly effected at 1 Mrad(SiO,)




Parameter Extraction — 22 nm PDSOI ()
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Devices show excellent post-
irradiation leakage current

Observed V,, is small ~ 10-20 mV
consistent with observed
changesin I,

Post-irradiation leakage only
significant in saturation mode —
linear mode experiences only a
small AV,




Saturation Response — Sidewall and Backgate Coupling () i

' - ' - . 26F ' '
—=—V,=09V 24+ .
0.03 F|—e— V,=09V /' | ool e
¢ Vy=V,=08V__= | 2.0 —
— . ~ 18Ff —=—V,=09V
—— ® 1.6 | —o—V =09V
@ 0.02 P © l ’
2, /-/././‘ \U-:/: 1‘21 - / eV, =V,=09V
§ - n o/ * - 3 1-0 : F
= 001l / / | — s § .
< . . ’/0\‘/’ < 06 ] /.\ /
/ O /. ®
: » ' 0.4 F me
0.2} / o« ST
0.00 & 0-0 - .4,/0
] i ] i ] -0.2 - : * : * L
0 500 1000 0 500 1000
Dose (krad(SiO,)) Dose (krad(SiO,))

= Drive current in saturation is again minimally effected at 1Mrad(SiO,)
= Leakage current does increase up to 240% in the off-state condition

= Leakage only shown to be significant under high drain bias implying coupling of the
sidewall and/or backgate in the transfer curve
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Conclusions () i

= Logic and IO devices for planar 22-nm PDSOI T3
technology show order of magnitude ; gﬁ]‘?m HUEheS et al. [4]
. . - IS wor
reduction of TID-induced leakage over the 102 %  14-nm bulk FinFET
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= Design width and length dependences <
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leakage paths still under investigation :
= Results from an experimental quasi-SOI A e R R . = L N
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FinFET technology also show promise for \@“@ \%QQ(Q & o 6 90 98 & (@%O L&
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