
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 1

Effects of Heavy Ion Radiation on the
Classification Accuracy After Training of a
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Abstract— The image classification accuracy of a TaOx ReRAM
based neuromorphic computing accelerator is evaluated after
training with devices that have while intentionally induced
displacement damage up to a fluence of 1014 2.5 MeV Si ions / cm2.
Results are consistent with the radiation induced oxygen vacancy
production mechanism. When the device is in the High Resistance
State (HRS) during heavy ion radiation, the device resistance,
linearity, and accuracy after training are only affected by high
fluence levels. The findings in this study are in accordance with
results of previous studies on TaOx based digital resistive random-
access memory. When the device is in the Low Resistance State
(LRS) during irradiation, no resistance change was detected, but
devices with a 4k in line resistor did show a reduction in accuracy
after training at le 2.5 MeV Si ions / cm2, indicating that changes
in resistance can only be somewhat correlated with changes to a
devices' analog properties. This study demonstrates that TaOx
devices are radiation tolerant not only for high radiation
environment digital memory applications, but also when operated
in an analog mode suitable for neuromorphic computation and
training on new datasets.
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I. INTRODUCTION

Resistive Random Access Memory (ReRAM) is one

of the leading candidates of beyond CMOS non-volatile
memory technologies. A typical ReRAM structure
consists of two metal terminals sandwiching a
substoichiometric metal oxide layer which is dielectric in
the as-deposited state. The current voltage (I/V)
characteristics of a typical Sandia Ta0x device are shown
in Fig. 1. A diagram of the device cell is shown in the inset
for Fig. 1. The I/V characteristics of the virgin device is
shown on the left. The last step of device fabrication is a
process known as FORMING shown in the middle of Fig.
1. When positive bias is applied to the top electrode of the
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Figure 1. Current Voltage (I/V) characteristics of a ReRAIvI device. Left: I/V characteristic of device after fabrication and (Inset)

diagram of device stack. Middle: I/V characteristics of soft breakdown process known as Forming. Right: Switching the device

from high to low resistance and back again using Set and Reset operations. Elements of this figure are reproduced from [1].
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Figure 2: A vector matrix multiply may be implemented on a
crossbar with ReRANI analog electronic elements. Figure
reproduced from [1].

device inducing a soft breakdown in the TaOx and
producing a Ta rich filament across the oxide. Formed
device operation is shown in the right figure. A negative
bias applied to the top electrode can increase the
resistance of the device, in a process known as RESET,
which places the device in the High Resistance State
(HRS). A subsequent positive bias can decrease the
resistance of the device again, in a process known as SET
which places the device in the Low Resistance State
(LRS). The current-voltage (I/V) characteristics of these
three processes are shown in Fig. 1.

In addition to computer memory applications, it has
been suggested that ReRAIVI may be used for training
deep networks [2, 3]. Deep learning is a pattern
recognition algorithm that is capable of outperforming
traditional machine learning techniques in image
recognition, autonomous vehicles, and data science
applications. Training deep networks is computationally
intensive, and difficult to implement into portable,
embedded systems (e.g. spacecraft, rovers, satellites etc.).
Recent analysis has demonstrated that a special-purpose
accelerator, application-specific integrated circuit
(ASIC), based on analog ReRAM crossbars, can improve
the performance per watt by about two orders of
magnitude over a digital system — potentially enabling
real-time training on embedded systems [3]. The
performance increase is obtained by carrying out the two
most computationally intensive steps in deep network
training, a vector matrix multiply and weight update in
one parallel step [4]. An analog electronic vector matrix
multiply is diagramed in Fig. 2. By applying bias to the
left side of the crossbar, Kirchhoff s laws give the current

on the bottom of each column as sum of the weights in the
column of the crossbar, multiplied by the applied voltage
amplitude. Using the programmable conductance of
ReRAM devices to represent weights in the matrix can
allow the accelerator to not only carry out recognition
tasks, but also train on new datasets with high energy
efficiency by applying updates to the array using an outer
product update. While there are significant energy
advantages to using analog ReRAM devices as weights,
over a conventional digital memory, the accuracy of the
accelerator will negatively affected by nonlinear device
characteristics [4].

It is necessary to study the impact of radiation on analog
device characteristics of TaOx devices and what impact
this would have on a neuromorphic computing accelerator
capable of training. Radiation studies for digital ReRAM
based on tantalum [5, 6] titanium [7, 8] , and hafnium [9-
11] oxide devices have demonstrated promising radiation
tolerance results. TaOx ReRAM showed gradual
resistance degradation only at high fluences of Si and Ta
ions due to additional oxygen vacancies introduced by ion
displacement damage to the switching region [5, 6] [12-
14].
While these studies have all shown high tolerance to

radiation for ReRAM operated in a digital mode, these
results do not necessarily imply that ReRAM devices
operated in an analog mode for training in neuromorphic
computing will have equivalent radiation tolerance. In
digital operation of a ReRAM device, small variations in
conductance do not matter if the device consistently
switches between LRS and HRS. In the same device,
instead operated in an analog mode, small changes in
conductance trend matter as small changes in device
linearity can affect accuracy after training on a ReRAM
based neuromorphic computing accelerator [15]. An ideal
analog device would have a completely linear
conductance response, where each update results in an
equal change in conductance, no matter what the starting
conductance of the device before the update. TaOx
devices are far from perfectly linear in their conductance
response to SET or RESET pulses. It is conceivable that
a radiation dose far lower than the threshold required to
make a digital TaOx device lose its state, could effect a
significant negative change in the analog conductance
trend of the same device. J. L. Taggart et. al. showed a
change to the analog conductance response in Conductive
Bridge Random Access Memory (CBRAM) devices
under ionizing radiation of a total dose greater than 1
Mrad [16]. An open question remains regarding the
impact (if any) changes in the analog conductance
response of a device under radiation will have on the
ability of an analog neuromorphic computing accelerator
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Figure 3: Example of the analog programming pulses used
to tune the conductance of the device. First, a measurement
pulse is applied to the device, with a measurement during
the peak of the pulse. Then a voltage update is applied to the
device, which changes the device conductance. This
programming pulse and measure cycle is applied 1000 times
for SET and 1000 times for RESET with opposite polarity.
Note the conductance change is dependent on the state of the
device.

to train on new data as well as its ability to perform image
recognition tasks after training.

In the following, we investigate the effects of radiation
on the classification accuracy of an analog ReRAM based
neuromorphic computing accelerator capable of training
for the first time. Results show that neuromorphic
computing accelerators based on TaOx ReRAM devices
could potentially operate in extremely high radiation
environments.

II. EXPERIMENTAL DETAILS

TaOx based ReRAM devices were fabricated in the
Sandia National Laboratories' Silicon Microfab facility
on 6" wafers. The switching stack composed of TiN-
Ta0x-Ta-TiN layers, is deposited using reactive
sputtering, which employs a feedback technique
described in [17]. The reduced TaOx layer was 15 nm
thick and the Ta layer was 15 nm thick, the active region
had 1.0 gm X 1.0 gm lateral dimensions. All
measurements were made on a Cascade Microtech
manual probe station with an Agilent B1500A
Semiconductor Parameter Analyzer mainframe equipped
with a B1530 Waveform Generator Fast Measurement
Unit. GGB Industries Picoprobe model 40A-GS-250
ground signal probes were used to reducing ringing
during SET and RESET pulses. Devices were formed
using a standard I/V sweep, as seen in Fig. 1, but with a
maximum voltage of 3 V and a 5 uA compliance. Fig. 3
shows the analog programming scheme used to set the
device conductance to a value such that it corresponds to
a matrix weight. All updates must be the same, as we
cannot know the device state prior to update without
doing a serial read of all devices in the matrix. A series of
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identical 1000 measure and update pulses are applied to
the device, and the conductance response is plotted. For
devices without a 4 k ohm resistor in line, SET was +1 V
and RESET was -1.1 V. For devices with a 4k ohm
resistor in-line SET was +1.5 V and RESET was -2.17 V.
All measurement pulses were +100 mV and current
through the device was measured at the top of the pulse
using the B1500 RSU to extract resistance and
conductance. The devices were irradiated using the
nuclear microbeam on Sandia National Laboratories'
Tandem particle accelerator. A 2.5 MeV Si ion broad
beam was directed at the device array and measurements
were made ex-situ. Results were collected in a lookup
table for processing in CrossSim, the Sandia National
Laboratories' open-sourced platform for determining a
device's applicability to neuromorphic computing [18].
CrossSim takes a statistical device conductance dataset of
multiple SET and RESET cycles and converts it into a
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Figure 4: Operation of a TaOx ReRAIVI device to simulate
neural network training. Top: Example of cycled conductance
response for one of the devices in the study during analog
operation. Bottom: Operation of the same device with ion shots
every 40,000 updates. Note that there is a subtle change in the
analog conductivity response after the 1014 fluence.
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lookup table. It uses this data to simulate training a neural
network with weights based on analog ReRAM cells. It is
assumed that either the write pulse length or write voltage
can be adjusted to scale the amount written. The MNIST
small images dataset was used as a standard for the
purposes of this paper.

III. RESULTS

To obtain a set of data which will simulate training of
devices in analog mode, 20 SET and RESET cycles were
performed as shown in Fig. 4. The device was then
irradiated with 2.5 MeV Si ions to a fluence of 1x101°
ions/cm2, followed by an IN sweep and a repetition of the
cycling pulses. Another shot was then performed at an
order of magnitude increased fluence. Note that there is a
subtle change in the analog cycling behavior of the device
after the shot with fluence of 1014 ions / cm2. Device
resistance was extracted using Ohm's law from 100 mV
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Figure 5: Device resistance immediately following
irradiation, extracted by Ohm's law from 100 mV I/V sweeps.
HRS indicates that the device was in the high resistance state
during the heavy ion exposure, and LRS indicates that the
device was in the low resistance state
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Figure 6: SRIM calculations for displacement and
ionization for the TaOx devices under 2.5 MeV Si ion
irradiation. Top: vacancy production vs. depth. Total
vacancy production in the TaOx film is 5.2x102° tantalum
vacancies and 5.7x102° oxygen vacancies. Bottom:
Ionization vs. depth. The average ionization in the TaOx
layer given by SRIM calculations, is 7.5 eV/ion/A. This
corresponds to 208 MRad for 1 x1014 ions / cm2.

I/V sweeps. Results show a significant drop in resistance
after the 1014 shot for all six HRS devices in the study.

Fig. 5 shows the device resistance extracted from 100
mV I/V sweeps performed immediately after each
radiation shot. After exposure to 1014 ions/cm2 all devices
which were in the HRS show a resistance drop. Devices
in the LRS state show a significant drop in resistance state
at 1014 ions/cm2 fluence. Some noise in the data and an
outlying datapoint may be observed in the HRS devices
which is typical of filamentary ReRAM devices. Devices
in the graph on the top do not have a 4k in line resistor
whereas devices on the bottom do. It was initially
hypothesized that increasing the line resistance of the top
TiN line to 4K ohms would increase radiation tolerance.
Fig. 5 shows that there was not a significant difference
between the devices with the resistor and those without
the resistor.
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The resistance with respect to fluence results in Fig. 5
are comparable to our earlier result on binary ReRAM
devices where the onset of resistance change occurred
near similar thresholds of calculated oxygen vacancy
concentrations [19]. The devices in this study have a
thicker set of metals, both above and below the switching
region, than those devices tested in our previous digital
studies. Shots conducted while the devices were in the full
high resistance state (HRS) showed consistent
degradation only at extremely high fluence (1014 ions /
cm2), whereas the devices in the low resistance state
(LRS) showed no degradation in resistance up to the
highest ion fluence tested. This is, again, consistent with
previous studies on digital devices which have indicated
that these devices are highly radiation tolerant [5, 6] [12-
14]. Our results are also consistent with the mechanism in
which the result of heavy ions is oxygen vacancy
production. In the LRS state of the device, an oxygen
vacancy rich filament creates a conductive channel
through the device. As heavy ion irradiation creates
additional oxygen vacancies, the device, which already
has a low resistance channel, does not change resistance.
In the high resistance state, however, a critical region in
the filament has become largely oxidized, and is no longer
conductive. When heavy ion irradiation creates additional
vacancies within this critical region, the device resistance
drops. It is worth noting that, in addition to the high
activation energy required to break an O-Ta bond and
displace the oxygen atom enough such that the bond does
not immediately reform, the tiny scale of the critical
region may well contribute to the radiation tolerance of
these devices.

Calculations using the Stopping and Range of Ions in
Matter (SRIM) application estimate the vacancy
production in the active region of the device to be
5.2x102° tantalum vacancies and 5.7x102° oxygen
vacancies [20]. A plot of the vacancy distribution with
respect to depth is given in Fig. 6. These calculations are
only an order of magnitude estimate, due to potential
device stack thickness variation which is not represented
properly in the simulation. Compound densities were
calculated based on stoichiometry, and SRIM default
displacement threshold energies were used. The average
ionization in the TaOx layer given by SRIM calculations,
was 7.5 eV/ion/A. This corresponds to 208 MRad for
1x1014 ions / cm2. A plot of the average ionization with
respect to depth is also given in Fig. 6. The exceptionally
high radiation tolerance is likely due to the small volume
of the critical area, which can be disrupted within the
TaOx layer. While there are some unknown aspects to the
conductance switching mechanism in these devices, it has
been demonstrated that conductance switching occurs
within a nanoscale tantalum rich filament which is created
in the FORMING process [13]. The switch from LRS to
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Figure 7: Accuracy after training on devices exposed to radiation
in the high resistance state (HRS). Top: Image recognition
accuracy after each training update for an example device.
Middle: Accuracy after training for three devices taken from the
maximum classification accuracy of all epochs for devices
without the in-line 4k resistor. Bottom: Accuracy after training
for three devices taken from the maximum classification
accuracy of all epochs for devices with an in-line 4k resistor.
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Figure 8: Accuracy after training on devices exposed to
radiation in the Low Resistance State (LRS). The devices
without a in-line resistor showed no significant change at any
of the tested radiation exposure levels. The devices with an in-
line 4k resistor tested in LRS state showed a significant
decrease in accuracy at 1014 ions/cm2 fluence.

I-IRS by recombination of some of the Ta and oxygen ions
is hypothesized to not occur across the entire length of this
filament during RESET [13]. The resistance of the device
will only change if damage occurs within a small critical
portion of the filament, which is already nanoscale in all
three dimensions [13].

Sandia's CrossSim code was used to evaluate the effect
of radiation on training an analog ReRAM crossbar [17],
following the procedure in [3]. A standardized dataset of
handwritten digit images, known as MNIST, was used to
train the network [21]. CrossSim created a dataset from
the cycles following each shot and was used to simulate a
plot of classification accuracy (correctly identifying the
handwritten digit) versus the neural network iteration
(epoch) for a sample device (Fig. 7). While the device

1E14

1E14
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largely continues to switch after the shot with 1014 ions /
cm2 fluence, subtle changes to the analog characteristics
result in a lower average accuracy after training than in
the non-irradiated devices. Fig. 8 shows the devices which
were irradiated in the LRS state. While the resistance
plots in Fig. 5 would seem to indicate that no significant
change occurred to the devices in LRS the accuracy after
training on devices with an inline 4k resistor did show an
average accuracy drop after being irradiated at a fluence
of 1014 ions / cm2. This indicates that resistance changes
are not perfectly correlated with devices'
analog/neuromorphic performance after irradiation
damage. In all cases, the radiation level required to show
an effect is very high. The very high fluence levels
required to impact the accuracy after training of a
neuromorphic accelerator based on Ta0. RRAM devices
implies applicability of this technology to embedded
systems in high radiation environments.

Iv. CONCLUSIONS

The effect of displacement damage on neural network
accuracy after training on an analog-crossbar based on
TaO„ ReRAM array is investigated. It is found that a
neural network training accelerator based on this
technology is robust to ion displacement damage,
requiring a shot of 2.5 MeV Si ions with fluence of 1014
ions / cm2 to show a significant effect on the classification
accuracy after training. At this dose, the device
conductance is found to shift. The devices were still
functionally switching, and although subtle changes to
their analog conductance response were observed, neural
training was still possible. SRIM calculations confirm that
displacement damage is occurring in the oxide. This study
provides a promising direction for embedded pattern
recognition systems for high radiation environments.
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